

Suite 1,16 Brodie Hall Drive Bentley, WA, Australia, 6102. PO Box 1067 Technology Park DC Bentley, WA, Australia, 6983. Tel: +61 8 6250 8100 Fax: +61 8 6250 8199

Anglo American Exploration Australia Pty. Ltd. A.C.N. 006 195 982

EPM15646 "Lynd" Third Annual Report

For the Period 15/05/2009 - 14/05/2010

Volume 1 of 1

TenureAnglo American ExplorationHolder:(Australia) Pty Ltd

TenementAnglo American ExplorationOperator:(Australia) Pty Ltd

Compiled By:

Date:

May 2010

Distribution

Kylie Dixon and Paul Polito

Department of Natural Resources and Mines Queensland - (1) Anglo American Exploration (Australia) Pty Ltd – Perth Office (1)

This report and its contents are confidential. All rights to the report and its contents (including, without limitation, rights to confidential information and copy right in all works (including photographs, diagrams, charts, maps and graphs) comprised in the report) remain the property of Anglo American Exploration (Australia) Pty Ltd. No part of this report nor of the information contained in it may be disclosed to any person without the consent of Anglo American Exploration (Australia) Pty Ltd. No part of this report nor of the information contained in it may be disclosed to any person without the consent of Anglo American Exploration (Australia) Pty Ltd. No part of this report nor of the information contained in it may be reproduced (including by being stored in any form), transmitted, published or used for any purpose without the consent of Anglo American Exploration (Australia) Pty Ltd.

SUMMARY

EPM15646 "Lynd" covers an area of approximately 321.3 km² and is located within the Georgetown Inlier, Queensland. Anglo American Exploration Australia Pty Ltd (AAEA) was granted the tenement on 15th May 2007 for a period of five years. This tenement, along with EPM15915, EPM16070 and the applications EPM17806, EPM17983, EPM18023 and EPM18056, make up the Lynd Project.

AAEA is seeking to discover significant NiS deposits in the Lynd area using a variety of magmatic NiS related empirical criteria and models.

The tenement area consists dominantly of Cambrian to Ordovician metasediments intruded by a Silurian mafic complex with minor Quaternary cover. The targets are Voisey's Bay style NiS and the area has not seen NiS exploration. Anglo American has the rights to proprietary technology that we believe will be able to detect massive NiS at great depths.

During the current reporting period, exploration consisted of a Spectrem Airborne Geophysics Survey (TMI, EM and Radiometrics), a ground magnetic geophysics survey, termite mound sampling including detailed heavy mineral analysis, 45 RC drill holes for 2196 metres and a petrology study.

Anglo American Exploration (Australia) Pty Ltd Third Annual Report – EPM15646 "Lynd" May 2010

Acknowledgement and Warranty

1. Subject to 2, the tenure holder acknowledges that this Report, including the material, information and data incorporated in it, has been made under the direction or control of the State of Queensland (the State) within the meaning of section 176 of the Copyright Act 1968 (Cwth).

2. To the extent that copyright in any material included in this Report is not owned by the State, the tenure holder warrants that it has the full legal right and authority to grant, and does hereby grant, to the State, subject to any confidentiality obligation undertaken by the State, the right to do (including to authorise any other person to do) any act in the copyright, including to:

- use;
- reproduce;
- publish; and
- communicate in electronic form to the public, such material, including any data and information included in the material.

3. Without limiting the scope of 1 and 2 above, the tenure holder warrants that all relevant authorisations and consents have been obtained for all acts referred to in 1 and 2 above, to ensure that the doing of any of the acts is not unauthorised within the meaning of section 29(6) of the Copyright Act (Cwth).

Keywords

Geographical (Greenvale) Commodities (nickel, copper, PGE) Ages (Proterozoic) Geological Province (Georgetown Inlier, Tasman Orogenic Zone) Exploration (Aerial Geophysical Survey, ground magnetics, termite sampling, RC drilling and Petrology)

TABLE OF CONTENTS

SUM	IMARY	I
ТАВ	LE OF CONTENTS	1
1.	INTRODUCTION	4
2.	TENURE	4
3.	REGIONAL GEOLOGY	5
4.	EXPLORATION RATIONALE	6
5.	PREVIOUS EXPLORATION	6
6.	EXPLORATION CONDUCTED	7
6.1 6.2 6.3 6.4 6.5	AERIAL GEOPHYSICS – SPECTREM AIR SURVEY GROUND MAGNETICS SURVEY TERMITE SAMPLING – GEOCHEMISTRY AND HEAVY MINERAL ANALYSIS DRILLING	8 9 0
7.	REHABILITATION 1	1
8.	PROPOSED FUTURE EXPLORATION 1	2
9.	CONCLUSION 1	2
10.	REFERENCES 1	3

LIST OF TABLES

Table 1: Tenements Details	. 4
Table 2: Graticular Sub-blocks EPM15646.	. 4
Table 3: Exploration Summary	. 7
Table 4: Ground Geophysics - Magnetic Survey Details	. 8

LIST OF FIGURES

Figure 1	Lynd Project Tenement Location Plan
Figure 2	EMP15646 Tenement Plan showing Graticular Blocks
Figure 3	Lynd Project EPM15646 Regional Geology
Figure 4	Lynd Project EPM15646 Interpreted Geology
Figure 5	Lynd Project EPM15646 Exploration Index Plan
Figure 6	Lynd Project EPM15646 - Vesper Prospect TMI (Greyscale 1VD) with Pipe Like Structures
Figure 7	EPM15646 Spectrem Aerial Geophysics

	Anglo American Exploration (Australia) Pty Ltd Third Annual Report – EPM15646 "Lynd" May 2010
Figure 8	Lynd Project EPM15646 Ground Magnetic Survey Lines
Figure 9	Lynd Project EPM15646 - Vesper Prospect Ground Magnetics with TMI (1VD)
Figure 10	Lynd Project EPM15646 - Vesper Prospect Termite Sampling Locations
Figure 11	Lynd Project EPM15646 - Vesper Prospect Termite Sampling showing pipe-like structures
Figures 12-13	Scanning Electron Image of a diamond extracted after fusion from the Termite mounds sampled in May at Vesper Prospect
Figure 14	Lynd Project EPM15646 - Vesper Prospect Combined Ni-Cr-Co geochemistry (from Termite Samples) data with Ground Magnetics
Figure 15	Lynd Project EPM15646 - Vesper Prospect Combined Na-Tb Geochemistry (from Termite Samples) data with
Figure 16	A Scanning Electron Image of a diamond extracted after fusion from the termite mounds sampled in August at Vesper Prospect.
Figure 17	RC Drilling at Vesper Prospect
Figure 18	RC Drill Hole locations

LIST OF APPENDICES

Appendix I	Spectrem Aerial Geophysics
	Data, Logistics Report and Image Atlas.
Appendix II	Ground Magnetic Geophysical Survey
	Data files.
Appendix III	Termite Sampling Geochemistry
	Data files.
Appendix IV	Detailed Heavy Mineral Analysis
	Bulk Sample #09-001-001
	Reports and Data files.
Appendix V	Detailed Heavy Mineral Analysis
	Bulk Samples #AUA054802 and AUA054901
	Report and Data files.

Anglo American Exploration (Australia) Pty Ltd Third Annual Report – EPM15646 "Lynd" May 2010

Appendix VI	Detailed Heavy Mineral Analysis	
	RC Drill samples	
	Report and Data files.	
Appendix VII	RC Drilling	
	AAEA Logging Codes and Data files.	
Appendix VIII	Petrology Report on 35 Samples	
	from the 2009 RC Drilling at Vesper.	

1. INTRODUCTION

EPM15646, is part of the Lynd Project group comprising the tenements EPM15915, EPM16070 and the applications EPM17806, EPM17983, EPM18023 and EPM18056 (Figure 1). EPM15646 is located approximately 35 km west-south-west of Greenvale. Access to the tenement from Townsville is via the Gregory Development Rd that links Charters Towers to the Lynd Junction and then various station tracks. The tenement is on the Clarke River (SE55-13) 1:250,000 map sheet and the Burges (7,859) 1:100,000 map sheet.

This report summarises the exploration activities conducted on EPM15646 during the reporting period 15th May 2009 to 14th May 2010 by Anglo American Exploration (Australia) Pty Ltd (AAEA).

2. TENURE

The tenement EPM15646, was granted to AAEA on 15th May 2007 and consists of 99 graticule blocks covering an area of approximately 321km². The tenement details are in Table 1 below and the tenement location plan is presented as Figure 1.

Table 1: Tenements Details							
Tenement	Holder	Date Granted	Expiry Date	Area Km²	No Sub Blocks		
EPM15646	AAEA	15/05/2007	14/05/2012	321.3	99		

Table 2 and Figure 2 details the 99 sub blocks that comprise the lease on the Townsville 1: Million map sheet.

ble 2: Graticular	Sub-blocks - E	PM15646	
1:1,000,000 Plan Name	Primary Number	Graticular Section	No of Blocks
	2599	e k p u z	5
	2600	abcdefghjklmnopqrstuvwxyz	25
	2601	abfghlmnqrsvwx	14
	2671	.e k p u z	5
Townsville	2672	abcdefghjklmnopqrstuvwxyz	25
	2673	lqrvw	5
	2743	.ekpuz	4
	2744	abcdfghjlmnoqrst	16
		TOTAL	99

3. REGIONAL GEOLOGY

EPM15646, The Lynd Project, is located in northeast Queensland along the Tasman Orogenic zone, on the south eastern margin of the predominantly Palaeoproterozoic to Early Mesoproterozoic Georgetown Inlier (Figure 3). At this location, Palaeoproterozoic rocks of the Georgetown inlier are in faulted contact with younger Ordovician to Carboniferous sediments of the Broken River Province further east (Fergusson et al., 2007). Recent work has replaced the western contact of the Tasman Orogenic zone from the Burdekin River Fault westward along the Lynd Mylonite Zone; the area between the two structural elements is named the Greenvale Province (Nishiya et al., 2003 and Fergusson et al., 2007).

The roughly N-S trending Balcooma Mylonite Zone and Nickel Mine Fault divide the Greenvale Province between the Lynd Mylonite Zone and the Burdekin River Fault further (Fergusson *et al.*, 2007). Early Palaeozoic metamorphic units and intrusions make up the majority of rocks in the Greenvale province (Whitnall *et al.*, 1991). The stratigraphy is younging towards the East from the Cambrian (486±5 to 477±6 Ma) Oasis Metamorphics and Lynwater complex west of the Balcooma Mylonite zone; the Ordovician (471±4 Ma) Balcooma Meta Volcanic Group and Silurian (431±7 Ma) Dido Tonalite East of the Balcooma Mylonite Zone (Whitnall *et al.*, 1991; Fergusson *et al.*, 2007). An increase in age is documented through the stratigraphy further east with the Ordovician Lugano Metamorphics, Cockiespring Tonalite, Eland Metavolcanics and Paddys Creek Phyllite west of the Nickel Mine Fault; through to the Cambrian Halls Reward Metamorphics located between the Nickel Mine Fault and the Burdekin River Fault (Fergusson *et al.*, 2007; Nishiya *et al.*, 2003).

The older units in the Greenvale province; Oasis Metamorphics, Lynwater Complex and Halls Reward Metamorphics, have been affected by amphibolite grade metamorphism related to the Cambrian Delamerian Orogeny (Fergusson *et al.*, 2007). Deposition of the Balcooma Volcanic group took place in a back-arc setting (Withnall *et al.*, 1991). Subsequent amphibolite grade metamorphism during the Silurian to Early Devonian deformed the Balcooma Volcanic Group (Withnall *et al.*, 1991). The emplacement of the Dido Tonalite, the focus of this study, is associated with this Silurian deformation event (Withnall *et al.*, 1991). Later deformation produced the predominantly N-S trending foliation found in the Greenvale Province (Fergusson *et al.*, 2007).

The rocks exposed in the central NNE-SSW trending axis on tenement EPM15646 are the Silurian Dido Tonalite (Withnall *et al.*, 1991). Several gabbroic intrusions of unknown age have been located within the Dido Tonalite and on the tenement EPM15646. Metasediments of the Lugano Metamorphics and Eland Metavolcanics are the most eastern exposed rocks on tenement EPM15646. However, lithological contacts are not exposed and the location of the western contact of the Dido Tonalite with the Balcooma Mylonite Zone is uncertain due to a significant amount of Tertiary cover in the area.

4. EXPLORATION RATIONALE

The Lynd Project, which incorporates EPM15646, was first identified in 2004 during a country wide data gathering and consolidation exercise that was constructed to specifically highlight areas within Australia that maybe prospective for magmatic Cu-Ni+/-PGE systems. This exercise incorporated regional geological, geochemical, DEM, magnetic, gravity and seismic tomographic data.

The combined datasets identified approximately 100 targets across Australia that were subsequently ranked using criteria that included the location of intersections of major structures with coincident Ni±Cu anomalies and permissive geology. The Lynd project was one of the top ten ranked targets identified as having potential to host a Cu-Ni+/-PGE system based on a bullseye magnetic feature located on a craton margin directly related with known layered mafic intrusions.

The exploration target is the south eastern margin of Georgetown Inlier, which is an under explored region within Queensland. AAEA is targeting magmatic-hosted Ni-Cu-PGE mineralisation, analogous to either Voisey's Bay (Canada) or Noril'sk style (Russia), both of which are giant, world class ore bodies.

5. PREVIOUS EXPLORATION

A summary of previous exploration is summarised in earlier annual reports. The exploration completed by AAEA on the tenement is outlined below.

Exploration conducted in 2007 included: a geological reconnaissance field trip to identify major lithologies and prospective areas for nickel mineralisation, local mapping of the limited outcrop (Figure 4), regolith geology, soil (398 samples), tree bark (87 samples) and rock chip (84 samples) sampling programs over areas identified as having thin regolith cover. Several targets were generated by the soil geochemistry and these were followed up by 20 line km of dipole-dipole IP ground geophysics and air core drilling. A program of 49 holes for 812m was initiated; however was cut short due to unfavourable weather conditions.

Exploration during the 2008 field season targeted numerous discrete geophysical anomalies with 1,400 soil samples, 46 rock chips and 113 holes for 3081m of RAB drilling completed. This drilling identified previously unknown areas of ultramafic and mafic intrusives hidden beneath the transported cover.

Geochemical results from the newly identified mafic-ultramafic intrusions showed that Ni and PGE depletion has occurred, indicating that Ni-enrichment, in the form of an ore deposit, may be located near-by. These intrusions required followup investigation to establish their extent and prospectivity. Consequently, AAEA engaged researchers from the University of Tasmania to conduct petrology and geochemistry studies on samples from the drilling programs to try and quantify the Nickel prospectivity of these intrusions. These studies obtained several SHRIMP and LA-ICP-MS U-Pb ages from mafic and intermediate samples within the tenement. It was found that two distinct ages dates consistently occur; an older intrusive event occurred at 460 to 470Ma and a younger intrusive event occurred at 430Ma.

A 9 hole, 2,643m diamond drilling program, focused on one large (2.2km long x 500m wide) and several smaller (500m x 200m) Ni-Cu-Cr-Co-PGE soil anomalies that also had coincident IP geophysical anomalies. The diamond drilling program intersected multiple zones (>15m intercept width) of disseminated, weakly anomalous Ni-Cu (±PGE) sulphide mineralisation (max Ni of 0.58%, 0.28% Cu) in previously undocumented mafic and ultramafic lithologies that are known to occur at the world class Voisey's Bay Nickel Deposit. These areas were followed up with a further 17 lines of dipole-dipole Induced Polarisation (DDIP) totalling 23.3 line km.

6. EXPLORATION CONDUCTED

Exploration work carried out on EPM15646, during the third year of the tenement has consisted of a Spectrem Airborne Geophysics Survey (TMI, EM and Radiometrics), a ground magnetic geophysics survey, termite mound sampling including detailed heavy mineral analysis, 45 RC drill holes for 2196 metres and a petrology study on RC chips from a selection of holes from the drilling. The location of this activity is shown on the Exploration Index Plan (Figure 5) and summarised in Table 3.

Table 3: Exploration Summary				
Geophysics	Sampling	Drilling	Petrology	
 Spectrem Survey – 1584 line km Ground Magnetics – 17 line km at Vesper Prospect 	 Termite Sample geochemistry HMC analysis on Bulk (#09-001-001) HMC analysis – Loam and Termite - Bulk Samples #AUA054802 and AUA054901 HMC analysis on 2009 RC Samples. 	 45 holes for 2196m & 1114 samples 	35 Samples	

Four, small, pipe-like features were identified in aeromagnetic data over a 4km² in the north-western corner of the tenement EPM15646 in mid 2008 (Figure 6). The pipe-like features have a negatively polarised magnetic signature occurring within an area that has been mapped as a foliated, intermediate phase of the Dido Tonalite. On the basis of the pipe-like features being somewhat proximal to the Balcooma Mylonite Zone and the Teddy Mount Fault, which both appear to be crustal scale features linked to the margin of the North Australian Craton and the presence of kimberlite indicator minerals elsewhere in the Georgetown Inlier (Cranfield And Diprose, 2008), the pipe-like features were considered to be possible kimberlite or lamproite intrusions capable of hosting diamonds. The

prospect was named Vesper after Vesper "Lynd" of Casino Royal fame and became the target area for the most exploration completed within the reporting period.

This exploration complies with the authorised activities specified for the first three years of the permit. The digital data associated with this report are presented in appendices as txt, zip or pdf files.

6.1 Aerial Geophysics – Spectrem Air Survey

In late 2009, Spectrem Air Limited conducted an Aerial Geophysical survey over The Lynd - Block 1 area. Data captured includes EM, Magnetics (Figure 7), DTM and Radiometrics. A total of 5,070 line km was surveyed for the whole of The Lynd - Block 1 area and 1584 line km was surveyed within EPM15646. The digital data, details of the survey, the system specifications, standard Spectrem Air data processing stream and an atlas of images are described and presented in Appendix I.

Since the majority of the geology in the area is under cover, the Spectrem geophysical data will prove to be invaluable to delineate prospective areas at depth and undercover. The results are preliminary at this stage, however, a number of possible EM anomalies have been identified in several channels, but require further processing and interpretation of the data.

6.2 Ground Magnetics Survey

A small ground magnetic geophysical survey was completed in May 2009 by AAEA geophysics personnel. The sampling was carried out using on 40m spaced lines over discrete area of interpreted circular magnetic "pipe" features on EPM15646 (Figure 8).

Table 4: Ground Geophysics - Magnetic Survey Details			
Instrument:	nstrument: Geometrics G858 Caesium Vapour magnetometer with an		
	inbuilt GPS		
Base Station	Geometrics G856 proton precession magnetometer		
Line Spacing	40m		
Line Orientation	East - west.		
Total No Lines	30		
Line Km	~17 line km		

The ground magnetic data revealed the presence of at least six, 80m to 130m diameter pipe-like features that ranged from 20 to 45m beneath the surface (Figure 9). The digital data of this survey are attached in Appendix II.

6.3 Termite Sampling – Geochemistry and Heavy Mineral Analysis

Several, small, pipe-like features were identified in aeromagnetic data were considered to be possible kimberlite or lamproite intrusions capable of hosting diamonds. The importance of these targets is given weight by reports of alluvial diamonds found by previous prospectors in the region (although a kimberlite source has never been located).

The termite samples were collected as close as possible over the known pipe-like features at spaces ranging from 30m to 200m apart (Figure 11). A two to three kilogram sample, considered to be representative of the entire termite mound was homogenised in the field and collected into calico bags. A 100 gram representative sample of <250 micron soil, sieved from the termite mound was sent to ACME Analytical Laboratory in Canada and analysed by the Group 1FMS method; an aqua regia digest followed by an ICP-MS finish (Appendix III).

The 36, two to three kilogram termite mound samples were bulked into one sample in Perth before being washed, screened and treated by both labs by processes that included various flotation methods, magnetic separation and mineral fusions to maximise heavy mineral recoveries. This process produced approximately 12.5 grams of heavy mineral concentrate for observation and sent to Diatech Laboratories and North Australian Diamond Labs in Perth for heavy mineral analysis, separation and observation (Appendix IV).

The concentrate was observed down to 0.2mm and revealed the following:

- Two 125 to 175 micron, nearly equi dimensional, cubo to octahedron, light-grey to colourless, transparent diamonds that were recovered from the +0.5mm concentrate after fusion of the heavy mineral rejects (Figure 12 and 13).
- One black, dull, near spherical, highly granular and weathered Crspinel of possible kimberlite origin,
- One black, dull, subrounded, granular and weathered Cr-spinel of probable kimberlite origin, and
- Several Fe-oxide and Fe-oxihydroxides, epidotes, ilmenites and spessartines.

The <250 micron soil/termite sample geochemistry revealed that three of the six pipe-like features correspond to weakly anomalous concentrations of Ni-Co-Cr-Nb-Ta; a geochemical signature that is typical of kimberlite pipes that can host diamonds (Figure 14 and 15).

A follow-up termite and loam sampling program was conducted in August 2009 to collect a larger "bulk" sample over the same area. The same 36 termite mounds (Figure 11) were resampled for a combined weight of 308kg and a 77kg combined sample of lag and loam was collected from areas devoid of termite mounds. This bulk termite sample produced 33.3 grams of heavy mineral concentrate for observation, whereas the loam sample produced 19.7 grams of heavy mineral concentrate for observation (Appendix V).

The combined concentrate was observed down to 0.2mm and revealed the following:

- One 125 micron, multi-twinned colourless, transparent diamond that was recovered from the +0.5mm concentrate after fusion of the heavy mineral rejects (Figure 8).
- Two black-brown, dull, well rounded, anhedral, Cr-spinel with bright granular interiors of possible kimberlite origin,
- Four brown, dull, finely frosted, hyercinitic-spinels of improbable kimberlite origin, and
- Several Fe-oxide and Fe-oxihydroxides, epidotes, ilmenites and spessartines.

Five, >25kg composite samples from five drill holes considered to contain the most likely candidates for kimberlite material were submitted to Diatech Laboratories and North Australian Diamond Labs for heavy mineral separation and observation. None of the three samples revealed the presence of diamonds or diamond indicator minerals (Appendix VI). Several minerals were identified as being possible indicator minerals and therefore required microprobing to determine their species. However, it was concluded that the garnets were all almandine or spessartine, the olivine was in fact sphene and the brown minerals were amphibole not pyroxene.

6.4 Drilling

A 45 hole (VSAC09-001- 045) 2196 m, RC drill program (Figure 17).was conducted in November 2009 to test the cluster of magnetic features at the Vesper Prospect.

One thousand one hundred and fourteen (1114) samples were taken on 2m composites but logging occurred on a meter scale. Assaying was performed by ALS Chemex in Townsville using ME-ICP61 – 33 element four acid ICP-AES method. All samples were homogenized in situ, and approximately 3 to 5 kg was sieved in the field for a <250 micron fraction. Duplicate samples were collected at a rate of 3 per 100 soil samples and a standard was inserted every 33^{rd} sample for QAQC purposes.

The drilling revealed that brecciated volcaniclastics and fine-grained mafic intrusives were responsible for the magnetic anomalies. Trace amounts of pyrite, bornite and <1% malachite were observed over a one metre interval in drill hole VSAC09036. This drill hole returned a 38m interval of 345ppm Cu from 14m including two metres at 1035ppm Cu from 28m. Nb, Cr, Ni, La and Ce concentrations were were not anomalous in any of the drill holes confirming that none of the pipe-like magnetic features were of ultramafic affinity.

The Vesper prospect will not be considered for follow-up exploration. However, it is clear that the microprobe geochemistry data for the heavy minerals extracted from the termite mounds is significantly different from the data obtained from heavy minerals in the RC drill chips. This suggests that the origin of the three micro-diamonds and four indicator minerals found in the termite samples has not been determined and it is proposed that future work on Anglo American tenements in the southern Georgetown area will incorporate some aspect of diamond exploration.

The hole locations are presented on Figure 18, the digital data and the code definitions of lithologies are include in Appendix VII.

6.5 Petrology

AAEA commissioned Anthony Ahmat to complete a petrographic report on 35 representative samples from the drill holes completed in 2009. This report reveals that the main rock type in most drill holes is a hornblende lamprophyre of intermediate composition. This lamprophyre intrudes granitoids, gneisses, cataclastic quartzofeldspathic rocks, intrusive breccias and amphibolites. Several of the rocks are highly altered and veined by alkali feldspar and carbonate. The diamond potential of the area based on the petrological report is reduced by the lack of evidence for kimberlite, lamproite or ultramafic lamprophyre. However, the mere presence of lamprophyre is significant. Diamonds have been linked to lamprophyric minettes in some parts of the World. The report is presented in Appendix VIII.

7. REHABILITATION

RC holes were rehabilitated at the end of the drilling program and the samples were back filled into the holes. All drill holes have been rehabilitated to the satisfaction of the Queensland Department of Mines, AAEA and the station owner.

8. PROPOSED FUTURE EXPLORATION

Exploration in the fourth year of the permit will include interpretation and target generation of the Spectrem Airborne Geophysical surveys and drilling. This data will define areas for further exploration including geochemistry, ground geophysics and drilling, in accordance with the tenement agreements.

9. CONCLUSION

During the third year of the tenement, a ground magnetic geophysics survey, termite mound sampling including detailed heavy mineral analysis, 45 RC drill holes for 2196 metres, a petrology study from the 2009 RC drilling and a Spectrem airborne geophysics survey (TMI, EM and Radiometrics) was completed. Exploration proposed for the fourth year of the tenement will include interpretation of the airborne geophysics to define areas for future exploration.

10. REFERENCES

Clarke River 1:250,000 Geological Map Series. 1963, 1st Edition. Publ.: Geological Survey of Queensland. Prepared in collaboration with the Bureau of Mineral Resources, Geology and Geophysics, Department of National Development and Energy.

CRANFIELD, L.C. & DIPROSE, G., 2008: *Diamonds, Diamond Indicator Minerals and a review of Exploration for Diamonds in Queensland*. Queensland Geological Record 2008/04.

FERGUSSON, C.L., et al 2005. Structure of the Early Palaeozoic Cape River Metamorphics, Tasmanides of north Queensland: evaluation of the roles of convergent and extensional tectonics. Australian Journal of Earth Sciences 52, Number 2, pp. 261-277.

FERGUSSON, C.L., HENDERSON, R.A., WITHNALL, I.W., FANNING, C.M., 2007. *Structural history of the Greenvale Province, north Queensland: Early Palaeozoic extension and convergence on the Pacific margin of Gondwana.* Australian Journal of Earth Sciences 54, Number 4, pp. 573-595.

POLITO, P A, VAN EIJNDTHOVEN, W, CORSCADDEN, B M, KENNEDY, T. 2008. *EPM15646 "Lynd" First Annual Report for the Period 15/05/2007-14/05/2008*. AAEA Confidential Report to Queensland Department of Mines and Energy.

POLITO, P A, VAN EIJNDTHOVEN, W, CORSCADDEN, B M, KENNEDY, T. 2008. *EPM15646 "Lynd" Second Annual Report for the Period 15/05/2008-14/05/2009*. AAEA Confidential Report to Queensland Department of Mines and Energy.

WITHNALL ET AL., 1991., Queensland. Dept. of Resource Industries. *Explanatory notes on the Einasleigh 1:250000 geological sheet*. Brisbane : Dept. of Resource Industries.

APPENDIX I

SPECTREM AIR LIMITED SPECTREM SURVEY OF THE LYND- BLOCK 1 AREA FOR EPM15646 (AUSTRALIA)

AERIAL GEOPHYSICS

Flight Survey Details, Image Atlas & Digital Data

SPECTREM AIR LIMITED

ANGLO AMERICAN EXPLORATION (AUSTRALIA) PTY LTD

SPECTREM SURVEY OF THE LYND - BLOCK 1 AREA (AUSTRALIA)

December 2009

AMENDED FOR EPM15646

K E Y W O R D S

Lynd - Block 1, Australia, Anglo American Exploration (Australia) Pty Ltd, SPECTREM, Airborne, Electromagnetic, Magnetic, Radiometric

SUMMARY

In November 2009, Spectrem Air Limited conducted an airborne electromagnetic survey over the Lynd - Block 1 area.

Good data quality was achieved for this 25 Hz Lynd 1 survey with X9 and Z9 noise levels were fairly low at around 200 PPM.

Unfortunately despite a very careful examination of the Spectrem AEM data no good sulphide conductors were detected in the Lynd 1 area.

However a few poor conductors were detected. These AEM anomalies, which have been given a D or lower grade rating, should be integrated with the available geological / GIS information and reviewed with the Spectrem team if necessary.

CONTRIBUTORS

Phil Klinkert

Shawn Letts

Jaco Smit

Louis Polomé

CIRCULATION LIST

Copies of this report have been sent to:

- M Webb Chief Geophysicists AAEA (Perth)
- A Kneeshaw Exploration Manager AAEA (Perth)
- SPECTREM's Archive

CONTENTS PAGE

CONTRIBUTORS	II
CIRCULATION LIST	II
CONTENTS PAGE	III
LIST OF FIGURES	IV
1 INTRODUCTION	1
2 APPENDIX 1: SURVEY DETAILS WITHIN EPM15646 2.1.1 Logistics 2.1.2 Datum 2.1.3 Survey Area Coordinates	4 4 5
3 APPENDIX 2: SYSTEM SPECIFICATIONS	6 6 7 7
4 APPENDIX 3: DATA PROCESSING	8
 4.1 Electromagnetic Processing	8 8 8 8 8
 4.2 Magnetic Processing	9 9 9
4.3 DEM processing	9
4.4 Radiometric Processing	10
5 APPENDIX 4: DELIVERABLES	11
 5.1 Digital Products	11 11 11
6 APPENDIX 5: SOFTWARE VERSIONS	12

LIST OF FIGURES

Figure 1 - Survey Location	1
Figure 2 (amended) - An image of the EM Tau Z (LYND - Block 1 within EP	M15646) 2
Figure 3 (amended) - An image of the Total Filed Magnetic Intensity (LYND 1) within EPM15646	- Block 3

1 INTRODUCTION

Between 10 to 21 November 2009, Spectrem Air Limited conducted an airborne electromagnetic, magnetic and radiometric survey over the Lynd Block 1 project in Australia. A total of 5 070 line kilometres were surveyed and 1584 Line kilometres within EPM15646. The general location of the survey is shown in Figure 1.

Details of the survey can be found in Appendix 1. The system specifications are presented in Appendix 2 and the standard Spectrem Air data processing stream is described in Appendix 3.

Figure 1 - Survey Location

A map of the total magnetic field (Figure 2) and of the conductivity Tau Z (Figure 3) of the Lynd Block 1 project within EMP15646 are shown below:

Figure 2 (amended) - An image of the EM Tau Z (LYND - Block 1 within EPM15646)

Figure 3 (amended) - An image of the Total Filed Magnetic Intensity (LYND - Block 1 within EPM15646)

2 APPENDIX 1: SURVEY DETAILS WITHIN EPM15646

2.1.1 Logistics

The specific details of the survey were as follows:

Base of operations	Ingam - Australia
Flying Dates	25 September to 06 November 2009
Survey type	Electromagnetic, magnetic, radiometric, terrain
Aircraft type	DC3 – TP67
EM Base Frequency	25 Hz
Nominal aircraft altitude	90 m
Nominal aircraft speed	60 m/s
Acceptable Kilometres flown:	5 070 line kilometres
LYND - Block 1	
Kilometres flown within EPM15646	1584 Line kilometres
Nominal flight-line spacing	
LYND - Block 1	200 m
Nominal flight-line direction:	
LYND - Block 1	90 degrees
Nominal tie-line spacing:	
LYND - Block 1	2 000 m
Nominal tie-line direction:	
LYND - Block 1	00 degrees

2.1.2 Datum

All coordinates provided in this report, in maps and in processed digital data-sets have the following datum parameters.

Datum	WGS84
Projection	UTM 55 S
Туре	Transverse Mercator

2.1.3 Survey Area Coordinates

The corner coordinates of the survey within EPM15646 were:

LYND - Block 1within EPM15646	Easting (m)	Northing (m)
	250461	7871820
	251637	7872013
	251537	7872206
	251446	7872380
	251750	7872615
	252060	7872806
	252114	7873019
	252451	7873206
	252370	7873425
	252523	7873611
	252490	7873810
	252949	7874019
	252733	7874208
	252770	7874347
	253009	7874608
	252970	7879205
	252955	7879405
	258228	7879410
	258184	7882812
	256432	7882807
	256403	7884805
	255639	7884807
	255643	7884613
	254649	7884611
	254649	7884803
	254598	7888611
	259862	7888610
	259769	7895798
	258015	7895804
	257989	7897611
	246544	7897605
	245024	7897403
	244657	7897207
	244730	7897009
	244491	7896807
	244513	7896605
	244279	7896426
	244376	7896203
	244146	7896006
	244261	7895810
	244012	7895625
	244174	7895410
	243977	7895213
	244303	7871815
	250461	7871820

3 **APPENDIX 2: SYSTEM SPECIFICATIONS**

SPECTREM simultaneously takes electromagnetic, total field magnetic and radiometric measurements. Both the electromagnetic and magnetic sensors are towed behind the aircraft in "birds" while the radiometric crystals are installed inside the cabin. The geometry of the system is shown below in Figure 2. Other system specifications are listed below.

3.1.1 EM syster	n		
Transmitter height above ground		107 m	
Tx – Rx vertical	separation	37.1 m	
Tx – Rx horizont	al separation	122.9 m	
Transmitter coil a	axis	Vertical	
Receiver coil axe	s	X : horizontal. paralle	el to flight direction
	Y : horizontal, perper	dicular to flight	
		Z : vertical, perpendic	cular to flight direction
Current waveform	n	Square wave	
Base frequencies	for this survey	25 Hz	
Transmitter loop	area	420 m^2	
RMS current		920 to 960 amperes	
RMS dipole mon	nent	386 400 to 403 200 A	m ²
Recording Rate		5 Hz	
Window distribut	tion	Pseudo-binary	
Digitising rate		38 400 Hz /componer	nt
Window Times for	or 25 Hz		
Frequency	Window	Window Center	Window Width (us)
25	1	26.0	26.0
25	2	65.1	52.1
25	3	143.2	104.2
25	4	299.5	208.3
25	5	612.0	416.7
25	6	1237.0	833.3
25	7	2487.0	1666.7
25	8	4987.0	3333.3
25	9	9987.0	6666.7
25	10	16653.6	6666.7
3.1.2 Magnetic	system		

ignetic sy:

Bird height above ground	71 m
Bird location	19 m below and 41 m behind centre of
Sensor	Scintrex CS-2 Sensor with SPECTREM Counter/Sync System
Recording Rate	5 Hz
Sensitivity	0.01 nT
Resolution	0.1 nT

3.1.3 Positioning system

Sensor

Novatel OEMV-3 GPS receiver with Fugro Omnistar differential corrections 5 Hz

Recording Rate

3.1.4 Other sensors

Radar Altitude Laser Altitude Barometric Pressure Temperature (OAT) Analogue Chart Recorder Collins with 5 Hz sampling with 0.3 m Riegl with 5 Hz sampling with 0.03 m Rose Mount with 1 Hz sampling PT-100 RTD with 1 Hz sampling RMS GR-33

4 APPENDIX 3: DATA PROCESSING

The EM data were processed in Johannesburg using Oasis Montaj and proprietary software.

4.1 Electromagnetic Processing

4.1.1 Aircraft Processing

Some of the most important EM data processing was carried out on the aircraft as it acquired the data. The first processing stage was stacking the data to 512 samples. The data was then deconvolved to remove system response and transformed to a square wave. A square transmitter waveform was chosen as a periodic approximation of the step response.

In the next stage of processing the data was binned into 8 channels or windows. As the SPECTREM system makes its measurement while the transmitter is switched on, it is necessary to separate the primary (transmitted) field from the (induced) secondary field. The assumption is made that the induced field will have decayed to a minimal amount at the time the last channel is sampled. As the last channel only measured the primary field, it can be subtracted from the other channels to separate the secondary field. Hence there are actually 8 channels with geological information in the final data.

4.1.2 Profile data

The spikes in the line data have been removed using a 3 point Naudy filter. The line data have also been drift corrected and micro-levelled. The drift is particularly noticeable on the later time channels and has been applied to channels 4 to 8. This is an iterative process, with the assumption that there is a constant drift on a single line. This is reasonable if the lines are short. The processing steps are:

- The channel data are clipped retaining the data in the resistive areas where the response should be close to zero.
- The average of the clipped data is then calculated and subtracted from the channel data.

The steps are then repeated, refining the correction.

Decorrugation and micro-levelling has been applied to all the channels to reduce small residual errors that have not been corrected through the drift correction method.

4.1.3 Apparent Conductivity

The apparent conductivity was calculated from its channel amplitudes and the aircraft height. An apparent conductivity is the conductivity of a half space that would produce an amplitude equivalent to the measured response. It is useful in providing a physically sensible unit and partially compensates for aircraft ground clearance variations. The unit for apparent conductivity is milliSiemens/meter.

4.1.4 Grids

The data were gridded using an Akima spline. System lag was corrected before gridding.

A decorrugation filter was applied to reduce the herringbone effects created by geometrical asymmetry inherent in AEM systems

4.2 Magnetic Processing

The leveling processing included:

- Tie-line levelling
- Decorrugation
- Micro-levelling

4.2.1 Tie-line Levelling

Tie line levelling is used to remove the diurnal variation and errors due to instrument drift, both are assumed to vary slowly over time.

Tie-line levelling is an iterative process:

Calculate the mis-closures at the crossover points of the tie and traverse lines. The
mis-closure is the difference between the magnetic value on the tie line and the
traverse line. The mis-closures are weighted by the gradient of the total field at the
crossover point.

Weight =
$$\frac{1}{e^{(0.1 \times gradient)}}$$

• The error is approximated by a piecewise polynomial as a function of time along a flight and then along a tie line.

These steps are repeated until a good fit has been obtained.

4.2.2 Decorrugation

This is a grid based operation designed to reduce the residual errors that the tie-line leveling does not remove. These are due to inaccuracies in the crossovers, localised diurnal activity, and local altitude variations.

Elongated anomalies with the following characteristics are removed:

- 2 times the line spacing perpendicular to the line direction
- 2 times the tie line spacing parallel to the line direction
- small dynamic range

4.2.3 Micro-levelling

Applies the corrections made to the grid to the profile data and thereby enhances the line data by removing the final residual errors. The micro-levelled data are then gridded. The lag correction is 40m.

4.3 DEM processing

Initially, the GPS height and the radar altimeter channels are visually inspected and any spikes or discontinuities are removed. A Low Pass or Naudy Filter is then applied to both channels. The GPS height channel is then gridded and the resultant grid is checked. Due to the nature of the GPS data, it is normally necessary at this stage to perform some degree of decorrugation on the grid with the corrections then written back to the database.

The radar altimeter channel is then subtracted from the corrected GPS height channel in the database and the resultant channel is gridded and verified.

4.4 Radiometric Processing

The processing of the radiometric data uses the full 256 channel spectra for most of the corrections. This processing allows us to use the information from the full spectrum to enhance the regions of interest in the spectrum, namely, potassium, uranium and thorium.

5 APPENDIX 4: DELIVERABLES

5.1 Digital Products

5.1.1 Grids / Profile / Map Data

(Grids supplied in Geosoft format)

	Grids	Line Data	Maps
EM Data			
EMX1 to EMX8 / EMZ1 to EMZ8	Y	Y	-
Tau X or Tau Z	Y	-	Y
Anomaly Map	N/A	N/A	N/A
Conductivity Grids at Various Depths	-	-	_
<u>TF Magnetic Data</u>			
TFMI	Y	Y	Y
<u>Terrain</u>			
DEM	Y	Y	-
Radiometric Data			
TC, K, U, Th	Y	Y	-
CDI Data			
CDI Data - Individual Lines (All lines & Tie Lines)	-	Y	-
Conductivity 3D Voxel Model	-	-	-
Interpretation			
Preliminary Geological Interpretation	-	-	-

5.1.2 Report

• Logistics report.

6 APPENDIX 5: SOFTWARE VERSIONS

SpecDAS acquisition	1.16
Spectrem processing - SDALOG	1.06
Spectrem processing - SDASPEC	4.01
Spectrem processing - LEVEL	1.03
Autopick	EMPICK 1.03
Geosoft	6.3 (30) HF2
CDI	1.00

AAEA Lynd Ni-Cu-PGE project North Queensland

First Pass Spectrem Survey Results: Lynd Block 1 – EPM15646

LIST OF IMAGES

- 1. Flight Lines
- 2. Cover
- 3. DTM

TIME CONSTANT (Tau)

- 4. Tau X
- 5. Tau Z

MAGNETICS (TMI)

- 6. TMI
- 7. TMI First Vertical Derivative (1VD)

ELECTROMAGNETICS (EM)

- 8. EM Channel 01 X
- 9. EM Channel 01 Z
- 10. EM Channel 02 x
- 11. EM Channel 02 Z
- 12. EM Channel 03 X
- 13. EM Channel 03 Z
- 14. EM Channel 04 X
- 15. EM Channel 04 Z
- 16. EM Channel 05 X
- 17. EM Channel 05 Z
- 18. EM Channel 06 X
- 19. EM Channel 06 Z
- 20. EM Channel 07 X
- 21. EM Channel 07 Z
- 22. EM Channel 08 X
- 23. EM Channel 08 Z
- 24. EM Channel 09 X
- 25. EM Channel 09 Z

RADIOMETRICS

- 26. Total Count (TC)
- 27. Potassium (K)
- 28. Thorium (Th)
- 29. Uranium (U)

APPENDIX II

GROUND MAGNETIC GEOPHYSICAL SURVEY

Digital Data

APPENDIX III

TERMITE SAMPLING GEOCHEMISTRY

Digital Data

APPENDIX IV

DETAILED HEAVY MINERAL ANALYSIS

BULK SAMPLE #09-001-001

Report and Digital Data

Extended Diamond Report

Diamond Detail Report

Our Job No.: 09058

Sample No: ANGL0 09-001-001

Your Project Code:

S20 see PAP

Diamond No	Diamond Mesh Size	Weight (cts)	X (um)	Y (um)	Z (um)	Cleaned		
1 -	2+0.5		125.00	125.00	125.00		Regularity	Nearly equidimensional
							Resorption	Unresorbed to largely unresorbed (Class 5-6)
							Morphology	Octahedron
Con S							Crystal State	Whole
See Street Se						Colour	Colourless	
							Transparency	Transparent
							Inclusions	Absent
							Surface Features	trigon on one surface
							Comments	*This diamond was recovered from the +0.5mm conc after fusion
2 -	2+0.5		175.00	150.00	125.00		Regularity	Nearly equidimensional
							Resorption	Unresorbed to largely unresorbed (Class 5-6)
							Morphology	Cubo-octahedron
					Crystal State	Whole		
					Colour	Light grey		
name to be a standar	and the second sec						Transparency	Translucent
							Inclusions	Minor (-1%)
							Surface Features	
							Comments	*This diamond was recovered from the +0.5mm conc after fusion

Figure 2: Sample_ID: ANGL0 09-001-001 Photo of Diamond 2 with SEM

Detailed Heavy Mineral Analysis Report
		[Detai	led I	leav	y Miı	neral	l An	<u>aly</u> :	sis	Sc	Imple N	o: AN	GLO 09-(001-001
DIATECH		C D)ur Job No Iisc No.:	o.: 09058 -	5					0	verall Sampl	e Assessm	ent		Positive
Ph 61 8 9361 2596 Fx 61 8 9470 1504										Yo	ur Project C	ode:		S2	20 see PAP
Sample Type (as	collec	ted):				Loa	m					Head V	Weight	(0.015 kg
Sample Type (as	receiv	ved):			MI Con	centra	te					Wet V	Veight		kg
Observed Sar	nple I	lype:			MI Con	centra	te								
Diamond	<u>Nu</u> n +2.0	<u>mber c</u> +1.2	of particl +.8	<u>es in ec</u> +.4	ach size +.3	fraction +.25	+.20	+.10	Tota part	al licles Descript	ion of these par	ticles			
Diamond								2	2	see attac	hed descripti	ons			
Key Minerals _{mm}	<u>Nur</u> +2.0	<u>nber of</u> +1.2	f particle +.8	es in ea +.4	<u>ch size f</u> +.3	raction +.25	+.20	+.10	Wea	Overall ar Morph. Gro	Total oup particles	No of partic probed	cles PRIORIT on Morph only)	based PRIOF) ology on mc and P	RITY based rphology robe)
Chromite/Cr-Spinel							1		U١	IK B1		1	E		В
									blo	ack, dull, nec	ır spherical, h	ighly granul	ar and wec	Ithered	
Chromite/Cr-Spinel						1			UN	IK B1		1	B		Α
									blo	ack, dull, subi	rounded, gra	nular and w	reathered.		
					<u> </u>				_						
Other Minerals	<u>% P</u> 1 +2.0	ercenter +1.2	age of p +.8	articles +.4	in each +.3	<u>size fra</u> +.25	<u>ction</u> +.20	+.10	Wea	ar Colour	Angularity	Lustre	Transparenc	y Form/Sł	ape
Amphibole					Tr		Tr		W	forest green		glassy	translucent	lath-like	
Anatase							Tr		w	pale grey- blue, rare		greasy	transparent	pyramidal	
Epidote			30	45	45		50	Tr	W	yellow-green creamy gree	, subrounded n	glassy to dull	translucent to opaque	irregular	
Fe Oxide/Hydroxide			70	40	30		20		W	red-black, orange-black	rounded	dull	opaque	pisolitic	
Ilmenite			Tr	Tr	10		15		W	silvery-black	subangular to rounded	metallic	opaque	irregular	
Malachite					Tr		Tr		ww	malachite green		dull	opaque	irregular/grai	nular
Rutile					Tr		Tr		ww	reddish- brown, red	rounded	submetallic	opaque	near spherice	al
Spessartine			Tr	15	15		15		MW	orange, rarel orange-pink	У	glassy	translucent	crystalline	
Sphene			Tr	Tr	Tr		Tr		MW	cream, creamy-beig	e	dull	opaque	wedge-shap	ed, irregular
Tourmaline				Tr	Tr		Tr	Tr	ww	black	rounded	dull	translucent to opaque	irregular	
Zircon				Tr	Tr		Tr	Tr	MW	colourless, orange		glassy	transparent	ovate crystal	s
TOTAL	%	%	3 100%	100%	% 100%	%	100%	0%							
What Has Been	Obs	erve	d?										Techni	cian:	RIC
Final Conc Weight	12.4	491000	g s	Size Ra	nge		-2+0.1 r	mm				D	ate Obse	erved:	17-Jul-09
Weight Observed	12.4	491000	g								Re	Dort Print	ed: 2	1/08/2009	4:27:24 PM
Magnetic Fractions	s vs Siz	ze Frac	ction						Co	mment a	bout		 2	., 00, 2007 -	
mm	+2.0	+1.2	+.8	+.4	+.3	+.25	+.20	+.10 Resid	this	sample:					
M6/7			All	All	All		All	1/6210	2 m	crodiamon	nds were in t	he NADL r	processed	'+0.5mm' fr	raction, 0
M4/5			All	All	All		All		mic	rodiamond	s were in the	e NADL pro	ocessed '-().5mm' frac	ction

Diamond Analysis Report

Job Detai	ls							
Client Name	Job Number	Technician	Order Number	Project Name	Project Code	State or Country	Date Received	Job Description
								1. Magnetically separte the concentrate as received from
								NADL.
								2. Rotomag the -1.0+0.2mm M4/5 fraction.
								3. Observe for diamonds and key minerals. Photogrpah
								and microprobe key minerals recovered.
								4. Return conc to NADL for peroxide fusion.
								5. Observe fused residue for microdiamonds.
								6. Send microdiamonds to CSIRO for SEM
								photography.
ANGLOAM	09058	Diatech	6397 Paul Polito	Australia	S20 see PAP	AUST	14/07/2009	7. Measure and describe microdiamonds.

Process D	ata										
Client Name	Job Number	Sample Number	Technician	Sample Type	Sample Type Received	Observed Sample Type	Lab Assessment	Head Weight kg	Wet Weight kg	Oversize Weight kg	Oversize Grainsize mm
ANGLOAM	09058	ANGL0 09-001-001	Diatech	Loam	MI Concentrate	MI Concentrate	Positive	0.015		0	0

Process D	ata								
Client Name	Job Number	Sample Number	Final Conc Grainsize mm	Non-mag Weight g	Mag Weight g	Final Conc Weight Total g	Final Conc Weight Observed g	% of Final Conc Weight Observed	Comment
ANGLOAM	09058	ANGL0 09-001-001	-2+0.1	2.700999975	9.789999962	12.49100018	12.49100018	100	

KEY MINERALS

Key Mine	eral Sum	mary																	
				Lab	Overall					CHR A	CHR B	CHR C				CRD A	CRD B	CRD C	
	Job	Sample		Assessme	Size	DIA A	CHR A	CHR B	CHR C	MorphPro	MorphPro	MorphPro	CRD A	CRD B	CRD C	MorphPro	MorphPro	MorphPro	OTHER A
Client Name	e Number	Number	Technician	nt	Fraction	Morph	Morph	Morph	Morph	be	be	be	Morph	Morph	Morph	be	be	be	Morph
		ANGL0 09	-																
ANGLOAM	/ 09058	001-001	1 Diatech	n Positive	e -2+0.1	1 2	2	0	2	0 1		1	0	0	0	0	0	0 0	0

KEY MINERALS

Key Mine	eral Sum	mary																		
	Job	Sample	OTHER B	OTHER C	OTHER A MorphPro	OTHER B MorphPro	OTHER C MorphPro	PHL A	PHL B	PHL C	PHL A MorphPro	PHL B MorphPro	PHL C MorphPro	PIC A	PIC B	PIC C	PIC A MorphPro	PIC B MorphPro	PIC C MorphPro	PYR A
Client Name	Number	Number	Morph	Morph	be	be	be	Morph	Morph	Morph	be	be	be	Morph	Morph	Morph	be	be	be	Morph
)_																	
ANGLOAM	09058	B 001-00	, 1 C	0	0) () (D	0 0	o o	0		0	0 (o c) () (0

KEY MINERALS

Key Mineral Sun	nmary													
Job	Sample	PYR B	PYR C	PYR A MorphPro	PYR B MorphPro	PYR C MorphPro	EGAR A	EGAR B	EGAR C	EGAR A MorphPro	EGAR B MorphPro	EGAR C MorphPro	SYNDIA C	Common (D
Client Name Number	Number	worph	worph	be	be	be	worph	worph	worph	be	be	be	worph	CommentR
														2 micr
														pi
	ANGL0 09)_												micro
ANGLOAM 0905	8 001-00 ⁻	1	0	0 0				0	0	0	0 0) (b c)

rodiamonds were in the NADL processed '-0.5mm' fraction Key Mineral Details

Key Minera	al Detail	S																
				Individual					CHR A CI	IR B	CHR C				CRD A	CRD B	CRD C	
Client	Job	Sample		Size	DIA A	CHR A	CHR B	CHR C Mo	orphProb Morph	Prob	MorphProb	CRD A	CRD B	CRD C	MorphProb	MorphProb	MorphProb	OTHER A
Name	Number	Number	Technician	Fraction	Morph	Morph	Morph	Morph	е	е	е	Morph	Morph	Morph	е	е	е	Morph
	00050	ANGL0 09-	DIATEOU															
ANGLOAM	09058	001-001	DIATECH	-0.2+0.1	2	0	0	0	0	0	0	0	0	0	0	0	0	0
		ANGL0 09-																
ANGLOAM	09058	001-001	DIATECH	-0.3+0.2	0	0	1	0	0	1	0	0	0	0	0	0	0	0
	00050	ANGL0 09-	DIATEOU	0.4.0.0						0				0				
ANGLOAM	09058	001-001	DIATECH	-0.4+0.3	0	0	1	0	1	0	0	0	0	0	0	0	0	0
	00050	ANGL0 09-	DIATEOU	0.0.0.4			0	0	0	0	0		0	0		0		0
ANGLOAM	09058	001-001	DIATECH	-0.8+0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		ANGL0 09-																
ANGLOAM	09058	001-001	DIATECH	-2+0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Key Mineral Details

Key Mine	eral Detail	S																
					OTHER A	OTHER B	OTHER C				PHL A	PHL B	PHL C				PIC A	PIC B
Client	Job	Sample	OTHER B		MorphProb	MorphProb	MorphProb	PHL A	PHL B	PHL C	MorphProb	MorphProb	MorphProb	PIC A	PIC B	PIC C	MorphProb	MorphProb
Name	Number	Number	Morph	Morph	е	е	е	Morph	Morph	Morph	е	е	е	Morph	Morph	Morph	е	е
		ANGL0 09-																
ANGLOAM	09058	001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		ANGL0 09-																
ANGLOAM	09058	001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00050	ANGL0 09-			0			0		0				0		0		
ANGLOAM	09058	001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	00058	ANGL0 09-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLUAM	09058	001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		ANGL0 09-																
ANGLOAM	09058	001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Key Mineral Details

Key Mine	ral Detail	S														
			PIC C				PYR A	PYR B	PYR C				EGAR A	EGAR B	EGAR C	
Client	Job	Sample	MorphProb	PYR A	PYR B	PYR C	MorphProb	MorphProb	MorphProb	EGAR A	EGAR B	EGAR C	MorphProb	MorphProb	MorphProb	SYNDIA C
Name	Number	Number	е	Morph	Morph	Morph	е	e	е	Morph	Morph	Morph	e	e	е	Morph
		ANGL0 09-														
ANGLOAM	09058	001-001	0	0	0	0	0	C	0	0	0	0	0	0	0	0
		ANGL0 09-														
ANGLOAM	09058	001-001	0	0	0	0	0	C	0	0	0	0	0	0	0	0
		ANGL0 09-														
ANGLOAM	09058	001-001	0	0	0	0	0	C	0	0	0	0	0	0	0	0
		ANGL0 09-														
ANGLOAM	09058	001-001	0	0	0	0	0	C	0	0	0	0	0	0	0	0
		ANGL0 09-														
ANGLOAM	09058	001-001	0	0	0	0	0	C	0	0	0	0	0	0	0	0

Diamond Details

Diamond De	etails												
				DiamondMesh	Si								
Client Name	Job Number	Sample Number	DiamondNo	ze	Weight	Cleaned	X	Y	Z	Regularity	Resorption	Morphology	CrystalState
ANGLOAM	09058	ANGL0 09-001-		2 -2+0.5		FALSE		175	150	125 Nearly	Unresorbed to	Cubo-octahedro	n Whole
ANGLOAM	09058	ANGL0 09-001-		1 -2+0.5		FALSE		125	125	125 Nearly	Unresorbed to	Octahedron	Whole

Diamond Do	etails						
							DiamondComm
Client Name	Job Number	Sample Number	Colour	Transparency	Inclusions	SurfaceFeatures	ent
ANGLOAM	09058	ANGL0 09-001-	Light grey	Translucent	Minor (-1%)		*This diamond
ANGLOAM	09058	ANGL0 09-001-	Colourless	Transparent	Absent	trigon on one	*This diamond

Other Minerals

Other Mine	erals																	
				Individual Size														
Client Name	Job Number	Sample Number	Technician	mm	Almandine	AI-Silicates	Al-Spinel	Amphibole	Anatase	Andalusite	Andradite	Apatite	Axinite	Barite	Biotite	Bronzite	Calcite	Carbonate
ANGLOAM	09058	ANGL0 09-001-001	DIATECH	-0.2+0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	DIATECH	-0.3+0.2	0	0	0	Tr	Tr	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	DIATECH	-0.4+0.3	0	0	0	Tr	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	DIATECH	-0.8+0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	DIATECH	-2+0.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Mine	erals															
Client Name	lob Numbor	Sampla Number	Cassitarita	Chalconvrita	Chlorito	Chrysobory	Cinnabar	Clinopyroxono	Columbito	Coppor Minorals	Cordiorito	Corundum	Crocoito	Cr. Spinol	Domantaid	Diasporo
	JOD NUITIDEI	Sample Number	Cassilerile	Charcopyrite	Chionie	Chrysobery	Cililianal	Cimopyroxene	Columbile	Copper Millerais	Cordiente	Corunaum	CIOCOILE	CI-Spiner	Demantolu	Diaspore
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0) 0	0	0	0 0	0	0	0	0	0	0	0	0	0

Other Min	erals																
		Comunic Normalis		Fridata	Fo Osido (Usada estido	F	Florensite		Oshuita	Osland	0	Olava a nita		O a ma a insista	Osussite	Orecould	
Client Name	JOD NUMBER	Sample Number	Diopside Enstatite	e Epidote	Fe Oxide/Hydroxide	Fergusonite	Fiorencite	Fluorite	Gannite	Galena	Garnet	Glauconite	Gola	Gorceixite	Goyazite	Grossula	Gypsum
ANGLOAM	09058	ANGL0 09-001-001	0 0) Tr	0	0	0	0	0	0	0	0	0	0	0	(ס כ
ANGLOAM	09058	ANGL0 09-001-001	0 0	50	20	0	0	0	0	0	0	0	0	0	0	(0 (
ANGLOAM	09058	ANGL0 09-001-001	0 0) 45	30	0	0	0	0	0	0	0	0	0	0	(0 נ
ANGLOAM	09058	ANGL0 09-001-001	0 0) 45	40	0	0	0	0	0	0	0	0	0	0	() 0
ANGLOAM	09058	ANGL0 09-001-001	0 0) 30	70	0	0	0	0	0	0	0	0	0	0	() 0

Other Min	erals															
Client Name	Job Number	Sample Number	Haematite Hercyni	e Hornblende	Ilmenite	K-Richterite	Kyanite	Leucoxene	Limonite	Magnesite	Magnetite	Magnophorite	Malachite	Marcasite	Martite	Mica
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	15	0	0	0	0	0	0	0	Tr	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	10	0	0	0	0	0	0	0	Tr	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	Tr	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0 0	Tr	0	0	0	0	0	0	0	0	0	0	0

Other Minerals

Other Min	erals															
Client Name	Job Number	Sample Number	Micrometeorites	Mn Oxide	Moissanite	Molybdenite	Monazite	Muscovite	Nb-Rutile	Olivine	Orthopyroxene	Other Mineral	Pb Glass	Perovskite	Phlogopite	Phosphate
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	C	0	0	0	0	0	0	0	0	. 0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	C	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	C	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	C	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	C	0	0	0	0	0	0	0	0	0

Other Min	erals																	
Client Name	Job Number	Sample Number	Piedmontite	Platinum	Prehnite	Priderite	Psilomelane	Pyrite	Pyroclore	Pyroxene	Rock Fragments	Rutile	Quartz	Scheelite	Sericite	Siderite	Sillimanite	Spessartine
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	0	0	0	Tr	0	0	0	0	0	15
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	0	0	0	Tr	0	0	0	0	0	15
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tr

Other Min	erals													
Client Name	Job Number	Sample Number	Sphene	Spinel	Staurolite	Sulphides	Tantalite	Thorite	Topaz	Tourmaline	Unknown Mineral 1	Unknown Mineral 2	Unknown Mineral 3	Unknown Mineral 4
ANGLOAM	09058	ANGL0 09-001-001	. 0	. 0	0	0	0	0	. 0	Tr	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	Tr	0	0	0	0	0	0	Tr	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	Tr	0	0	0	0	0	0	Tr	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	Tr	0	0	0	0	0	0	Tr	0	0	0	0
ANGLOAM	09058	ANGL0 09-001-001	Tr	0	0	0	0	0	0	0	0	0	0	0

Other Mine	erals									
Client Name	Job Number	Sample Number	Unknown Mineral 5	Unknown Mineral 6	Uvarovite	Vermiculite	Wolframite	Xenotime	Zircon	Zoisite
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	Tr	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	Tr	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	Tr	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	Tr	0
ANGLOAM	09058	ANGL0 09-001-001	0	0	0	0	0	0	0	0

APPENDIX V

DETAILED HEAVY MINERAL ANALYSIS

BULK SAMPLES #AUA054802 and AUA054901

Report & Digital Data

(A)		<u>D</u>	<u>etail</u>	ed H	leav	<u>y Mir</u>	neral	An	aly	sis	Sc	ample N	lo:	AUA054802
		Ou Dis	r Job No c No.:	.: 09087						С	verall Samp	le Assessm	ent	Positive
Ph 61 8 9361 2596 Fx 61 8 9470 1504										Yo	our Project C	ode:		
Sample Type (as a	collec	:ted):				Anth	ill					Head \	Weight	308.04 kg
Sample Type (as r	eceiv	ed):				Anth	ill					Wet \	Weight	kg
Observed San	nple T	ype:		D٨	∕IS Con	centrat	е							
Diamond	<u>Nu</u> +2.0	<u>mber of</u> +1.2	particle +.8	es in ea +.4	ich size +.3	fraction +.25	+.20	+.10	Tota part	l icles Descrip	otion of these par	ticles		
Diamond								1	1	multi-twi	nned with cav	ities (see ph	iotograph).	From the fused residue
Key Minerals _{mm}	<u>Nur</u> +2.0	<u>nber of p</u> +1.2	oarticle: +.8	<u>s in eac</u> +.4	<u>ch size fi</u> +.3	r <u>action</u> +.25	+.20	+.10	Wea	Overall r Morph. G	Total roup particles	No of partic probed	cles PRIORITY on Morph only)	Y based PRIORITY based lology on morphology and Probe)
Chromite/Cr-Spinel							1		UN	K B1		1	R	
									blc	ick-brown,	dull, well roun	ded anhedr	a, bright to	granular interior.
Chromite/Cr-Spinel						1	1		UN	K B1		2	B	B
									blc	ick-brown,	dull, well roun	ded anhedr	a, bright to	granular interiors.
Chromite/Cr-Spinel			1						м	F C1		1	C	с
									bro	wn, dull, fir	nely frosted, vi	treous interio	or, hercynite	e. Many similar in the
									ba	ckground.				
Other Minerals	<u>% P</u> +2.0	ercenta +1.2	<u>ge of po</u> +.8	articles +.4	<u>in each</u> +.3	<u>size frac</u> +.25	<u>tion</u> +.20	+.10	Wea	r Colour	Angularity	Lustre	Transparenc	y Form/Shape
Almandine		Tr		Tr	Tr		Tr		MW	pink	subrounded	glassy	transparent	irregular
Amphibole		Tr							мw	blackish-gre	en subrounded	dull	opaque	fibrous, blocky
Epidote		60	65	50	10		25	Tr	MW	yellow-gree creamy gree	n, subrounded en	dull	translucent to opaque	blocky
Fe Oxide/Hydroxide		40	35	40	10		Tr		w	red-brown, brown	rounded	dull	opaque	irregular to near spherical
Gahnite					Tr		Tr		мw	deep sea green	rounded	glassy	translucent	irregular
Ilmenite		Tr		Tr	30		25		мw	silvery-black	rounded	metallic	opaque	irregular
Marcasite					Tr		Tr		мw	brassy yellov	w rounded	metallic	opaque	granular
Rutile				Tr	Tr		Tr		мw	red, black	rounded	submetallic	opaque	irregular to near spherical
Spessartine		Tr	Tr	10	50		45	Tr	мw	orange, orange-pink	<	glassy	transparent	euhedral
Sphene		Tr	Tr	Tr	Tr		Tr		мw	beige, hone brown	ey-	polished	opaque	wedged
Spinel			Tr	Tr	Tr		Tr	Tr	MF	black-brown	n subrounded	frosted to glassy	translucent	hercynite-type similar in appearance to tourmaline
Staurolite			Tr	Tr	Tr		Tr		мw	brown	rounded	frosted	opaque	irregular
Tourmaline				Tr	Tr		Tr		W	black-brown	n rounded	dull	translucent to opaque	irregular
Zircon				Tr	Tr		5		MW	colourless, orange, yell	ow	glassy	transparent	prismatic
									-					

		<u>[</u>	<u>Deta</u>	iled H	leav	y Mi	inera	l An	<u>alysis</u>		Sample I	No:	AU	A054802
DIATECH		C D)ur Job N isc No.:	lo.: 09087 -	,					Overall Sc	ample Assessn	nent		Positive
Ph 61 8 9361 2596 Fx 61 8 9470 1504										Your Proje	ect Code:			
TOTAL	%	100%	6 100%	6 100%	% 100%	5 %	100%	0%						
What Has Beer	n Obs	erve	d?									Te	chnician:	BJG
Final Conc Weigh	t	33.3	g	Size Ra	nge		-2+0.1	mm			I	Date (Observed:	22-Sep-09
Weight Observed		33.3	g								Report Prin	ted:	30/09/2009	9 3:32:31 PM
Magnetic Fraction	s vs Siz	ze Frac	ction						Comme	nt about	•			
mm	+2.0	+1.2	+.8	+.4	+.3	+.25	+.20	+.10	this sam	ple:				
NOTMOG		All	الم	ال ۵	ال ۵		Kesia	Kesia	All materic	∎ al -2 0+0 2mr	m and the -0.2	2+0.1m	m have been	fused for
M6/7				All	All		All		microdian	nonds at NA	DL	2.0.1111		10300 101
M4/5			All	All	All		All		1					

		D	etail	ed H	leav	y Mir	neral	l An	aly	sis	Sa	Imple N	lo:	AUA054901
<u>DIATECH</u> Ph 61 8 9361 2596		Ou Dis	ur Job No. sc No.:	: 09087 -						C	overall Sampl	e Assessmo ode:	ent	Negative
Fx 61 8 9470 1504														
Sample Type (as c	:ollec ⁻	ted):				Loar	n					Head V	Weight	77.64 kg
Sample Type (as re		ed):			IS Con	LOGI	n					werv	weigni	ĸg
Observed Sur		ype.				cernia								
Diamond	<u>Nui</u> +2.0	<u>nber of</u> +1.2	particle +.8	<u>s in ea</u> +.4	<u>ch size f</u> +.3	raction +.25	+.20	+.10	Tota part	al icles Descrip	otion of these par	ticles		
Key Minerals _{mm}	<u>Num</u> +2.0	<u>nber of</u> +1.2	particle: +.8	<u>; in eac</u> +.4	<u>h size fr</u> +.3	<u>action</u> +.25	+.20	+.10	Wea	Overall ar Morph. G	Total roup particles	No of partic probed	cles PRIORIT on Morph only)	f based PRIORITY based lology on morphology and Probe)
Chromite/Cr-Spinel							1		UN irre	IK B1 gular, highl	y granular anc	1 I weathered	k	С
Chromite/Cr-Spinel							2	2	M oc	W C1 tahedra, sm	nooth, finely fro	2 osted surfac	e	С
Other Minerals	<u>% Pe</u> +2.0	ercenta +1.2	<u>ge of po</u> +.8	articles +.4	in each +.3	size fra +.25	<u>ction</u> +.20	+.10	Wea	ar Colour	Angularity	Lustre	Transparenc	y Form/Shape
Andradite				Tr	Tr		Tr		F	bright yellov	v subangular	glassy	transparent	subhedra, rare
Epidote		10	20	30	10		10		MF	yellow-gree	n subangular	dull to glassy	translucent	irregular, blocky
Fe Oxide/Hydroxide		90	80	40	12		12		MW	red-brown	rounded	dull to polished	opaque	pisolitic
Gahnite					Tr		Tr		ww	aqua-green	subrounded	frosted	translucent	irregular
Ilmenite		Tr	Tr	5	40		40		MW		subrounded	submetallic	opaque	subhedral to irregular
Leucoxene			Tr	Tr	Tr		Tr		W	grey, beige	subrounded	porcelain- like	opaque	irregular
Rutile					Tr		Tr		W	cherry red	subrounded	submetallic	opaque to translucent	irregular
Spessartine			Tr	25	35		35		MF	reddish- orange	subangular	glassy	transparent	many euhedra, subhedra
Sphene			Tr	Tr	Tr		Tr		MF	orange-brov	wn subangular	resinous	translucent	subhedral, disc-shaped
Spinel				Tr	Tr		Tr	Tr	MF	black-brown	n subrounded	frosted to glassy	translucent	hercynitic, similar in appearance to tourmaline
Staurolite				Tr	Tr		Tr		MW	brown	subrounded to rounded	frosted to glassy	translucent	near spherical
Tourmaline				Tr	Tr		Tr		ww	black-brown	n rounded	frosted	translucent	near spherical
Xenotime					Tr		Tr		MW	dark reddish brown	n- subangular	dull	translucent	euhedral
Zircon			Tr	Tr	3		3	Tr	W	colourless, stained	subangular to subrounded	vitreous to frosted	transparent	euhedra, subhedra.
TOTAL	%	100%	100%	100%	100%	%	100%	0%						

		<u>[</u>	<u>)etai</u>	led H	leav	y Mi	nera	l An	<u>alysis</u>		Samp	le No:	Al	JA054901
DIATECH		O D	ur Job Ni isc No.:	o.: 09087 -						Overall Sc	ample Ass	essment		Negative
Ph 61 8 9361 2596										Your Proje	ct Code:			
What Has Beer	n Obs	serve	d?									Te	chnician:	LF
Final Conc Weigh	t	19.17	g S	Size Ra	nge		-2+0.1	mm				Date	Observed:	22-Sep-09
Weight Observed		19.17	g								Report	Printed:	30/09/200	09 3:32:56 PM
Magnetic Fraction	ns vs Siz	ze Frac	tion						Comme	ant about	•			
mm	+2.0	+1.2	+.8	+.4	+.3	+.25	+.20	+.10	this sam					
NotMag		All							inis sum	ipie.				
NM			All	All	All		All	Resid	All materia	al -2.0+0.2mr	n and the	-0.2+0.1n	nm have bee	n fused for
M6/7		All		All	All		All		microdiar	nonds at NA	DL			
M4/5			All	All	All		All							
									_					

APPENDIX VI

DETAILED HEAVY MINERAL ANALYSIS

RC DRILLING SAMPLES

Report & Digital Data

Extended Diamond Report

		<u>[</u>	<u>)etail</u>	ed H	leav	y Min	eral	An	alys	sis		Sa	lo:	VSAC009-002		
		C	iur Job No	.: 09108							Over	all Sample	e Assessm	ent	Neaative	
Ph 61 8 9361 2596 Fx 61 8 9470 1504		D									Yourl	Project Co	ode:		Queensland	
Sample Type (as a	collec	ted):			[Drill Chip	þ						Head \	Weight	43.68 kg	
Sample Type (as r	eceiv	ed):			[Drill Chip	þ						Wet V	Veight	kg	
Observed San	nple I	ype:		Ν	Al Con	centrate	Э									
Diamond	<u>Nu</u> +2.0	<u>mber o</u> +1.2	of particle +.8	es in ea +.4	<u>ch size f</u> +.3	raction +.25	+.20	+.10	Tota part	al icles Desc	cription	of these part	ticles			
Key Minerals _{mm}	particle: +.8	<u>s in eac</u> +.4	: <u>h size fr</u> +.3	action +.25	+.20	+.10	Wea	Overal ar Morph	ll . Group	Total particles	No of partic probed	cles PRIORITY on Morph only)	/ based PRIORITY based ology on morphology and Probe)			
Other Minerals	<u>% P</u> +2.0	ercento +1.2	age of po +.8	articles +.4	<u>in each</u> +.3	<u>size frac</u> +.25	<u>tion</u> +.20	+.10	Wea	ar Colou	ır .	Angularity	Lustre	Transparenc	y Form/Shape	
Almandine				Tr	Tr		Tr		MF	pale pink	: s	subangular	glassy	transparent	irregular	
Amphibole				10	10		10		F	mostly br some gre	own, o en	agular	glassy	translucent	striate crystals, some 'dog-tooth'	
Apatite				Tr	Tr		Tr		F	colourles	s s	subrounded	pearly to glassy	transparent	short, prismatic	
Barite			Tr	Tr	Tr		Tr			white			waxy	translucent	granular aggregates	
Biotite			Tr	Tr	Tr		Tr		MF	dark to p brown, g brown	ale reen-		pearly		flakes	
Corundum								Tr	W							
Epidote			40	20	15		15		F	pistachio green		angular	glassy	translucent	granular to crystalline	
Fe Oxide/Hydroxide			10	Tr	Tr		Tr		w	yellow-br	own r	rounded	polished	opaque	pisolitic	
Ilmenite					Tr		Tr		MW	silvery-blo	ack s	subrounded	submetallic	opaque	irregular to subhedral	
Leucoxene			Tr	30	10		10		F	creamy v	white		porcelain- like	opaque	after sphene	
Pyrite					Tr		Tr		F	brassy ye	llow	angular	metallic	opaque	rare, crystalline	
Rock Fragments			50	20	25		25		F						composite fragments, includes martite	
Rutile					Tr		Tr		MW	silvery to cherry re	dark s d	subrounded	submetallic	translucent	rare, irregular	
Spessartine					Tr		Tr		MF	pale orar	nge s	subangular	frosted to glassy	transparent	subhedral to euhedral	
Sphene				20	40		40		F	honey br	own	angular	resinous	translucent	tabular subhedra, often partly leucoxenised	
Tourmaline				Tr	Tr		Tr		MF	black-bro	own s	subangular	glassy	transparent	blocky, rare	
Zircon				Tr	Tr		Tr	Tr	мw	pale pink colourles pale orar	s, s s, nge	subrounded	vitreous	transparent	sub-euhedral	
TOTAL	%	%	3 100%	100%	5 100%	% 1	100%	0%								

		<u>D</u>	<u>etai</u>	led H	leav	y Mi	nera	l An	<u>alysis</u>		Sample	VSAC009-002				
DIATECH		OI Di:	ur Job No sc No.:	o.: 09108 -						Overall Sc	Negative					
Ph 61 8 9361 2596 Fx 61 8 9470 1504										Your Proje	ect Code:			Queensland		
What Has Been Observed? Technician:																
Final Conc Weight	8.86	00002	g S	ize Rar	nge	-1	.2+0.1	mm				Date	Observed:	14-Dec-09		
Weight Observed	8.86	00002	g								Report P	rinted:	11/01/201	0 11:20:06 AN		
Magnetic Fraction	s vs Siz	e Frac	tion						Comme	nt about	-					
mm	+2.0	+1.2	+.8	+.4	+.3	+.25	+.20	+.10								
NM			All	All	All		All		this sam	pie:						
M6/7			All	All	All		All									
M4/5			All	All	All		All									

		<u>D</u>	<u>)etail</u>	ed H	eav	y Miı	nera	l An	alys	<u>is</u>		Sa	Imple N	10:	: VSAC009-008		
		O Di	ur Job No	.: 09108							Over	all Sampl	e Assessm	nent	Negative		
Ph 61 8 9361 2596 Fx 61 8 9470 1504		5.									Your F	Project Co	ode:		Queensland		
Sample Type (as a	collec	cted):			E	Drill Ch	ip						Head	Weight	19.19 kg		
Sample Type (as r	receiv	/ed):			[Drill Ch	ip						Wet	Weight	kg		
Observed San	nple ⁻	Туре:		٨	Al Con	centra	te										
Diamond mm	<u>Nu</u> +2.0	umber o +1.2	f particle +.8	es in ead +.4	<u>ch size f</u> +.3	raction +.25	+.20	+.10	Total partie	cles De	scription	of these part	ticles				
Key Minerals _{mm}	<u>Nu</u> +2.0	<u>mber of</u> +1.2	particle +.8	<u>s in eac</u> +.4	<u>h size fr</u> +.3	<u>action</u> +.25	+.20	+.10	Wear	Over Morp	rall oh. Group	Total particles	No of parti probed	cles PRIORITY on Morph only)	/ based PRIORITY based lology on morphology and Probe)		
Other Minerals	<u>% P</u> +2 0	ercento	age of po	articles i + 4	in each + 3	<u>size fra</u> + 25	<u>ction</u> + 20	+ 10	Wear	Col	our	Angularity	Lustre	Transparenc	v Form/Shape		
Almandine	1 .2.0	. 1.2		Tr	Tr	1.25	Tr	Tr	MW	001		Angularity	Lustre	Transparenc			
Amphibole			Tr	Tr	Tr		Tr		F	brown							
Andradite					Tr		Tr		MW								
Apatite				Tr	Tr		Tr		F								
Barite			15	5	Tr		Tr										
Biotite			40	45	15		15	Tr	MF								
Epidote			Tr	Tr	10		15	Tr	F								
Fe Oxide/Hydroxide			20	10	15		15		w								
Ilmenite				Tr	Tr		Tr		MW								
Leucoxene			Tr	Tr	Tr		Tr		F								
Pyrite			Tr	Tr	Tr		Tr										
Rock Fragments			25	40	50		30		F								
Rutile							Tr	Tr	MW								
Spessartine					Tr		Tr		MW								
Sphene			Tr	Tr	10		25	Tr	F								
Tourmaline					Tr		Tr		MF								
Zircon					Tr		Tr	Tr	MW								
TOTAL	%	s %	100%	100%	100%	%	100%	0%									

v Mineral Analysis	Detailed Heav
--------------------	---------------

Our Job No.: 09108 Disc No.:

All

Sample No:	

Overall Sample Assessment Negative

Your Project Code:

JED

Queensland

VSAC009-008

What Has Been Observed? Final Conc Weight -1.2+0.1 mm 3.39 g Size Range Weight Observed 3.39 g

Technician: Date Observed: 14-Dec-09 Report Printed: 11/01/2010 11:20:30 AN

Magnetic Fraction	is vs Siz	e Frac	tion						Comment about
mm	+2.0	+1.2	+.8	+.4	+.3	+.25	+.20	+.10	
NM			All	All	All		All		this sample:
M6/7			All	All	All		All		

All

All

All

DIAT CH Ph 61 8 9361 2596 Fx 61 8 9470 1504

M4/5

	<u>)etai</u>	led H	leav	y Mi	<u>nera</u>	l An	alys	<u>sis</u>		S	ample N	lo:	VSAC009-011			
			C	ur Job No	o.: 09108 -							Ove	erall Samp	ole Assessm	nent	Negative
Ph 61 8 9361 2596 Fx 61 8 9470 1504			D									You	r Project (Code:		Queensland
Sample Type (a	s c	ollec [.]	ted):				Drill Ch	ip						Head	Weight	58.5 kg
Sample Type (a	s re	eceiv	ed):				Drill Ch	ip						Wet	Weight	kg
Observed Se	am	ple T	ype:		٢	√I Con	centra	te								
Diamond	nm	<u>Nui</u> +2.0	<u>mber o</u> +1.2	of particl +.8	<u>es in ea</u> +.4	ch size +.3	fraction +.25	+.20	+.10	Tota part	il icles D	escriptio	n of these p	articles		
Key Minerals _n	nm	<u>Num</u> +2.0	<u>1ber of</u> +1.2	particle +.8	es in eac +.4	<u>ch size fi</u> +.3	r <u>action</u> +.25	+.20	+.10	Wea	Ove Ir Mor	erall ph. Grou	Total ıp particle	No of parti s probed	cles PRIORITY on Morpho only)	based PRIORITY based logy on morphology and Probe)
Other Mineral	s	<u>% Pe</u>	ercente	age of p	articles	<u>in each</u>	size fra	<u>iction</u>							_	
	nm	+2.0	+1.2	+.8 Tr	+.4	+.3	+.25	+.20	+.10	Wea	ir Co	lour	Angularity	Lustre	Transparency	Form/Shape
, undhanano				II	11	II		II		///1						
Amphibole				10	25	45		40		F	brown					
Apatite	ŀ				Tr	Tr		Tr		F						
Barite				Tr	Tr	Tr										
Biotite				60	45	30		30	Tr	MF						
Epidote				Tr	15	Tr		Tr	Tr	F						
Fe Oxide/Hydroxide				Tr	Tr	Tr		Tr		w						
llmenite						Tr		Tr		мw						
Leucoxene				Tr	Tr	Tr		Tr		F						
Rock Fragments	ŀ			30	15	25		30		F						
Spessartine					Tr	Tr		Tr		MF						
Sphene				Tr	Tr	Tr		Tr	Tr	F						
Tourmaline					Tr	Tr		Tr		MF						
Zircon						Tr		Tr		мw						
TOTAL	i.	%	%	5 100%	100%	3 100%	%	100%	0%							
What Has Bee	en	Obs	erve	d?						_					Technic	ian: IFD
Final Conc Weigh	nt	19.8	20000	g s	Size Rar	nge	-1	.2+0.1	mm					0	ate Obsei	ved: 14-Dec-09
Weight Observed	k	19.8	20000	g									R	- eport Print	ed: 11/0	01/2010 11:20:55 AN
Magnetic Fractio	ns	vs Siz	e Frac	tion						Cor	mme	ent ar	out	- 1		
mn	n +	2.0	+1.2	+.8	+.4	+.3	+.25	+.20	+.10	this	sam	ple:				
M6/7	7			All	All	All		All								
M4/5	5			All	All	All		All								

	<u>C</u>	<u>)etai</u>	led H	leav	y Mi	nera	l An	alysi		\$	Sample	No:	: VSA009-018			
DIATECH			O Di	ur Job No sc No.:	o.: 09133							Ov	erall Sam	ple Assessr	ment	Negative
Ph 61 8 9361 2596 Fx 61 8 9470 1504												You	ır Project	Code:		Queenslanc
Sample Type (a	s c	ollec	ted):			[Drill Ch	ip						Head	Weight	37.84 ka
Sample Type (a	s re	eceiv	ed):			[Drill Ch	ip						Wet	Weight	kg
Observed So	am	ple T	ype:		١	VI Con	centra	te								
Diamond	۱m	<u>Nui</u> +2.0	<u>mber o</u> +1.2	f particl +.8	<u>es in ea</u> +.4	<u>ch size 1</u> +.3	raction +.25	+.20	+.10	Total partic	les De	escriptio	on of these p	particles		
Key Minerals	۱m	+2.0	<u>Numl</u> +1.2	ber of p +.8	articles +.4	<u>in each</u> +.3	<u>size fra</u> +.25	<u>ction</u> +.20	+.10	Asses	sment	Wear	Total particles	No of part probed	ticles	
Other Mineral	S 1m	<u>% Po</u> +2.0	ercento +1.2	nge of p +.8	articles +.4	<u>in each</u> +.3	size fra +.25	<u>iction</u> +.20	+.10	Wear	Col	our	Angularit	y Lustre	Transparency	- Form/Shape
Almandine						5		5		F						
Amphibole	Ĺ				Tr	Tr		Tr		F						
Andradite	Ĺ				Tr	Tr		Tr		F						
Epidote	Ē			Tr	Tr	Tr		Tr		MF						
Fe Oxide/Hydroxide	Ē				Tr	Tr		Tr	100	w						
llmenite	Γ			Tr	10	40		60		F						
Pyrite					Tr	Tr		Tr		F						
Rock Fragments				100	90	55		35		MF						
Zircon					Tr	Tr		Tr		F						
TOTAL		%	%	100%	100%	3 100%	%	100%	100%							
What Has Bee	n	Obs	erve	d?											Technic	:ian: LF
Final Conc Weigh	nt		1.5301	g S	ize Rar	nge	-1	.2+0.1	mm					I	Date Obse	rved: 11-Jan-10
Weight Observed	ł		1.5301	g									F	Report Prin	ted: 16/	02/2010 12:28:39 PN
Magnetic Fractio	ns +	vs Siz	e Frac	tion	+.4	+.3	+,25	+.20	+.10	Con	nme	nt al	oout			
NotMag				All	All	All		All	Resid	this :	am	ple:				

A		<u>C</u>	<u>)etai</u>	led H	leav	<u>y Mine</u>	era	l And	alysi	<u>s</u>			Sam	ple I	No:	VSA009-026			
		O	ur Job No	o.: 09133							Ov	erall San	nple /	Assessn	nent		Negativ	/e	
Ph 61 8 9361 2596											You	r Projec	t Cod	e:		Queensland			
Fx 61 8 9470 1504																		_	
Sample Type (as c	collect	ted):				Drill Chip								Head	Weight		17.52 kg)	
Sample Type (as r	eceive	ed):			L	Drill Chip			Wet Weight k								kç)	
Observed Sam	nple ly	ype:		Ν	AI Cond	centrate													
Diamond mm	<u>Nur</u> +2.0	<u>mber o</u> +1.2	f particle +.8	<u>es in ea</u> +.4	<u>ch size f</u> +.3	<u>raction</u> +.25 +.	20	+.10	Total partic	es De	escriptio	on of these	particle	es					
Key Minerals	+2.0	<u>Num</u> +1.2	ber of p +.8	articles +.4	<u>in each</u> +.3	<u>size fractio</u> +.25 +.	<u>on</u> 20	+.10	Assess	ment	Wear	Total particle	N s p	lo of part probed	icles				
Other Minerals	<u>% Pe</u> +2.0	ercento +1.2	nge of p +.8	articles +.4	<u>in each</u> +.3	<u>size fractio</u> +.25 +	<u>on</u> .20	+.10	Wear	Col	lour	Angulari	ity Lu	ustre	Transparen	cy Form	n/Shape		
Almandine					Tr		Tr		F										
Amphibole					Tr		10	Í	F										
Epidote					Tr		Tr	Í	F										
Fe Oxide/Hydroxide			100	95	80		70	100	MW										
Ilmenite					Tr		Tr	Ī	F										
Pyrite					Tr		Tr	Ī	F										
Rock Fragments				Tr	Tr		Tr	Ī	F										
Sphene				5	20		20	Ī	F							partly leu	coxenised	-	
TOTAL	%	%	5 100%	100%	5 100%	% 10	0%	100%											
What Has Been Final Conc Weight Weight Observed	Obse (erve 0.6101 0.6101	d? g S g	ize Rar	nge	-1.2+	-0.1	mm					Repo	[ort Prin	Techn Date Obs ted: 10	ician: erved: 6/02/2010	11-Jan 12:29:05	LF -10 P <i>M</i>	
NotMag	+2.0	+1.2	+.8 All	+.4 All	+.3 All	+.25	All	+.10 Resid	Corr this s	ime am	nt al ple:	oout							

Diamond Analysis Report
Job Deta	ils							
Client Name	Job Number	Technician	Order Number	Project Name	Project Code	State or Country	Date Received	Job Description
								1. Diatech: Wet screen each sample at 100um, discard
								100um.
								2. Diatech: Scalp off the +1.2mm material and retain.
								3. Diatech: Concentrate the -1.2mm+0.1mm in heavy lic
								initially (SG 2.96) and then MI after (SG 3.32).
								4. Diatech: Magnetically separate to facilitate mineral of
								(highly susceptibles removed by handmagnetic).
								5. Diatech: Observe the concentrate from 1.2mm down
								for key minerals and diamonds.
								6. Diatech: send +1.2mm raw oversize and -1.2+0.1mm
								concentrate/magnetic fractions to NADL.
ANGLOAM	09133	Diatech	Paul Polito	Queensland	Queensland	QLD	1/12/2009	7. Observe fused residues returned to us by NADL.

the -

quid – TBE

bserving

to 0.2mm

Process D	Data										
Client Name	Job Number	Sample Number	Technician	Sample Type	Sample Type Received	Observed Sample Type	Lab Assessment	Head Weight kg	Wet Weight kg	Oversize Weight kg	Oversize Grainsize mm
ANGLOAM	09133	VSA009-018	Diatech	Drill Chip	Drill Chip	MI Concentrate	Negative	37.84000015		11.85999966	1.20000048
ANGLOAM	09133	VSA009-026	Diatech	Drill Chip	Drill Chip	MI Concentrate	Negative	17.52000046		5.159999847	1.20000048

Process D	ata								
Client Name	Job Number	Sample Number	Final Conc Grainsize mm	Non-mag Weight g	Mag Weight g	Final Conc Weight Total g	Final Conc Weight Observed g	% of Final Conc Weight Observed	Comment
ANGLOAM	09133	VSA009-018	-1.2+0.1			1.530099988	1.530099988	100	
ANGLOAM	09133	VSA009-026	-1.2+0.1			0.610099971	0.610099971	100	

Key Mine	ral Summ	nary														
		Sample		Lab	Overall Size Fraction Observed	DIA A	CHR A	CHR B	CHR C	CHR A	CHR B	CHR C	CRD A	CRD B	CRD C	CRD A
Client Name	Job Number	Number	Technician	Assessment	mm	Morph	Morph	Morph	Morph	MorphProbe	MorphProbe	MorphProbe	Morph	Morph	Morph	MorphProbe
ANGLOAM	09133	VSA009-018	Diatech	N		0	0	0	0	C	0 0	0	0	C	C	0 0
ANGLOAM	09133	VSA009-026	Diatech	N		0	0	0	0	0	0 0	0	0	C) C	0 0

Key Mine	ral Summ	nary														
		Sample	CRD B	CRD C	OTHER A	OTHER B	OTHER C	OTHER A	OTHER B	OTHER C	PHL A	PHL B	PHL C	PHL A	PHL B	PHL C
Client Name	Job Number	Number	MorphProbe	NorphProbe	Morph	Morph	Morph	MorphProbe	MorphProbe	MorphProbe	Morph	Morph	Morph	MorphProbe	MorphProbe	MorphProbe
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	(0 0	0 0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0) (0 0	0 0

Key Mine	ral Summ	nary														
		Sample	PIC A	PIC B	PIC C	PIC A	PIC B	PIC C	PYR A	PYR B	PYR C	PYR A	PYR B	PYR C	EGAR A	EGAR B
Client Name	Job Number	Number	Morph	Morph	Morph	MorphProbe	MorphProbe	MorphProbe	Morph	Morph	Morph	MorphProbe	MorphProbe	MorphProbe	Morph	Morph
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0 0	0	0	C	0 0	0 0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0 0	0	0	C	0 0	0 0	0	0

Key Mine	eral Summ	nary						
		Sample	EGAR C	EGAR A	EGAR B	EGAR C	SYNDIA C	CommentRe
Client Name	Job Number	Number	Morph	MorphProbe	MorphProbe	MorphProbe	Morph	sult
ANGLOAM	09133	VSA009-018	0	0	0	0	0	
ANGLOAM	09133	VSA009-026	0	0	0	0	0	

KeyMinera	IDetails	;								
	Job			Individual Size Fraction Observed						
Client Name	Number	Sample Number	Technician	mm	DIA A Morph	CHR A Morph CHR B Morph	CHR C Morph	CHR A MorphProbe CHR B MorphProbe	CHR C MorphProbe CRD A Morp	۶h
ANGLOAM	09133	VSA009-018	DIATECH	-0.2+0.1		0		0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-0.3+0.2		0		0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-0.4+0.3		0		0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-0.8+0.4		0		0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-1.2+0.8		0		0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.2+0.1		0		0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.3+0.2		0		0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.4+0.3		0		0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.8+0.4		0		0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-1.2+0.8		0		0	0	0

KeyMinera	Details	5									
	Job										
Client Name	Number	Sample Number CRE	B Morph CR	D C Morph	CRD A MorphProbe C	RD B MorphProbe	CRD C MorphProbe	OTHER A Morph	OTHER B Morph	OTHER C Morph	OTHER A MorphProbe
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0

KeyMinera	alDetails	5							
	Job								
Client Name	Number	Sample Number	OTHER B MorphProbe	OTHER C MorphProbe PHL A Morph	PHL B Morph PHL C Morph	PHL A MorphProbe PHL B MorphProbe	PHL C MorphProbe	PIC A Morph PIC B N	Norph
ANGLOAM	09133	VSA009-018	C	0 0	0 0	0 0	0 0	0	0
ANGLOAM	09133	VSA009-018	C	0 0	0 0	0 0	0 0	0	0
ANGLOAM	09133	VSA009-018	C	0 0	0 0	0 (0 0	0	0
ANGLOAM	09133	VSA009-018	0	0 0	0 0) 0 (0 0	0	0
ANGLOAM	09133	VSA009-018	0	0 0	0 0) 0 (0 0	0	0
ANGLOAM	09133	VSA009-026	0	0 0	0 0) 0 (0 0	0	0
ANGLOAM	09133	VSA009-026	C	0 0	0 0) 0 () (0	0
ANGLOAM	09133	VSA009-026	C	0 0	0 0	0 (0 0	0	0
ANGLOAM	09133	VSA009-026	C	0 0	0 0) 0 (0 0	0	0
ANGLOAM	09133	VSA009-026	C	0 0	0 0	0 (0 0	0	0

KeyMine	ralDetails											
	Job											
Client Name	Number	Sample Number	PIC C Morph PIC	A MorphProbe	PIC B MorphProbe P	IC C MorphProbe	PYR A Morph	PYR B Morph	PYR C Morph	PYR A MorphProbe	PYR B MorphProbe	PYR C MorphProbe
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	C) 0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	C	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	C	0 0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	C	0 0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	C	0 0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	C	0 0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	C	0 0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	C	0 0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	C	0 0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	C	0	0

KeyMine	ralDetails	5							
	Job								
Client Name	Number	Sample Number	EGAR A Morph	EGAR B Morph	EGAR C Morph	EGAR A MorphProbe	EGAR B MorphProbe	EGAR C MorphProbe	SYNDIA C Morph
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0

Diamond Details

No Diamond Details Data to Report

Other Miner	als																
				Individual Size Fraction Observed													
Client Name	Job Number	Sample Number	Technician	mm	Almandine	AI-Silicates	Al-Spinel	Amphibole	Anatase	Andalusite	Andradite Apatite	Axinite	Barite	Biotite	Bronzite	Calcite	Carbonate
ANGLOAM	09133	VSA009-018	DIATECH	-0.2+0.1	0	0	0	0	0	0	0 (0 0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-0.3+0.2	5	0	0	Tr	0	0	Tr () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-0.4+0.3	5	0	0	Tr	0	0	Tr () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-0.8+0.4	0	0	0	Tr	0	0	Tr () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	DIATECH	-1.2+0.8	0	0	0	0	0	0	0 () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.2+0.1	0	0	0	0	0	0	0 () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.3+0.2	Tr	0	0	10	0	0	0 () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.4+0.3	Tr	0	0	Tr	0	0	0 () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-0.8+0.4	0	0	0	0	0	0	0 () 0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	DIATECH	-1.2+0.8	0	0	0	0	0	0	0 () 0	0	0	0	0	0

Other Miner	rals															
Client Name	Job Number	Sample Number	Cassiterite	Chalcopyrite	Chlorite	Chrysoberyl	Cinnabar	Clinopyroxene	Columbite	Copper Minerals	Cordierite	Corundum	Crocoite	Cr-Spinel	Demantoid	Diaspore
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Miner	als																	
Client Name	Job Number	Sample Number	Diopside	Enstatite	Epidote	Fe Oxide/Hydroxide	Fergusonite	Florencite	Fluorite	Gahnite	Galena	Garnet	Glauconite	Gold	Gorceixite	Goyazite	Grossular	Gypsum
ANGLOAM	09133	VSA009-018	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	Tr	Tr	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	Tr	Tr	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	Tr	Tr	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	Tr	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	Tr	70	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	Tr	80	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	95	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0

Other Mine	rals																
Client Name	Job Number	Sample Number	Haematite	Hercynite	Hornblende	Ilmenite	K-Richterite	Kyanite	Leucoxene	Limonite	Magnesite	Magnetite	Magnophorite	Malachite	Marcasite	Martite	Mica
ANGLOAM	09133	VSA009-018	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0 0	0	60	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0 0	0	40	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0 0	0	10	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0 0	0	Tr	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0 0	0	Tr	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0 0	0	Tr	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Mine	rals															
Client Name	Job Number	Sample Number	Micrometeorites	Mn Oxide	Moissanite	Molybdenite	Monazite	Muscovite	Nb-Rutile	Olivine	Orthopyroxene	Other Mineral	Pb Glass	Perovskite	Phlogopite	Phosphate
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Miner	rals																
				Disting	Destation	Duiterite	Dellandaria		D	D		Destile	0	Oshaalita	0		
Client Name	JOD NUMBER	Sample Number	Pleamontite	Platinum	Prennite	Priderite	Psilomelane	Pyrite	Pyrociore	Pyroxene	ROCK Fragments	Rutile	Quartz	Scheelite	Sericite	Shell Fragments	Siderite
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	Tr	0	0	35	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	Tr	0	0	55	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	Tr	0	0	90	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	Tr	0	0	Tr	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	Tr	0	0	Tr	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	Tr	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Mine	rals														
Client Name	Job Number	Sample Number	Sillimanite	Spessartine	Sphene	Spinel	Staurolite	Sulphides	Tantalite	Thorite	Topaz	Tourmaline	Unknown Mineral 1	Unknown Mineral 2	Unknown Mineral 3
ANGLOAM	09133	VSA009-018	0	0	. 0	0	0	. 0	0	0	. 0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	20	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	20	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	5	0	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Mine	rals										
Client Name	lob Number	Sample Number	Unknown Mineral /	Unknown Mineral 5	Unknown Mineral 6	Uvarovite	Vermiculite	Wolframite	Xenotime	Zircon	Zoisito
	00133					Ovarovite	Vermicunte				
	09100	VSA009-010	0	0	0	0	0	0	0	U T.	0
ANGLUAIVI	09133	VSA009-018	0	0	0	0	0	0	0	Ir	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	Tr	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	Tr	0
ANGLOAM	09133	VSA009-018	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0
ANGLOAM	09133	VSA009-026	0	0	0	0	0	0	0	0	0

APPENDIX VII

RC DRILLING FILES AND AAEA LOGGING CODES

Digital Data

LOGGING CODES

ROCK TYPES:

	Weathering Product & Transported	I / Superfic	cial Deposits (prefix L…)
LAL	Alluvium	LST	Silt
LCO	Colluvium	LSD	Sand
LSO	Soil	LGR	Gravel
LSCR	Scree	LSCO	Conglomerate
LLO	Loess	LGO	Gossan
LCY	Clay (produced by weathering or by alteration, include interp. of parent lithology in Rock 2)	LGYP	Gypsum / gypsiferous sediment (associated with salt lake systems)
LFE	Ferricrete (arid / desert environments -NOT laterite)	LSIC	Silcrete (arid / desert environments)
LAT	Lateritic duricrust (general)	LCC	Calcrete (arid / desert environments)

	Sediments	(prefix S	.)
S	Sediment (undifferentiated)	SOC	Coal - "organic" sediments
SB	Black shale / carbonaceous (graphitic) sediments	SLC	Carbonate (undifferentiated or "dirty limestones")
SU	Mudstones (general - includes slate & shale)	SLD	Dolomite - if "dirty" add descriptor (eg: sandy, silty)
ST	Siltstone (general)	SLL	Limestone - if "dirty" add descriptor (eg: sandy, silty)
SD	Sandstones / quartz-rich sediments	SLM	Marl
SQZ	Quartzite (metamorphic)	SEV	Evapourites - gypsiferous
SA	Arenites (general)	SC	Conglomerates (general)
SAF	Arkosic arenites (>50% feldspathic / lithic fragments & 0- 15% silty / clayey matrix)	SCM	Monomict / oligomict conglomerates
SAL	Lithic arenites (>50% rock / lithic fragments & 0-15% silty / clayey matrix)	SCP	Polymict conglomerates
SGW	Greywacke (15-75% silty / clayey matrix)	SFE	Ferruginous sediments - not BIF
SMF	Mass flow / debris flow		

	Cherts (p	orefix C)	
С	Chert (undifferentiated)	CJ	Jaspilitic chert
СВ	Barite-bearing cherts (eg: in VHMS systems)	CL	White and grey / black banded cherts
CIF	BIF: Banded Iron Formation	СМ	Cherts - massive

	Felsic Volcani	cs (prefix	F)
F	Felsic volcanic (undifferentiated)	FD	Rhyodacite
FR	Rhyolite (plutonic equivalent: granite)	FT	Trachyte (plutonic equivalent: syenite)
FVA	Felsic pyroclastic or volcaniclastic: ash / fine tuff (grain size <0.1mm)	FVG	Felsic pyroclastic or volcaniclastic agglomerate / breccia / lapilli tuff (grain size >4mm)
FVT	Felsic pyroclastic or volcaniclastic: tuff / sandstone (grain size 0.1-4mm)	FVB	Felsic pyroclastic or volcaniclastic: bomb breccia / agglomerate (grain size >32mm)

	Intermediate Volcanics (prefix A)			
А	Intermediate volcanics (undifferentiated)			
AA	Andesite (plutonic equivalent: diorite)	AB	Basaltic-andesite	
AT	Latite / Trachy-andesite (plutonic equivalent: monzonite)	AD	Dacite (plutonic equivalent: granodiorite)	
AVA	Intermediate pyroclastic or volcaniclastic: ash / fine tuff (grain size <0.1mm)	AVG	Intermediate pyroclastic or volcaniclastic agglomerate / breccia / lapilli tuff (grain size >4mm)	
AVB	Intermediate pyroclastic or volcaniclastic: bomb breccia / agglomerate (grain size >32mm)	AVT	Intermediate pyroclastic or volcaniclastic: tuff / sandstone (grain size 0.1-4mm)	

ROCK TYPES (cont'd):

	Mafic Volcanics (prefix B…)				
В	Mafic volcanics (undifferentiated)				
BA	Andesitic-basalt	BT	Basalt		
BP	Plagioclase-phyric basalt	BB	Amphibole-phyric basalt		
BK	Komatiitic basalt / High-Mg basalt (generally in Archaean terranes)	BOP	Picrite (olivine-basalt)		
BVA	Mafic pyroclastic or volcaniclastic: ash / fine tuff (grain size <0.1mm)	BVG	Mafic pyroclastic or volcaniclastic agglomerate / breccia / lapilli tuff (grain size >4mm)		
BVT	Mafic pyroclastic or volcaniclastic: tuff / sandstone (grain size 0.1-4mm)	BVB	Mafic pyroclastic or volcaniclastic: bomb breccia / agglomerate (grain size >32mm)		

Komatiites (prefix K…)			
К	Komatiite / ultramafic volcanics (undiff.)	KS	Komatiite, spinifex textured
KAC	Komatiite, adcumulate	KMC	Komatiite, mesocumulate
KOC	Komatiite, orthocumulate		

Granitoids / Felsic-Intermediate Intrusions (prefix G)			
G	Granitoid (undifferentiated)	GMZ	Monzonite (<5% quartz / "quartz-poor" granite - volcanic equivalent: latite / trachy-andesite)
GDI	Diorite (<5% quartz / plagioclase rich - volcanic equivalent: andesite)	GMZQ	Quartz-Monzonite (5%-20% quartz / "quartz-poor" granite - volcanic equivalent: latite / trachy-andesite)
GDIQ	Quartz-Diorite (5%-20% quartz / plagioclase rich - volcanic equivalent: andesite)	GQ	Quartz-rich granitoid (>60% quartz)
GGD	Granodiorite (volcanic equivalent: dacite)	GSY	Syenite (volcanic equivalent: trachyte)
GGR	Granite (volcanic equivalent: rhyolite)	GTO	Tonalite (>20% quartz / plagioclase-rich)
GK	Alkali-feldpsar granite ("pink" granite)		

	Minor Porphyry / "Other" Intrusives (prefix P…)			
PF	Felsic intrusive (undifferentiated)	PI	Intermediate porphyry (undiff.)	
PFF	Felsic porphyry, feldspar dominant / feldspar-phyric	PIA	Andesitic porphyry (keratophyre) - <i>NOT</i> andesite lava	
PFQ	Felsic porphyry, quartz dominant / quartz-phyric	PID	Dacitic porphyry (quartz keratophyre) +NOT dacite lava	
PAP	Aplite	PL	Lamprophyre (undifferentiated)	
PEG	Pegmatite	PLA	Lamprophyre, amphibole dominant	
PGF	Pegmatite, feldspar-rich	PLB	Lamprophyre, phlogopite / biotite dominant	
PGQ	Pegmatite, quartz-rich	PLX	Lamprophyre, pyroxene dominant	
PCB	Carbonatite	PK	Kimberlite (undifferentiated)	

Mafic Intrusives (prefix D)			
D	Mafic intrusives (undifferentiated)		
DD	Dolerite	DDQ	Quartz dolerite
DG	Gabbro (NO olivine, <10% opx)	DHB	Hornblendite (>50% hornblende)
DGL	Leucogabbro (plag >>olivine & pyx)	DN	Norite (opx bearing, <10% cpx)
DGM	Melagabbro (olivine & pyx >>plag)	DNL	Leuconorite (plag >>olivine & pyx)
DGN	Gabbronorite (cpx & opx bearing)	DNM	Melanorite (olivine & pyx >>plag)
DGNL	Leucogabbronorite (plag >>olivine & pyx)	DNO	Olivine Norite (olivine & opx bearing, NO cpx)
DGNM	Melagabbronorite (olivine & pyx >>plag)	DAN	Anorthosite (>90% plag, <10% olivine & pyx)
DGNO	Olivine Gabbronorite (olivine, cpx & opx bearing)	DT	Troctolite (olivine & plag nearing NO pyroxene)
DGO	Olivine gabbro (olivine bearing/VO cpx)	DTL	Leucotroctolite (plag >>olivine & pyx)
DGQ	Quartz gabbro	DTM	Melatroctolite (olivine & pyx >>plag)

ROCK TYPES (cont'd):

	Ultramafic Rocks (prefix U…)				
U	Ultramafic (undifferentiated)	US	Serpentinised ultramafic (primary texture destroyed)		
UPX	Pyroxenite (>50% pyroxene, <40%olivine, VO plagioclase)	USC	Serpentinite, chlorite dominated		
UCPX	Clinopyroxenite (<40% olivine, cpx present _{NO} opx & NO plagioclase)	USM	Serpentinite, tremolite dominated		
UOPX	Orthopyroxenite (<40% olivine, opx present,VO cpx & NO plagioclase)	UST	Serpentinite, talc dominated		
UWB	Websterite (opx & cpx, NO olivine & NO plagioclase)	UDU	Dunite (>90% olivine,NO plagioclase)		
UWBO	Olivine Websterite (opx & cpx, olivine present &VO plagioclase)	UPD	Peridotite; undiff (40-90% olivine,NO plagioclase)		
ULZ	Lherzolite (>40% olivine, both opx & cpx presentŅO plagioclase)	UHZ	Harzburgite (>40% olivine, opx present,NO cpx & NO plagioclase)		
UWL	Wehrlite (>40% olivine, cpx present,NO opx & NO plagioclase)				

	High-Grade Metamorphic / Gneissic Rocks (prefix M…)			
MA	Amphibolite (undifferentiated)	MMB	Marble	
MAC	Amphibolite, actinolite dominated	MMG	Migmatite / migmatitic gneiss	
MAN	Amphibolite, anthophyllite dominated	MPE	Pelite (f.g c.g. aluminosilicate m'mic minerals). Use Key Mineral fields	
MBMG	Banded magnetic / magnetite gneiss (eg: after Archaean BIF)	MPH	Phyllite (f.g. micaceous rock). <i>NOTE:</i> schist codes may be more appropriate.	
MBDG	Banded gneiss	MPP	Psephite (original conglomerate)	
MCH	Charnockite	MPS	Psammite (original sandstone)	
MCS	Calc-silicate gneiss	MPX	Amphibolite, pyroxene dominated (high-grade)	
MEC	Eclogite	MQF	Quartzo-feldspathic gneiss / felsic gneiss	
MGN	Gneiss (undifferentiated)	MSZ	Schist, use Key Mineral fields	
MGR	Granulite	MTR	Amphibolite, tremolite dominated	
MHB	Amphibolite, hornblende dominated	MUGN	Ultramafic gneiss	
MITG	Intermediate gniess	MXC	Clinopyroxene-plagioclase rocks (high-grade)	
MLT	L-tectonite (use Key Mineral fields)	MXO	Orthopyroxne-plagioclase rocks (high-grade)	
MMAG	Mafic gneiss			

Mylonites / Cataclasites				
MCTC Cataclasite (undifferentiated), use Key Mineral Fields MYL Mylonite (undifferentiated), use Key Mineral Fields				

MASSIVE SULPHIDES (>50% / >20cm of core) Use KEY MINERAL FIELDS for additional / subordinate sulphide species		SEMI-MASSIVE SULPHIDES (>20% / >20cm of core) Use KEY MINERAL FIELDS for additional / subordinate sulphide species and lithic clast types in breccias	
\$\$	Massive Sulphides, undifferentiated	\$S	Semi-massive sulphides, undifferentiated
\$AS	Arsenopyrite-rich massive sulphide	\$SAS	Arsenopyrite-rich semi-massive sulphide
\$BO	Bornite-rich massive sulphide	\$SBO	Bornite-rich semi-massive sulphide
\$CH	Chalcocite-rich massive sulphide	\$SCH	Chalcocite-rich semi-massive sulphide
\$CP	Chalcopyrite-rich massive sulphide	\$SCP	Chalcopyrite-rich semi-massive sulphide
\$CR	Chromite / Chromitite (ie: PGE)	\$SCR	Semi-massive Chromite / Chromitite
\$GA	Galena-rich massive sulphide	\$SGA	Galena-rich semi-massive sulphide
\$ML	Millerite-rich massive sulphide	\$SML	Millerite-rich semi-massive sulphide
\$PN	Pentlandite-rich massive sulphide	\$SPN	Pentlandite-rich semi-massive sulphide
\$PO	Pyrrhotite-rich massive sulphide	\$SPO	Pyrrhotite-rich semi-massive sulphide
\$PY	Pyrite-rich massive sulphide	\$SPY	Pyrite-rich semi-massive sulphide
\$SP	Sphaleriteite-rich massive sulphide	\$SSP	Sphaleriteite-rich semi-massive sulphide

ROCK TYPES (cont'd):

Breccias (prefix X…) Use TEXTURE CODES to describe clasts (composition, shape etc…)			
х	Breccia (undifferentiated)	XHY	Hydrothermal breccia (must have clear evidence of vein phases), use Key Mineral fields to describe important vein mineral phases.
XHE	Hematite-rich breccia (IOCG systems), use Key Mineral fields to describe other important minerals or clast types	XMT	Magnetite-rich breccia (IOCG systems), also use Key Mineral fields to describe other important minerals
XIN	Intrusive breccia (near margins of intrusion), use texture codes to describe clasts, use Rock 2 to describe composition of intrusive unit.	XVO	Eruptive volcanic breccia (eg: on margins of breccia pipe / diatreme)

Iron Ore Mineralisation (prefix I…)			
ICI	pisolitic channel iron deposit	IMH	massive hematite (eg: total replacement of BIF in BID systems)
IDI	dedrital iron deposit	IMM	massive magnetite (eg: total replacement of BIF)
IMG	massive geothite, undiff (eg: total replacement of BIF in BIC systems)	ISMG	semi-massive geothite, undiff (eg: partial replacement of Bl in BID systems)
IMGO	massive geothite, ochrous (soft, friable ores in BID systems)	ISMH	semi-massive hematite (eg: partial replacement of BIF in BID systems)
IMGV	massive geothite, vitreous / siliceous (hard, non-friable ore: in BID systems)	ISMM	semi-massive magnetite (eg: partial replacement of BIF)

Other				
STOPE	Void / stope	NS	No sample / core loss	
TAZ	Total alteration zone - not possible to determine original roo type: used as a <i>LAST RESORT</i> , must always indicate "bes guess" as to the original rock type	FLT	Fault - only to be used in <i>EXTREMELY</i> broken ground with near complete destruction of rock mass (eg: fault gouge): used as a LAST RESORT only if the mylonite / cataclasite codes are not applicable	
QZV	Quartz vein (use Key Minerals to describe important minerals other than quartz).	VN	Vein, not quartz-rich (use Key Minerals to describe vein minerals & see vein description)	

ROCK TEXTURES:

	General Terms / Textures				
CLY	clayey (eg: as a descriptor in weathered /altered rocks)	BX	breccia / brecciated (structural, hydrothermal or volcanic - clasts should be angular)		
SLT	silty (eg: as a descriptor for a dirty limestone)	IND	indurated / "hardpanised" (for surficial materials)		
SND	sandy (eg: as a descriptor for a dirty limestone)	JNT	jointed (only for strongly joint fractured rocks)		
QZ	quartzose / quartz-rich (as in sediment)	FR	fractured		
GRV	gravel / gravelly (eg: as a descriptor for colluvium)	MLD	milled, for clasts in volcanic breccias (gas-streaming) or effusive veins (often associated with vein sediment)		
PIS	pisolite / pisolitic	SPT	spotted		
GOE	goethite / goethitic (eg: for oxidised rocks)	WD	wood / organic clasts or fragments		
HEM	hematite / hematitic (eg: for oxidised rocks)	BND	banded (can be used in volcanic, metamorphic or sedimentary rocks - see also vein codes)		
МТ	magnetic / magnetite	BDD	bedded (can be used in volcanic, metamorphic or sedimentary rocks - see also vein codes)		
GPH	graphitic (as in graphitic slate - higher grade than carbonaceous shale)	BOT	botryoidal / mammillated		
CLC	calcareous (eg: in calcareous siltstones / shales)	BXW	boxworked		
MSV	massive	HOM	homogeneous		

ROCK TEXTURES (cont'd):

Grain Size Terms			
VFG	very fine grained < 0.1mm (sediment)	PBL	pebbles / pebbly (sediment: 8-32mm)
FGR	fine grained <1mm (sediment & igneous)	CBL	cobbles / cobbly (sediment: 32-256mm)
MGR	medium grained (igneous: 1-5mm / sediment: 1-2mm)	BLD	boulder (sediment: >256mm)
CGR	coarse grained (igneous: 5-30mm / sediment: 2-4mm)	EQG	equigranular or granoblastic
VCG	very coarse grained (igneous: >30mm / sediment: 4-8mm)	SER	seriate (range in grain sizes)
MXT	megacrystic (eg: K-Spar megacrystic granite)	PEG	pegmatite / pegmatitic

Grain / Clast Morphology Terms / Textures			
EUH	euhedral grains	RND	rounded clasts / grains / crystal fragments
SBH	subhedral grains	SRN	subrounded / grains / crystal fragments
ANH	anhedral grains	SAG	subangular clasts / grains / crystal fragments
	1	ANG	angular clasts / grains / crystal fragments

Sedimentary Terms / Textures			
LAM	laminated (for sediments and possibly large veins - see vein codes)	CBN	carbonaceous (as in carbonaceous / black shale/NOT calcareous or graphitic)
FLG	flaggy	IJD	injection dykes / flame structures (sedimentary)
PHL	phyllitic (weakly metamorphosed shale)	RUC	rip up clasts
FSF	fossiliferous	ERS	erosional scours
PSO	poorly sorted (sedimentary / voclanic rocks / volcanic breccias)	MSU	matrix supported (sedimentary / voclanic rocks / volcanic breccias)
wso	well sorted (sedimentary / voclanic rocks / volcanic breccias)	CSU	clast supported (sedimentary / voclanic rocks)

	Bedding Terms / Textures			
BTN	bedded - thinly (<1cm)	BFF	fine grained beds >> coarse grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)	
BMO	bedded - moderately (1cm? to 30cm)	BFC	fine grained beds > coarse grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)	
ВТК	bedded - thickly (>30cm)	BFE	fine grained beds = coarse grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)	
BPM	bedded - poorly defined to massive (>1m) bedding	BCF	coarse grained beds > fine grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)	
ITB	interbedded	BCC	coarse grained beds >> fine grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)	
XBD	cross bedded (including trough and ripple cross bedding)	BGR	bedding - graded bedding	

Volcano-Sedimentary Terms / Textures			
AP	accretionary lapilli	LC	lithic / lithic clasts
ASH	ash / ash-rich (in matrix)	MM	momomict (conglomerates / volcanic sediments / volcanic breccias)
BIM	bimodal (generally grainsize for sediments - can be for composition of volcanic clasts)	РМ	polymict (conglomerates / volcanic sediments / volcanic breccias)
XTR	crystal-rich / crystal fragments		

ROCK TEXTURES (cont'd):

	Volcanic Terms / Textures				
PH	phyric: for lavas with phenocrysts (use porphyritic / porphyroblastic for igneous / metamorphic rocks)	SX	spinifex textured; undifferentiated (specific to komatiites, may also occur at quench / contact zones)		
APH	aphanitic (glassy lavas)	SXC	coarse spinifiex		
FB	flow banded	SXF	fine spinifex		
PLW	pillowed (for lavas)	SXM	medium spinifex		
HYA	hyaloclastite / hyaolclastitic	SXR	randomly oriented spinifiex grains		
PP	peperite / peperitic (lava intruding wet, unconsolidated sediments)	SXS	sheaf / book spinifex grains		
SPH	spherultic	SXO	olivine spinifex		
PBD	pebble dykes	SXP	pyroxene spinifex		
VS	vesicular, amygdaloidal (in lavas)				
WLD	welded (for use in pumiceous tuffs / volcaniclastic rocks / ignimbrites): MUST have evidence of compaction or flowag	e SXB	sheeted pyroxene spinifex ("stringy beef" texture)		
PUM	pumiceous / pumice / scoria fragments				

Igneous / Metamorphic Terms / Textures				
ACL	acicular / needle-like minerals (not bladed / spinifex textured)	AC	cumulate textured: adcumulate (generally in ultramafic rock or layered intrusions)	
ATO	atoll textured grains (eg: quenched olivine crystals)	MC	cumulate textured: mesocumulate (generally in ultramafic rocks or layered intrusions)	
AUG	augen textured	OC	cumulate textured: orthocumulate (generally in ultramafic rocks or layered intrusions)	
INT	intruded / intercalated	LEU	leucocratic (<35% ferro-magnesian / dark minerals)	
HF	hornfels / hornfelsed	MES	mesocratic (35-65% ferro-magnesian / dark minerals)	
SCC	saccharoidal / sugary (mainly for metamorphic rocks)	MEL	melanocratic (>65% ferro-magnesian / dark minerals)	
GN	gneissose	PMM	melanosome (partial melt texture)	
GRP	graphic textured (as in granites & pegmatites)	PML	leucosome (partial melt texture)	
SKL	skeletal grains	MIA	miarolitic cavities	
SOP	sub-ophitic	MIG	migmatitic	
HRS	harrisitic grains, distinct from acicular grain (eg: harrisitic olivine in komatiite)	MYR	myrmektite	
HPR	hopper grains (olivine mineral texture)	OPH	ophitic (distinct in some dolerites)	
HYP	hypidiomorphic	PK	poikolitic	
IDO	idiomorphic	PO	porphyritic (generally for intrusive rocks) / porphryoblastic (metamorphic rocks)	
VRT	varitextured	BOU	boudinaged	
LAY	layered (for igneous rocks only, use bedding terms for sediments)	PTG	ptygmatic (as in ptygmatically veined gneiss)	

	Breccia Clast (compostions / litholotypes)			
X\$	breccia clast; sulphidic (undiff)	XI	breccia clast; intermediate (undiff)	
XS	breccia clast; sediment (undiff)	XIV	breccia clast; intermediate volcanic	
XSU	breccia clast; fine grained sediment (shale, slate, mudstone sitlstone etc)	ХМ	breccia clast; mafic (undiff)	
XSD	breccia clast; medium grained sediment (arkose, sandstone etc)	XMV	breccia clast; mafic volcanic	
XSC	breccia clast; coarse grained sediment	XDD	breccia clast; doleritic	
XCB	breccia clast; carbonate / limestone	XDG	breccia clast; gabbroic	
XC	breccia clast; chert / BIF	XDA	breccia clast; anorthositic	
XF	breccia clast; felsic (undiff)	XDT	breccia clast; troctolitic	
XFV	breccia clast; felsic volcanic	XU	breccia clast; ultramafic (undiff)	
XGR	breccia clast; granitic	XPX	breccia clast; pyroxenitic	
XDI	breccia clast; dioritic	XPD	breccia clast; peridotitic	

ROCK TEXTURES (cont'd):

Sulphide Textural Terms				
Note: Use ORE MINERAL FIELDS to describe habits of important / ore minerals				
NT	net-textured sulphides	STR	stringer sulphides	
NTR	reverse net-textured sulphide			

	Structural Terms / Textures				
DH	downhole facing direction (younging direction)	FO	fold / folded (undifferentiated style)		
UH	uphole facing direction (younging direction)	FM	fold: M-fold (looking up-hole)		
CLV	cleavage	FS	fold: S-fold (looking up-hole): use ONLY in oriented drill co or if cleavage relationships can be determined		
FOL	foliated (tightly spaced cleavage to weakly sheared)	FZ	fold: Z-fold (looking up-hole): use ONLY in oriented drill cor or if cleavage relationships can be determined		
SZ	strongly schistose	CRN	crenulated		
MYL	mylonitic - strongly sheared	LIN	lineated (as in L- and L-S tectonites)		
STY	stylolite / stylolitic				

MINERAL SPECIES:

Metal / Ore / Sulphide Minerals			
CU	Native copper	ILM	Ilmenite
AU	Native gold	LOE	Loellingite
AG	Native silver	MAL	Malachite
ELT	Electrum	MAR	Marcasite
PT	Platinum	ML	Millerite
PD	Palladium	MO	Molybdenite
ALL	Allanite	MNZ	Monazite
AN	Antinomy	NIC	Niccolite / Nickeline (NiAs)
AGT	Argentite	ORP	Orpiment
AS	Arsenopyrite	PN	Pentlandite
AZR	Azurite	PBL	Pitchblende
BI	Bismuthanite / Bismuth	PY	Pyrite
BO	Bornite	PO	Pyrrhotite
CAS	Cassiterite (tin)	SCH	Scheelite
CER	Cerussite (Pb Carbonate)	SP	Sphalerite
СН	Chalcocite	STB	Stibnite
CP	Chalcopyrite	SXX	Sulphide: unknown
CR	Chromite	S	Sulphur
CRY	Chrysocolla	TA	Tantalite
CNB	Cinnabar	TEL	Telluride (undifferentiated)
CBT	Cobaltite	TNN	Tennantite
CV	Covellite	TET	Tetrahedrite
CUB	Cubanite (Cu sulphide)	TBN	Torbenite (Cu-U Phosphate)
CUP	Cuprite	TRL	Troilite (FeS in meteroites)
DMD	Diamond	URN	Uranite
DSP	Diaspore (assoc with bauxite)	VIO	Violarite (Ni ₂ FeS ₄)
ENR	Enargite	WO	Wolframite
GA	Galena	WLL	Willemite (ZnSiO ₂)
GNT	Garnierite (Ni laterites)	WUR	Wurtzite
GDF	Gersdorffite (Ni(Pt)AsS)	ZIN	Zincite (ruby zinc)
GBB	Gibbsite (bauxite mineral)	ZRC	Zircon

Carbonate Minerals			
CB	Carbonate (undifferentiated)	DLM	Carbonate - Dolomite
ANK	Carbonate - Ankerite	MGN	Carbonate - Magnesite
СТ	Carbonate - Calcite	SD	Carbonate - Siderite
ARG	Aragonite	RDC	Rhodocrosite (Mn-carbonate)
HZC	Hydrozincite	SMT	Smithsonite (Zn carbonate)

MINERAL SPECIES (cont'd):

Silicate Minerals			
AXN	Axinite	ALB	Feldspar - Albite
BRL	Beryl	AMZ	Feldspar - Amazonite (Pb - bearing)
BST	Bustamite	ANO	Feldspar - Anorthite
FLR	Flourite	LAB	Feldspar - Labradorite
EPD	Epidote	MCR	Feldspar - Microcline
CLZ	Clinozoisite (epidote mineral)	OLG	Feldspar - Oligoclase
PDM	Piedmontite / Piemontite (red-brown epidote)	ORT	Feldspar - Orthoclase
SPN	Sphene / Titanite	PLG	Feldspar - Plagioclase
TPZ	Topaz	KFS	Feldspar - Potassium-feldspar (undiff)
TML	Tourmaline (undifferentiated)	SAN	Feldspar - Sanidine
AMP	Amphibole (undifferentiated)	FLD	Feldspar (undifferentiated)
ACT	Amphibole - Actinolite	PRX	Pyroxene (undifferentiated)
ANT	Amphibole - Anthophyllite	AUG	Pyroxene - Augite / Aegerine
CUM	Amphibole - Cummingtonite	BRZ	Pyroxene - Bronzite (opx)
GRN	Amphibole - Grunerite	CPX	Pyroxene - Clinopyroxene (undiff)
HMQ	Amphibole - Holmquistite (K-bearing)	DIO	Pyroxene - Diopside (cpx)
HBL	Amphibole - Hornblende	ENS	Pyroxene - Enstatite (opx)
TRM	Amphibole - Tremolite	HEN	Pyroxene - Hendenbergite (cpx: Fe-rich end member to Diopside)
ATG	Asbestos - Antigorite	HYP	Pyroxene - Hypersthene (opx)
ACR	Asbestos - Chrysotile	OMP	Pyroxene - Omphacite (cpx)
ASB	Asbestos (undifferentiated)	OPX	Pyroxene - Orthopyroxene (undiff)
QZ	Quartz (use for mesothermal grains)	SPO	Pyroxene - Spodumene (Li-bearing cpx)
QZS	Quartz: (sub)chalcedonic silica (amorphous) - common in epithermal veins	RHD	Rhodonite (pyroxenoid)
AMT	Quartz: Amethyst	OLV	Olivine (undifferentiated)
QZB	Quartz: blue quartz (BH type)	FAY	Olivine - Fayalite
QZM	Quartz: microcrystalline	FOR	Olivine - Forsterite
SI	Silica / Silicified (use for alteration instead of quartz)	ZEO	Zeolite (undifferentiated)
LAZ	Feldspathoid - Lazurite	LAU	Zeolite - Laumontite
LEU	Feldspathoid - Leucite	NAT	Zeolite - Natrolite
NPH	Feldspathoid - Nepheline	PRE	Zeolite - Prehnite
SOD	Feldspathoid - Sodalite	PUM	Zeolite - Pumpellyite
		SLB	Zeolite - Stilbite

	Metamorphic Minerals			
AND	Andalusite	GAR	Garnet (undifferentiated)	
SLM	Sillimanite	ALM	Garnet - Almandine	
KYA	Kyanite	ADR	Garnet - Andradite	
COR	Cordierite	GGR	Garnet - Grossular	
STR	Staurolite	PYP	Garnet - Pyrope	
GHN	Gahnite (Zn-spinel)	SPS	Garnet - Spessertine / Spessarite	
SCA	Scapolite (Ca-rich m'mic rocks / alt'n of plagioclase)	GLP	Glaucophane	
SPL	Spinel	JAD	Jadeite (Hi-P pyroxene)	
WLS	Wollastonite (Ca-pyroxenoid)	SPP	Sapphirine (Hi-P m'mic)	
CRS	Cristobalite (Hi-T quartz)			

	Epithermal / Porphyry Minerals			
ADU	Adularia	KAO	Kaolinite	
ALU	Alunite	MTM	Montmorillonite	
DIK	Dickite	PYR	Pyrophyllite	
ILT	Illite	SMC	Smectite	
CLY	Clay (undifferentiated: illite / dickite / kaolinite / smectite	.)		

	Oxide Minerals			
OX	Oxides (undifferentiated)	MGH	Maghemite	
GOE	Goethite / Limonite	MNO	Manganese Oxide	
HEM	Haematite	MKT	Mushketovite (magnetite psuedomorph on hematite)	
SPC	Specularite / Specular Hematite	PRL	Pyrolusite (MnO2)	
MT	Magnetite	RUT	Rutile / Leucoxene	

MINERAL SPECIES (cont'd):

	Phyllosilicate Minerals			
SER	Sericite / Phengite	GLC	Glauconite	
MV	Muscovite	GPH	Graphite	
BT	Biotite	LEP	Lepidolite	
PHG	Phlogopite	PRG	Paragonite	
BRU	Brucite (Mg(OH)2	PRV	Perovskite	
CHL	Chlorite	SRP	Serpentine	
TLC	Talc	STC	Stichtite (Mg-Cr muscovite, bright purple in serpentinite)	
FU	Fuchsite (Cr muscovite)	STL	Stilpnomelane	

Sulphate / Phosphate / Other Minerals				
ANH Anhydrite GYP Gypsum				
APA	Apatite	HAL	Halite / Salt	
BAR	Barite	JAR	Jarosite	
CRN	Corundum	SUL	Sulphates (undifferentiated)	

VEINS & STRUCTURE:

	Vein Type Codes			
BL	Bladed (epithermal veins)	PT	Ptygmatic veins	
BN	Banded (eg: by mineral composition)	SH	Sheeted (numerous thin veins with similar orientation)	
BX	Hydrothermal breccia	ST	Stringer veins	
СВ	Comb-textured ("sparry / dog-tooth")	SW	Stock-work (numerous veins with 2-3 dominant orientations	
CD	Chalcedonic	SY	Stylolitic veins	
CF	Colloform (eg: fine rhythmic banding in epthermal veins)	TG	Tension gashes / en-echelon veins	
LA	Laminated veins	VL	Veinlets - very thin, minor veins	
MA	Massive vein (ie: massive quartz vein)	VU	Vugghy / drusy (open space)	
PG	Pegmatitic / Pegmatite (granitic "veins")			

	Degree of Shearing		
% Breaks	Definition		
0	Unfoliated and undeformed rock		
10	Very weak or incipient foliation; no associated mineral growth or recrystallisation (may be mistaken for flow banding) stylolites, spaced cleavages		
20	Weak foliation; continuous or slatey cleavages and other primary flattening deformation involving mineral alignment		
30	Moderate foliation; poorly developed metamorphic segregation		
40	Strong foliation; development of segregation banding. Micaceous minerals dominant to sub-dominant; pervasive foliation, original rotype discernible		
50	Schistocity; moderate to strong segregation banding; some primary structures preserved; most textures destroyed in volcanic rocks preserved in sediments and phaneritic rocks		
60	Schistocity; strong mineral segregation into compositional laminae		
70	Schistocity; strong foliation with slickensiding and mineral growth on s-surfaces, broken rock.		
>80	Mylonite / cataclastite		

VEINS & STRUCTURE (cont'd):

	Structure Types Max of 1 descriptor per feature / structure measured.			
S0	Bedding / Geological Contact	L	Lineation: undifferentiated	
S1	1st Fabric / Cleavage (if structural relationships known accurately)	LM	Mineral lineation	
S2	2nd Fabric / Cleavage (if structural relationships known accurately)	L1	Lineation related to 1st fabric / cleavage	
S3	3rd Fabric / Cleavage (if structural relationships known accurately)	L2	Lineation related to 2nd fabric / cleavage	
S4	4th Fabric / Cleavage (if structural relationships known accurately)	L3	Lineation related to 3rd fabric / cleavage	
SA	Fabric / Cleavage - Axial Plane to fold (if structural relationships not accurately known)	L4	Lineation related to 4th fabric / cleavage	
SE	Early Fabric / Cleavage - based on observed relationships/timing (if structural relationships not accuratel known)	FA	Fold axis / fold hinge: undifferentiated	
SL	Late Fabric / Cleavage - based on observed relationships/timing (if structural relationships not accuratel known)	F1	Fold axis: 1st deformation event	
SZ	Shear	F2	Fold axis: 2nd deformation event	
SZDS	Shear with dip-slip movement sense (unable to determine if Reverse or Normal Shear)	F3	Fold axis: 3rd deformation event	
SZDX	Shear with dextral movement sense (as determined by kinematic indicators)	F4	Fold axis: 4th deformation event	
SZNM	Normal Shear (as determined by kinematic indicators)	FL	Foliation (default fabric/foliation if structural relationships an not known)	
SZRV	Reverse Shear (as determined by kinematic indicators)	FT	Fault (undifferentiated)	
SZSS	Shear with strike-slip movement sense (unable to determine if Sinistral of Dextral movement)	⁹ FTDS	Fault with dip-slip movement sense (unable to determine if Reverse or Normal Fault)	
SZSX	Shear with sinistral movement sense (as determined by kinematic indicators)	FTDX	Fault with dextral movement sense (as determined by kinematic indicators)	
BD	Banding - in metamorphic rocks: NOT bedding	FTNM	Normal Fault (as determined by kinematic indicators)	
BX	Breccia	FTRV	Reverse Fault (as determined by kinematic indicators)	
IC	Geological Contact - Intrusive	FTSS	Fault with strike-slip movement sense (unable to determine if Sinistral of Dextral movement)	
JN	Joint	FTSX	Fault with sinistral movement sense (as determined by kinematic indicators)	
VN	Vein - undifferentiated (put composition in Vein Type & Vei Minerals columns)			

ALTERATION:

Alteration Intensity Guidelines:		
Breaks (%)	Definition	
0	No alteration	
10	Weak alteration	
30	Moderate alteration	
50	Strong alteration, replacement of mineralogy, fabric preserved	
80	Intense alteration, near-total replacement of original fabric and mineralogy	

ALTERATION (cont'd):

Nature / character / setting of ALTERATION (not composition)

Fracture / plumbing network that allows fluid access to the rock-mass

Maximum of 1 descriptor to be used. Use dominant/main descriptor.

prefix U: UNDIFFERENTIATED / UNIDENTIFIED plumbing - ONLY for use when unable to confidently identify plumbing system for the alteration (eg: in large-scale High-sulphidation epithermal systems)			
UP	Pervasive overprint without shearing	UC	Preferential replacement of clast in fragmental / clastic rock.
UI	Irregular or patchy alteration	UB	Preferential replacement ofbedding in fragmental / clastic rock.
UX	Preferential replacement o fmatrix in fragmental / clastic rock.	UM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)

prefix S:				
SP	Pervasive within zone of shearing	SC	Preferential replacement of clast in fragmental / clastic rock - ONLY if still identifiable as clasts (eg: relict pebbles or cobbles are recognisable)	
SI	Irregular or patchy alteration within shear	SB	Preferential replacement of bedding in fragmental / clastic rock - <i>ONLY</i> if bedding is preserved and recognisable	
SX	Preferential replacement ofmatrix in fragmental / clastic rock - <i>ONLY</i> if still identifiable as matrix (eg: relict pebbles or cobbles are recognisable)	SM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)	

prefix V: Selvedge to VEIN / VEIN-SET that is the likely feature that acted as plumbing / pathway for alteration fluids			
VP	Pervasive alteration centred on the vein / vein-set	VC	Preferential replacement o fclast in fragmental / clastic rock
VI	Irregular or patchy alteration adjacent to the vein / vein-set	VB	Preferential replacement o fbedding in fragmental / clastic rock - can produce the classic "telegraph" or "chirstmas- tree" alteration patterns at the local and/or deposit scale
VX	Preferential replacement o fmatrix in fragmental / clastic rock	VM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)

prefix W: Alteration assoicated with a STOCKWORK set of veins that is the likely feature that acted as plumbing / pathway for alteration fluids			
WP	Pervasive alteration centred on the vein stockwork	WC	Preferential replacement o fclast in fragmental / clastic rock
WI	Irregular or patchy alteration adjacent to the vein stockwor	k WB	Preferential replacement o fbedding in fragmental / clastic rock
WX	Preferential replacement o fmatrix in fragmental / clastic rock	WM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)

prefix X:				
HYDROTHERMAL BRECCIAS				
х	Alteration associated hydrothermal / vein breccias (for alteration intensity >30% only) OTE - different ambient conditions related to brecciation (eg: P & T) can produce modified alteration products from the same ore fluid			

ORE MINERAL HABITS:

Ore Mineral Habits				
AC	Acicular	IC	Intercumulus	
AG	Mineral aggregates	IN	Inclusions	
AM	Amorphous	IT	Insterstitial	
BC	Breccia clast	IR	Irregular	
BD	Bedded (distinct from replacement of bedding)	MA	Massive	
BL	Blebby	NT	Net-textured	
BM	Breccia matrix	PK	Poikolitic	
BN	Banded (distinct from replacement of bedding)	PV	Pervasive	
BO	Botryoidal / mammillated	RA	Radiating	
BX	Brecciated	RB	Preferential replacement of bedding (sediment / volcaniclastic)	
CF	Colloform	RC	Preferential replacement of clasts (sediment / volcaniclastic)	
CO	Concretion(s)	RM	Preferential mineral replacement	
CV	Cleavage plane / foliation (along / aligned)	RN	Reverse net-textured	
DN	Dendritic	RX	Preferential replacement of matirx (sediment / volcaniclastic	
DS	Disseminated	SM	Semi-massive	
FB	Framboydal	ST	Stringer	
FL	Flame-textured	TL	Telegraph	
HD	Heavy disseminated	VN	Internal to vein	
HY	Hydrothermal breccia infill (part of)	VS	Vein selvedge	

REGOLITH & WEATHERING:

Regolith & Weathering Guidelines			
Code	Description		
TPD	Transported or superficial deposits: Material that has undergone significant transportation from source (eg: loess, gravels or colluvium). <i>NOT</i> scree.		
SOIL	Residual soil: Dervided from basement / bedrock material		
LAT	Lateritic residuum: Duricrust and lateritic gravels; complete replacement of primary and secondary fabric (rare in ChinalyOTE: Silcrete and ferricretes are often transported and not residual landform features.		
USAP	Upper saprolite: Lack of primary rock fabric; clay dominated; leached or secondary cemented.		
REDOX	Redox front: Strong Fe-rich zone between upper and lower saprolite denoting base of leaching of upper saprolite. Usually strongly goethitic (yellow) if acidic or occasionally hematitic (red) if alkaline. Generally <5m thick. <i>Not always present / identifiable</i>		
LSAP	Lower saprolite: Clay mineral dominated; <70% secondary oxides; primary fabric preserved; sulphides absent or replaced; may preserve rock colour.		
SAPRK	Saprock: <20% secondary oxides; fine detail in fabric preserved; sulphides weathered; preserved felsic minerals		
FRESH	Fresh rock: Fresh sulphides and silicates.		

PERCENTAGE RANGES:

To be used for: Mineral%, Shearing, Alteration Intensity, Vein%, Ore Mineral% & Sample Recovery

0, 0.5 (trace), 1, 2, 3, 5, 7, 10 (only 5% increments after 10%), 15, 20, 25, 30, 35.......85, 90, 95, 100

GEOTECHNICAL LOGGING CODES:

ROCK STRENGTH			
Code	DEFINITION & DESCRIPTION		
VW	VERY WEAK: Crumbles, can scratch with finger-nail, cut & peel with knife (eg: Clay)		
W	WEAK: Can scratch with iron nail, can cut but not peel with knife (eg: Gypsum)		
М	MEDIUM: Scratch with nail with difficulty, scratch with knife hammer 2-3 mm dent multiple blows to break		
S	STRONG: Difficult to scratch with a knife, hammer makes small dent (>1-2 mm), multiple blows to break		
VS	VERY STRONG: Hammer causes superficial damage (eg: Silicified rhyolite & BIF)		

NUMBER OF FRACTURE SETS (NFS)

Any whole number equal or greater than 0 (no decimals).

FRACTURE ROUGHNESS			
-	No Fractures		
PR	Planar rough	PP	Planar polished
PS	Planar smooth	PK	Planar slickensided
SR	Stepped rough	SP	Stepped polished
SS	Stepped smooth	SK	Stepped slickensided
UR	Undulating rough	UP	Undulating polished
US	Undulating smooth	UK	Undulating slickensided

LOGGING CODES

APPENDIX VIII

PETROLOGY REPORT ON 35 SAMPLES FROM THE 2009 RC DRILLING AT VESPER.

Petrographic Report of 35 Polished Thin-Sections

Lynd Project

by

Anthony L. Ahmat

Distribution List

Paul Polito Anglo American Exploration (Aust) Pty Ltd

19 February 2010

General Comments

The polished thin-sections were examined in numerical sequence and with the advent of time and the collection of more information, ideas evolved and changed. These changes will be self-evident in the petrographic descriptions. For example, initially it was not clear what the altered ferromagnesian phenocrysts were. They could have been pyroxenes, amphiboles, olivine or biotite. Subsequently it became clear that probably the only ferromagnesian mineral present in the porphyritic rocks is hornblende. Also, clasts of feldspar and quartz in these porphyritic were initially interpreted to be phenocrysts, but subsequently they were seen to be xenocrystic material derived from the disaggregation of granitoids.

Furthermore, initially it was assumed that all of the porphyritic rocks were extrusives (e.g. andesite), however, much later it became clear they were all intrusives.

Initially the porphyritic rocks were considered to be andesitic, or intermediate, in composition, but because the exact mineralogy of the groundmass is not known, the porphyritic rocks are just referred to as <u>dacitic-andesitic</u> in composition. Intuitively, it is felt that the groundmass of these rocks is quite rich in alkali feldspar, possibly even feldspathoid-bearing, so the rocks may be better described as being trachytic-trachyandesitic in composition.

Discussion/Conclusions

Kimberlite or lamproite was not recognised in the rock chips examined. However, the absence of such rocks does not necessarily preclude their existence because it is probably worth noting that such rocks can be highly weathered and friable and therefore may not be represented in the chips that were sampled. One chip in VSAC 26 9-11 contains a large pseudomorph (see Figs 66-67) which could be after olivine. If it was olivine, it may be significant in implying that olivine-bearing rocks were once present.

The main rock type represented by the rock chips is a hornblende lamprophyre of intermediate composition. Subordinate rocks that are present include granitoids, gneisses, cataclastic quartzo-feldspathic rocks, intrusive breccias and amphibolites. Many of the rocks are highly altered and veined by alkali feldspar, ?zeolites and carbonate.

My *simplistic* interpretation of the geology from the examination of the polished thin-sections is an area of granitoids and gneisses that experienced brittle (to ?ductile) deformation/fracturing prior to the intrusion of the lamprophyric magma. Fragments of granitoid and gneiss were incorporated into the magma and variably disaggregated, leading to the production of xenocrysts of feldspar, quartz and biotite. The rounding of some of the xenocrysts may have resulted from gas-streaming, resorption or physical abrasion.

Locally (e.g. VSAC 15 49-55), well-crystallised amphibolite was/is present in the area, probably as country-rock.

The diamond potential of the area based on the rock chips that have been examined is reduced by the lack of evidence for kimberlite, lamproite or ultramafic lamprophyre. However, the mere presence of lamprophyre is significant. Diamonds have been linked to minettes in some parts of the World.

Petrographic List of Rock Types

VSAC 02 16-17	Altered porphyritic (trachy) andesite/intermediate lamprophyre
VSAC 02 17-18	Altered dacitic-andesitic lamprophyre + moderately deformed and
	recrystallised granodiorite-tonalite
VSAC 02 21-22	Recrystallised mylonitised granitoids
VSAC 02 36-37	Altered dacitic-andesitic hornblende lamprophyre + variably deformed and
	recrystallised granitic rocks
VSAC 11 10-12	Dacitic-andesitic hornblende lamprophyre + mixed lamprophyre-granitoid
	rocks + flaser granitoid
VSAC 11 12-14	Variably altered dacitic-andesitic hornblende lamprophyre; with minor
	xenocrysts and xenoliths of granitoid origin
VSAC 12 25-27	Variably altered dacitic-andesitic hornblende lamprophyre (with trace granitic
	material)
VSAC 12 28-30	Variably altered dacitic-andesitic hornblende lamprophyre + variably
	deformed and recrystallised granitoids + rare mafic amphibolites-granulite
VSAC 12 30-32	Dacitic-andesitic hornblende lamprophyre
VSAC 12 33-34	Dacitic-andesitic hornblende lamprophyre
VSAC 12 34-36	Dacitic-andesitic hornblende lamprophyre + variably deformed &
	recrystallised granitoid + late-stage alkali teidspar
VSAC 15 49-55	Fine- to medium-grained amphibolites + quartzo-reidspatnic gneiss
VSAC 10 47-49	Biolite-bearing qualizo-leuspathic schist, deformed and recrystallised
VSAC 18 6-10	Coarsely devitrified, decitic-andesitic hornblende lampronbyre
VSAC 18 21-22	Coarsely devitrified, dacitic-andesitic hornblende lamprophyre + highly
	altered deformed and partially recrystallised biotite granitoid
VSAC 18 28-29	Devitrified dacitic-andesitic hornblende lamprophyre
VSAC 18 COMP 1	Coarsely devitrified dacitic-andesitic hornblende lamprophyre: strongly veined
VSAC 18 COMP 2	Coarsely devitrified dacitic-andesitic hornblende lamprophyre
VSAC 20 32-34	Dacitic-andesitic hornblende lamprophyre + hornblende (and biotite)
	monzonite-diorite
VSAC 20 37-39	Dacitic-andesitic hornblende lamprophyre
VSAC 21 18-19	Altered, devitrified, dacitic-andesitic hornblende lamprophyre
VSAC 26 9-11	Variably altered dacitic-andesitic hornblende lamprophyre + metamorphosed
	hornblende- and biotite-bearing granitoid
VSAC 26 15-17	Variably altered and devitrified hornblende lamprophyre
VSAC 32 66-67	Cataclasites, fault breccias and ?tuffs/volcaniclastics
VSAC 33 23-24	Highly altered cataclasites/intrusive breccias/?volcaniclastics
VSAC 34 47-48	Highly altered cataclasites/ fault breccia/ intrusive breccias in granitoids
VSAC 35 39-41	Variably altered dacitic-andesitic hornblende lamprophyre
VSAC 36 7-8	Weakly altered dacitic-andesitic nornblende lamprophyre
VSAC 36 27-28	Moderately altered, deformed and recrystallised hornblende- and blotite-
VSAC 10 27 29	Highly altered fault and intrusive breesias derived from bernblande, and
VSAC 40 37-30	highly alleled fault and initiasive preccias derived from normplende- and
VSAC /1 11-12	Dacitic-andesitic bornblende lampronhyre
VSAC 41 18-19	Variably altered dacitic-andesitic hornblende lamprophyre
VSAC 41 19-20	Dacitic-andesitic hornblende lamprophyre
VSAC 43 12-13	Variably altered dacitic-andesitic hornblende lamprophyre (intrusive into
	biotite granitoid)
VSAC 43 25-26	Variably altered dacitic-andesitic hornblende lamprophyre (intrusive into
	biotite granitoid)

VSAC 02 16-17

Petrographic name: Altered porphyritic andesite/intermediate lamprophyre

The polished thin-section consists of seven rock chips comprising variants of the same, or similar, rock type, namely a highly altered, moderately porphyritic andesite or intermediate lamprophyre. Phenocrysts range up to 2 mm in length or diameter, in places occurring in clusters (Figs. 1 and 2), and making up 3-8 % of the chips. They appear to have been pyroxene^{*}, amphibole (Fig. 3 and 4), biotite and feldspar. Euhedral forms are well-preserved but the original minerals are completely pseudomorphed by greenish brown and colourless phyllosilicates, the colourless type commonly being microcrystalline or cryptocrystalline. Many of the former phenocrysts have a zonal alteration pattern (Figs 1-4), with the greenish brown phyllosilicates forming a euhedral mantle, or rim, around the colourless phyllosilicate.

Figures 1 and 2. Plane polarised light (PPL) and crossed-polaroid (XP) views of an altered ferromagnesian phenocryst cluster set in a very fine-grained felsitic groundmass. Note euhedral form of the phenocrysts and the two main alteration products. Scale bar = 0.5 mm.

Figures 3 and 4. PPL and XP views. Relict amphibole cleavage in phenocryst pseudomorphed by greenish brown and colourless phyllosilicates. Scale bar = 0.2 mm.

The phenocrysts are set in a very fine-grained felted to trachytic groundmass of feldspars (possibly comprising plagioclase, highly saussuritised, and alkali feldspar, commonly recrystallised into cryptocrystalline material), altered ferromagnesians (many elongate crystals of amphibole and/or

^{*} Evidence acquired subsequently suggests that the altered ferromagnesian phenocrysts were all, or predominantly, hornblende.

biotite), Fe-Ti oxides (3-5 %), quartz and apatite. In general, the very fine-grained nature of the groundmass in combination with the high degree of alteration, obscure much of the rock's original mineralogy.

The trachytic texture in the groundmass may vary from place to place, creating sub-domains, which give some of the rock chips a mild mottled texture (Figs 5 and 6).

Figures 5 and 6. PPL and XP views. Sub-domain of trachytic textured groundmass. Polycrystalline aggregate of quartz (lower right) represents part of a granitoid-derived xenolith. Scale bar = 0.5 mm.

Alteration in the rock also includes veining by alkali feldspar, ?zeolites, quartz and carbonate. In places these minerals may form pods or lenses. Some carbonate replaces former mafic phenocrysts. A 4 mm diameter aggregate of medium-grained quartz, now variably recrystallised, may represent a granitoid inclusion (xenolith) (Fig. 6).

A late-stage crystallisation feature of the rock is the porphyroblastic development of secondary alkali feldspar in the groundmass, extending over areas of 1-2 mm diameter (Figs 7 and 8; see also Fig. 6). In many places former feldspar micro-laths and/or microlites appear to be replaced by the "new" alkali feldspar as there is optical continuity between the two phases. The texture is interpreted, by me, to be a possible devitrification phenomenon that has become all pervasive.

Figures 7 and 8. PPL and XP (with gypsum plate inserted) views. Optically continuous alkali feldspar forming an extensive base to the microlites of feldspar and altered ?amphibole and equant crystals of Fe-Ti oxides. Scale bar = 0.2 mm.

The rock may have a significant alkali feldspar content which would make the rock a trachyandesite. As it is difficult to determine, petrographically, the exact amount of alkali feldspar that is present, a geochemical analysis of the rock is probably required to solve this issue. However, because of the widespread introduction (i.e. metasomatism) of late-stage alkali feldspar (and possibly zeolites) a geochemical analysis might not truly reflect the rock's original (primary) composition.

VSAC 02 17-18

Petrographic name: Altered dacitic-andesitic lamprophyre + moderately deformed and recrystallised granodiorite-tonalite

The polished thin-section of 8 rock chips comprising highly altered varieties of:

- a) Porphyritic dacite-andesite (i.e. lamprophyre) (3)
- b) Devitrified/recrystallised porphyritic dacite-andesite (i.e. lamprophyre) (1)
- c) Porphyritic andesite (i.e. lamprophyre) (1)
- d) Granitoids (3)

<u>Porphyritic dacite-andesite:</u> Characterised by altered, euhedral phenocrysts of feldspar (probably both plagioclase and alkali feldspar) and ferromagnesians (amphibole, pyroxene and possibly biotite) set in a very fine-grained felsic groundmass, which in many places has recrystallised/devitrified into broad optically continuous areas (up to 3 mm in diameter).

The rock is cut by numerous veins of alkali feldspar and is variously haematitised (Fe-stained), saussuritised/kaolinised and silicified/feldspathitised (microcrystalline-cryptocrystalline material).

<u>Devitrified/recrystallised porphyritic dacite-andesite:</u> This rock is very unusual in having a mediumgrained, anhedral granular (allotriomorphic) texture superimposed on a porphyritic texture (Figs 9-11). In all other aspects, it is similar to the porphyritic dacite-andesite described above.

Figures 9-11. PPL, XP and XP (with gypsum plate) views of the same area. Secondary anhedral granular texture superimposed on a primary porphyritic texture. Note the altered amphibole phenocryst and very fine-grained groundmass portrayed in Fig 9. Scale bar = 0.5 mm.

It is interpreted that the groundmass has devitrified/recrystallised into a pseudo holocrystalline plutonic-looking rock.

As typical, the rock is highly veined by alkali feldspar.

Porphyritic andesite: Possibility of former olivine phenocrysts having been present (Fig. 11).

Figure 12. XP. Possible phenocrysts of altered olivine. Scale bar = 0.5 mm.

<u>Granitoids:</u> Highly deformed, partly recrystallised (blastomylonitic) granodioritic-tonalitic rocks with accessory biotite (chloritised and oxidised), Fe-Ti oxides, sphene (titanate) and epidote (Figs 12-13). Plagioclase is typically mildly haematitised (strong in places) and saussuritised. Originally, the rocks had medium- to coarse-grained subhedral granular textures.

The granitoids are variably veined in a stock-work pattern by alkali feldspar and, in places, by carbonate. One granitoid chip is intruded by porphyritic andesite.

Figures 13 & 14. PPL and XP. Partially altered, deformed and recrystallised granitoid. Feldspar (plagioclase) is variably kaolinised/saussuritised and haematitised, biotite is highly oxidised and quartz is deformed and recrystallised. Scale bar = 0.5 mm.

VSAC 02 21-22

Petrographic name: Recrystallised mylonitised granitoids

The polished thin-section consists of six chips that represent various types of granitoids, ranging from fine- to coarse-grained syenogranite to tonalite, which are variably deformed and recrystallised. Three of the chips are dominated by partially recrystallised mylonite (blastomylonite) zones (Figs 15-16), and two other chips have fine- to medium-grained granoblastic (metamorphic) textures (Figs 17-18), indicating major recovery from the mylonite stage.

Figures 15 & 16. PPL and XP views. Contact between granitoid and partially recrystallised mylonite. Scale bar = 0.5 mm.

Figures 17 & 18. PPL and XP views. Granoblastic polygonal texture developed in recrystallised feldspar. Scale bar = 0.5 mm.

Plagioclase is typically murky/clouded (e.g. Figs 15, 17-19), partly very finely saussuritised, rarely partly sericitised. Alkali feldspar occurs as coarse-grained porphyritic crystals enclosing plagioclase in several of the chips (Fig. 20). Alkali feldspar also commonly occurs as a secondary product in stringer veins in quartz. In places, the secondary alkali feldspar appears to be replacing quartz (Figs 20).

Accessory minerals include biotite (mostly altered/chloritised), Fe-Ti oxides, sphene (titanate) and apatite. Carbonate is present in several of the chips (up to ~5 %), occurring as interstitial and poikiloblastic material.

Figures 19 & 20. PPL and XP views. Porphyritic alkali feldspar enclosing plagioclase (lower left quadrant) and secondary alkali feldspar occurring in quartz (lower right quadrant). Scale bar = 0.5 mm.

VSAC 02 36-37

Petrographic name: Altered dacitic-andesitic hornblende lamprophyre + variably deformed and recrystallised granitic rocks

The polished thin-section consists of \sim 100 small chips (average size \sim 3 mm; range = 1-12 mm) comprising sub-equal amounts of dacitic-andesitic and granitic material.

The dacitic-andesitic material is slightly more prevalent than the granitic material and includes both porphyritic and non-porphyritic varieties, although the presence of non-porphyritic chips might be just a reflection of the small size of the chips. Where porphyritic, the principal phenocryst mineral is hornblende (brownish green, olive green). However, the identity of many former phenocrysts is not clear as they are commonly replaced by greenish brown phyllosilicates ± chlorite ± carbonate.

The groundmass of the dacitic-andesitic rocks is typically felsitic, ranging from felted to trachytic. The exact identity of the feldspar laths is not known and there is no evidence to indicate that it is plagioclase. Chlorite and greenish phyllosilicates, which replace former ferromagnesian minerals (e.g. microlites of ?pyroxene, amphibole and ?biotite), make up 3-10 % of the groundmass. Fe-Ti oxides typically comprise 3-4 % of the groundmass. Apatite is an accessory phase. As seen in previous thin-sections, the feldspars in the groundmass commonly show optical continuity over wide areas.

Many of the dacitic-andesitic chips are cut by late-stage alkali feldspar and carbonate veins. In places the alkali feldspar occurs in aggregates made up of subhedral to euhedral, fine- to medium-grained crystals.

The granitic chips show the exact range of rock types seen in VSAC 02 17-18 and VSAC 02 21-22, namely, weakly altered and deformed to highly altered and deformed (i.e. mylonitised) biotite monzogranite-tonalite. Some granitoid chips are variably replaced by carbonate.

VSAC 11 10-12

Petrographic name: Dacitic-andesitic hornblende lamprophyre + mixed lamprophyre-granitoid rocks + flaser granitoid

The polished thin-section consists of eight (8) chips:

Porphyritic (hornblende) dacite/andesite (or lamprophyre)	(4)
Mixed granitic and dacite/andesite material	
Deformed (flaser) granitoid	
Hybrid ("contaminated") dacite/andesite	(1)

The dacitic-andesitic hornblende lamprophyre contains relict green to brownish green hornblende (up to 5 % volume and up to 3 mm in size) as the main phenocrystic phase. The crystals are commonly euhedral. As is characteristic, the lamprophyre is cut by, and contains pods of, late-stage alkali feldspar.

One chip comprises a highly deformed (flaser structure), altered and partly recrystallised granitoid. Many of the crystals are in advanced stages of disaggregation.

Two chips represent mixtures of (a) deformed granitoid and (b) dacitic-andesitic lamprophyre (Figs 21-22). The lamprophyre is strongly contaminated with crystals and aggregates of feldspar, quartz and biotite, producing a pseudo "clast-support" fabric.

One chip represents dacitic-andesitic lamprophyre that is highly contaminated with granitic material. The rock is dominated by crystals and aggregates of feldspar and quartz.

Figures 21 & 22. PPL and XP views. Contact zone between biotite-bearing granitoid (lower portion) and "contaminated" dacitic-andesitic lamprophyre (upper portion). Note clasts of granitic material (far left) and xenocrysts of feldspar (clouded material), quartz and biotite (top of field of view) in the dacitic-andesitic lamprophyre. Scale bar = 0.5 mm.

VSAC 11 12-14

Petrographic name: Variably altered dacitic-andesitic hornblende lamprophyre; with minor xenocrysts and xenoliths of granitoid origin

The polished thin-section consists of six chips comprising weakly to strongly altered dacitic-andesitic hornblende lamprophyre. In some chips the hornblende is euhedral and fresh (Figs 23 & 24), in others it is completely altered.

Figures 23 & 24. PPL & XP views. Dacitic-andesitic hornblende lamprophyre. Note euhedral and subhedral hornblende phenocrysts with altered rims and cores. Clast of feldspar (upper left), with attached quartz and haematitised/altered margins and recrystallised interior, is probably derived from disaggregated granitoid. Small quartz clast left of centre. Scale bar = 0.5 mm.

Several chips contain clasts of feldspar, quartz and biotite, which generally have reaction rims, indicating they are probably xenocrysts derived from granitoid (e.g. Figs 23-24).

One chip contains large, semi-amoeboid domains (up to 3.5 mm diameter) of euhedral (equant to elongate) alkali feldspar Figs 25-26). The shapes of the domains suggest they may have been former vesicles.

Figures 25 & 26. PPL & XP views. Amoeboid ?amygdales filled with ?alkali feldspar in hornblende lamprophyre. Scale bar = 0.5 mm.

One clast contains a 7 mm wide unit of quartzo-feldspathic gneiss with a fine-grained granoblasticelongate texture, composed of altered feldspar (~52 %), quartz (~35 %), biotite (~10 %), Fe-Ti oxides (3 %) and accessory apatite (<1 %) (Figs 27-28). The contacts with the host dacite/andesite are sharp, suggesting that the quartzo-feldspathic gneiss is a xenolith.

Figures 27 & 28. PPL & XP views. Sharp (vertical) contact between lamprophyre (left-hand side) and biotite-bearing quartzo-feldspathic gneiss xenolith. Scale bar = 0.5 mm.

VSAC 12 25-27

Petrographic name: Variably altered dacitic-andesitic hornblende lamprophyre (with trace granitic material)

The polished thin-section consists of ~100 small chips (average size ~ 3-4 mm; range = 1-9 mm), roughly 98 % of which are very fine-grained (aphanitic) felsitic dacitic-andesitic hornblende lamprophyre. Many of them contain subhedral to euhedral phenocrysts of brownish green hornblende (1-3 %, crystals up to 2 mm in size). Some of the chips contain altered feldspar crystals, which may be phenocrysts, but more likely to be xenocrysts. A few chips contain granitic clasts (xenoliths), chiefly of recrystallised quartz aggregates (Figs 29 & 30). Roughly one-third of the chips contain alkali feldspar veins or aggregates and several of the smaller chips are dominated by the alkali feldspar crystals. In a similar manner, several of the smaller chips are dominated by secondary carbonate.

One of the chips in the polished thin-section is an aggregate of recrystallised and strained quartz. It is presumably derived from granitic material.

Figures 29 & 30. PPL & XP views. Rounded clast (xenolith) of recrystallised quartz in hornblende lamprophyre. Note similar clast in adjacent rock chip. Scale bar = 0.5 mm.

VSAC 12 28-30

Petrographic name: Variably altered dacitic-andesitic lamprophyre + variably deformed and recrystallised granitoids + rare mafic amphibolites-granulite

The polished thin-section consists of ~100 chips (average size ~3 mm; range = <1-12 mm), of which more than 90 % comprise very fine-grained (aphanitic) felsitic dacitic-andesitic hornblende lamprophyre, similar to VSAC 12 25-27. Roughly 40-50 % of the dacitic-andesitic lamprophyre chips contain hornblende phenocrysts, and a small number contain clasts of feldspar, quartz, biotite (altered) and granitic rock. The felsitic matrix ranges from decussate to trachytic, and a few are very fine-grained granular (a result of devitrification).

The other main rock type making up the chips is biotite-bearing granitoid (Figs 31-32), ranging from weakly deformed and recrystallised to strongly deformed and recrystallised.

Figures 31 & 32. PPL & XP views. Tonalitic granitoid with clouded plagioclase and partly recrystallised quartz. Scale bar = 0.5 mm.

One chip is quite different from the rest (Figs 33-34), having a basic composition, a fine-grained crystalloblastic (±granoblastic-elongate) texture and composed of roughly equal amounts of hornblende (strongly retrograded) and feldspar (highly altered).

The rock could represent a mid-crustal basic amphibolite-granulite.

Figures 33 & 34. PPL & XP views. Highly altered fine-grained amphibolite with a granoblasticelongate texture. Scale bar = 0.5 mm.

VSAC 12 30-32

Petrographic name: Dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of ~100 chips (average size ~4 mm; range = <1-13 mm), of which all them represent dacitic-andesitic hornblende lamprophyre. About 50 % of the chips are weakly hornblende-phyric, with phenocrysts up to 3.5 mm in diameter. Most chips contain patches and/or veins of alkali feldspar. Several chips contain xenocrystic feldspar and xenolithic granitoid clasts.

One chip contains a >2.4 mm, (altered) biotite-rich clast, with accessory Fe-Ti oxide, ?zircon and apatite (Figs 35-36). The biotite flakes are up to 1.2 mm long. The clast must be derived from a granitoid.

Figures 35 & 36. PPL & XP views. Biotite clast in hornblende lamprophyre. Note columnar *?alkali feldspar domain, small granitoid clast and two varieties of lamprophyre.* Scale bar = 0.5 mm.

The same chip is interesting in that it has two varieties of dacitic-andesitic lamprophyre, one less haematitised and more granular in texture. The chip also contains a granitoid clast and a very impressive vein, or amygdale, composed of bladed-columnar alkali feldspar. (Could it be adularia, orthoclase or something like stilbite?).

Hornblende microlites (unaltered) are well-represented in the groundmass.

Small euhedral crystals of hornblende occur in some alkali feldspar domains, indicating that the socalled "late-stage" crystallisation of the alkali feldspar is possibly spread over an extensive time frame.

As usual, ~5-10 % of the chips are affected by secondary carbonate replacement.

VSAC 12 33-34

Petrographic name: Dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of ~100 chips (average size ~3 mm; range = <1-10 mm), all of which comprise variants of dacitic-andesitic hornblende lamprophyre, similar to VSAC 12 30-32.

Some chips are extremely haematitised/Fe-stained.

One hornblende phenocryst, intergrown with (or replaced by) alkali feldspar, is \sim 50 % replaced by carbonate.

VSAC 12 34-36

Petrographic name: Dacitic-andesitic hornblende lamprophyre + variably deformed & recrystallised granitoid + late-stage alkali feldspar

The polished thin-section consists of ~100 chips (average size 3-4 mm; range = 1-12 mm), of which roughly 85 % are dacitic-andesitic hornblende lamprophyre, many with granitoid xenoliths, and the remainder of chips comprising granitoids, fine- to medium-grained crystalloblastic secondary alkali feldspar and carbonate-rich chips.

The dacitic-andesitic lamprophyre chips are generally slightly less porphyritic than seen in the previous thin-sections looked at, but are different because many of them are characterised by well-developed, fine- to medium-grained crystalloblastic, devitrified alkali feldspar. Relict felsitic textures are well-preserved in these new crystals (Fig.37-38).

Figures 37 & 38. PPL & XP views. Fine- to medium-grained crystalloblastic, "devitrified" alkali feldspar overprinting a primary very fine-grained felsitic texture. Scale bar = 0.5 mm.

In a similar manner, fine- to coarse-grained poikiloblastic carbonate is a very conspicuous phase within which relict felsitic textures are perfectly preserved (Figs 39-40).

Figures 39 & 40. PPL & XP views. The area shown is occupied by three porphyroblastic crystals of carbonate (see Fig. 40), overprinting the former felsitic texture. Scale bar = 0.5 mm.

Former hornblende phenocrysts are mainly altered and are represented by rims of brownish green phyllosilicates.

An interesting feature of some of the chips of dacitic-andesitic lamprophyre is the presence of equant to hexagonal alkali feldspar aggregates (Figs 41-42).

Figures 41 & 42. PPL and XP views. Equant to semi-hexagonal ?alkali feldspar aggregates in *lamprophyre.* Scale bar = 0.5 mm.

Granitoid chips (and xenoliths) are generally biotite-bearing and display the full range from weakly deformed and recrystallised to strongly deformed and recrystallised.

One chip (Figs 43-44) contains euhedral alkali feldspar crystals (prismatic, variably replaced, or melted) interfingering with columnar ?microcline.

Figures 43 & 44. PPL & XP views. Several generations of ?alkali feldspar in hornblende lamprophyre host. Note partially replaced nature of the euhedral ?alkali feldspar. Scale bar = 0.2 mm.

VSAC 15 49-55

Petrographic name: Fine- to medium-grained amphibolites + quartzo-feldspathic gneiss

The polished thin-section consists of ~100 chips (average size ~4 mm; range = <1-15 mm), of which approximately 95 % are amphibolites, characterised by granoblastic-polygonal to nematoblastic textures (Figs 45-48). The remainder of the chips comprise varieties of quartzo-feldspathic gneiss (very fine- to medium-grained varieties), late-stage/secondary alkali feldspar aggregates and a fine-grained Fe-Ti oxide (~50 %) + quartz + feldspar + biotite + hornblende rock.

The amphibolites are fine- to medium-grained and range from homogeneous to layered, from equigranular to seriate, to foliated/lineated (i.e. nematoblastic). Typically, they comprise sub-equal amounts of hornblende (brownish green, bluish green, green) and feldspar (mostly moderately clouded, i.e. kaolinised and/or sericitised), with accessory Fe-Ti oxides and apatite. Some amphibolites chips contain quartz (up to ~20 %) and biotite (up to ~5 %). Hornblende content varies between ~30-70 %.

Figures 45 & 46. PPL & XP views. Amphibolite with equigranular to seriate granoblasticpolygonal texture. Plagioclase clouded and rock cut by late-stage alkali feldspar vein. Scale bar = 0.5 mm.

Figures 47 & 48. PPL & XP views. Layered and foliated amphibolite. Scale bar = 0.5 mm.

The quartzo-feldspathic gneisses are also characterised by granoblastic, moderately polygonal textures (Figs 49-50). Biotite may be more prevalent than hornblende in some chips. One chip looks like a highly recrystallised mylonitised granitoid.

Figures 49 & 50. PPL & XP views. Hornblende-bearing tonalitic gneiss/granitoid. Scale bar = 0.5 mm.

The late-stage alkali feldspar ranges from fine- to medium-grained and occurs in veins and aggregates.

Carbonate is a minor, late-stage replacement mineral, with one crystal over 3 mm in size.

Discussion/Interpretation: The extremely well-crystallised nature of the amphibolites (and gneiss) indicates upper amphibolite (to lower granulite) facies metamorphism, probably at mid-crustal levels.

VSAC 16 47-49

Petrographic name: Biotite-bearing quartzo-feldspathic schist, deformed and recrystallised granitoid and granitic gneissic schists

The polished thin-section consists of ~80-100 chips (average ~4 mm; range = <1-11 mm) of which ~80 % are fine-grained biotite quartzo-feldspathic schists, with up to ~25 % red-brown to reddish biotite (Figs 51-52). Typically, quartz and feldspar form a granoblastic (±polygonal) base for highly aligned biotite flakes (i.e. lepidoblastic texture). Muscovite is present as an accessory mineral in several of the chips.

Figures 51 & 52. PPL & XP views. Very fine-grained biotite quartzo-feldspathic schist/gneiss. Scale bar = 0.5 mm.

The remainder of the chips comprise biotite-bearing fine- to medium-grained quartzo-feldspathic gneisses and schists, variably deformed and recrystallised granitoids and fine- to medium-grained alkali feldspar aggregates. Many of the gneiss and gneissic schists have augen structures and display a wide spectrum of deformation and recrystallisation features.

Figures 53 & 54. PPL & XP views. Biotite gneiss, variably foliated, layered, deformed and recrystallised. Scale bar = 0.5 mm.

One chip has a cataclastic texture.

Many chips are veined by alkali feldspar and, in places, by carbonate.

VSAC 18 6-10

Petrographic name: Coarsely devitrified, dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of six chips (average size ~1.5 cm; range = 1.3-2 cm) of coarsely devitrified dacitic-andesitic hornblende lamprophyre (Figs 55-56). Hornblende phenocrysts (2-4 %) range from euhedral to subhedral and from equant to elongate (up to 4.5 mm long). In the groundmass the hornblende occurs as microlites and acicular to lath-like crystals.

Figures 55 & 56. PPL and XP (gypsum plate) views. Hornblende lamprophyre with coarse porphyroblastic "devitrification" (or metasomatic) texture. Scale bar = 0.5 mm.

The rock chips generally contain a few percent of alkali feldspar patches and aggregates. Veins of alkali feldspar also cut the rock.

VSAC 18 21-22

Petrographic name: Coarsely devitrified, dacitic-andesitic hornblende lamprophyre + highly altered, deformed and partially recrystallised biotite granitoid

The polished thin-section consists of five chips (average size ~2 cm) of which four are coarsely devitrified dacitic-andesitic hornblende lamprophyre (like VSAC 18 6-10) and one is a highly altered medium- to coarse-grained biotite granitoid.

The granitoid chip contains accessory apatite, ?allanite (Figs 57-58) and zircon. The rock is highly fractured and veined (by alkali feldspar), moderately deformed, and partly recrystallised (typically around grain boundaries). The appearance of the rock suggests it has been partially melted, with remobilisation of alkali feldspar into fractures and veins.

Figures 57 & 58. PPL & XP views. ?Allanite in partly altered, deformed and recrystallised biotite granitoid. Scale bar = 0.5 mm.

VSAC 18 28-29

Petrographic name: Devitrified dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of ~35 chips (average size ~10 mm; range = 1-20 mm), comprising devitrified dacitic-andesitic hornblende lamprophyre (Figs 59-60). The devitrification phenomenon is not as common or as coarse-grained as it is in VSAC 18 6-10 and VSAC 18 21-22.

Characteristically, the dacitic-andesitic lamprophyre rock chips contain patches (equant to lenticular, up to 2 mm diameter or length) of well-recrystallised alkali feldspar. Some of the patches are veinrelated, some amygdaloidal and some possibly pseudomorphic after equant precursors. Some of the so-called alkali feldspar may be something like stilbite, especially the radiating columnar material.

Figures 59 & 60. PPL & XP views. Euhedral, "poikilitic" hornblende phenocryst with alkali feldspar inclusions set in a felsitic groundmass. Devitrification/metasomatic textures evident in the groundmass. Scale bar = 0.5 mm.

VSAC 18 COMP 1

Petrographic name: Coarsely devitrified dacitic-andesitic hornblende lamprophyre; strongly veined

The polished thin-section consists of five chips (average size ~1.8 cm), comprising comparatively coarsely devitrified dacitic-andesitic hornblende lamprophyre. The chips are generally more Festained and kaolinised than the previously described VSAC 18 rocks. Some of the hornblende phenocrysts have dark green cores. Several clasts (xenoliths) of feldspar and quartz are present.

A conspicuous feature of this polished thin-section is the presence of thick veins (up to 1 mm) filled with alkali feldspar and carbonate. Carbonate generally occupies the centre of the veins.

VSAC 18 COMP 2

Petrographic name: Coarsely devitrified dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of seven chips (average size ~1.5 cm), comprising coarsely devitrified dacitic-andesitic hornblende lamprophyre. Several of the hornblende phenocrysts have green cores. One hornblende phenocryst has an euhedral form that is not unlike that of olivine (Figs 61-62).

A few xenocrysts of feldspar and (altered) biotite are present.

Figures 61 & 62. PPL & XP views. Euhedral, twinned hornblende phenocryst which has a form not unlike that of olivine. Scale bar = 0.2 mm.

VSAC 20 32-34

Petrographic name: Dacitic-andesitic hornblende lamprophyre + hornblende (and biotite) monzonite-diorite

The polished thin-section consists of six chips (average size ~1.5 cm) comprising three of hornblende lamprophyre and three of foliated and recrystallised hornblende- and biotite-bearing quartz monzonite-diorite.

One of the three lamprophyre chips is similar to the preceding material, but two of them are different in that they are (or were) mostly glassy, i.e. vitrophyric (Fig 63). This implies that the vitrophyric chips represent contact or chilled zones.

Figure 63. PPL view. Hornblende phenocrysts set in a very fine-grained, more-or-less glassy groundmass. Several hornblende phenocrysts have green cores. Scale bar = 0.5 mm.

One lamprophyre chip contains rare feldspar and quartz xenocrysts. As common, the lamprophyre chips are variably affected by late-stage alkali feldspar and carbonate veining/replacement.

The quartz monzonite-diorite rocks (e.g. Figs 64-65) are fine- to coarse-grained, but prior to recrystallisation they were mainly medium- to coarse-grained. They comprise, very approximately (each chip is different):

Feldspar (predominantly plagioclase, red-stained)	~65 %
Biotite	10-12 %
Hornblende	8-10 %

Quartz	0-20 %
Fe-Ti oxides	2-3 %
Apatite	<=1 %

Textures range from relict subhedral granular (igneous) ones to metamorphic granoblasticpolygonal and lepidoblastic granular ones.

Figures 64 & 65. PPL & XP views. Partly altered and recrystallised green hornblende- and biotitebearing quartz monzonite-diorite. Plagioclase is clouded and hornblende is variably poikilitic. Biotite is moderately aligned, producing a mild foliation in the rock. Scale bar = 0.5 mm.

VSAC 20 37-39

Petrographic name: Dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of ~50 chips (average size ~5 mm; range = <=1-18 mm), comprising a range of dacitic-andesitic hornblende lamprophyre types, from semi-glassy to weakly recrystallised-devitrified. Some of the chips are >70 % composed of late-stage alkali feldspar. In some of the larger chips, some of the alkali feldspar veins and pods are up to 3 mm wide. Late-stage carbonate is present in some of the chips.

VSAC 21 18-19

Petrographic name: Altered, devitrified, dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of five chips (average size ~15 mm; range = 5-20 mm) of highly altered dacitic-andesitic hornblende lamprophyre. Only trace amounts of original hornblende are left unaltered. Pods and lenses (0.4-6 mm) of fresh alkali feldspar make up ~1-5 % of the chips. Most of the chips show fine- to medium-grained crystalloblastic devitrified textures.

VSAC 26 9-11

Petrographic name: Variably altered dacitic-andesitic hornblende lamprophyre + metamorphosed hornblende- and biotite-bearing granitoid

The polished thin-section consists of 19 chips (average size ~10 mm; range = 3-17 mm) of which 16 are dacitic-andesitic hornblende lamprophyre and three are fine- to coarse-grained, metamorphosed hornblende- and biotite-bearing granitoids.

Hornblende phenocrysts in the lamprophyre range from fresh to completely altered. Some have alteration rims and a few have green cores and internal zoning. Some of the lamprophyre chips contain angular to irregular clasts (xenocrysts) of quartz and feldspar.

One lamprophyre chip is dominated by a large (\sim 10 x 6 mm) patch of yellow-orange to colourless phyllosilicates pseudomorphing a large phenocryst or phenocryst cluster of what may have been hornblende, or possibly even olivine (Figs. 66-67).

Figures 66 & 67. PPL & XP views. Former large crystal of altered hornblende or olivine. Scale bar = 0.5 mm.

The metamorphosed granitoid rocks are highly altered, particularly the former biotite, which is now all semi-opaque to opaque Fe-oxides/hydroxides.

VSAC 26 15-17

Petrographic name: Variably altered and devitrified hornblende lamprophyre

The polished thin-section consists of nine chips (average size ~2 cm long; range up to 2.8 cm long) comprising variably altered and variably devitrified hornblende lamprophyre. Several chips have a heterogeneous texture caused by the presence of finer grained and more porphyritic sub-domains (?cognate xenoliths) (Fig. 68).

Most of the chips contain minor amounts of xenocrysts of quartz and feldspar and xenoliths of granitoid material.

Figure 68. PPL view. Mottled lamprophyre caused by the presence of darker, finer grained and more porphyritic material set in coarser grained, less porphyritic lamprophyre. Hornblende phenocrysts partially to completely altered. Scale bar = 0.5 mm.

VSAC 32 66-67

Petrographic name: Cataclasites, fault breccias and ?tuffs/volcaniclastics

The polished thin-section consists of 12 chips (average size ~1.5 cm) comprising:

- a) Cataclastic medium- to coarse-grained granitoid
- b) Feldspathised fault breccia or crystal lithic tuff

The granitoid rocks are variably deformed and recrystallised and are cut by numerous cataclastic zones, producing, in places, pseudo tuff-like or fault breccia textures (Figs 69-72).

Figures 69 & 70. PPL & XP views. Thin breccia zone in granitoid, trending NW-SE in the centre of the field-of-view. Scale bar =0.5 mm.

Figures 71 & 72. PPL & XP views. Breccia produced in granitoid rock. Feldspar clast lower centre. Scale bar = 0.5 mm.

The feldspathised fault breccia or "tuff" are dominated by microcrystalline-cryptocrystalline feldspar, replacing, and/or forming a matrix to clasts (rounded to angular) of feldspar (fresh to totally altered), quartz, granitoid and cryptocrystalline (?lamprophyre) material (Figs 73-74). Chlorite (ex-biotite) and epidote (<=1 %) is present in some of the chips. Unfortunately, the pervasive feldspathisation has obscured many primary features and textures.

Figures 73 & 74. PPL & XP views. Two ovoid clasts overprinted by cryptocrystalline ?alkali feldspar crystallisation/metasomatism. Matrix is more micro-crystalline. Scale bar = 0.2 mm.

Carbonate is present in some of the chips as porphyroblastic material (crystals up to 5 mm in size).

Although there is prima facie evidence to suggest many of the chips are tuffaceous or volcaniclastics, there is also strong evidence to suggest that some of the rocks are cataclasites.

VSAC 33 23-24

Petrographic name: Highly altered cataclasites/intrusive breccias/?volcaniclastics

The polished thin-section consists of 11 chips (average size ~1.5 cm) comprising a wide range of highly altered (e.g. kaolinised, haematitised, feldspathised, carbonated) fault breccias (Figs 75-76). Some chips are sheared and foliated. One chip contains green hornblende (Figs 77-78), possibly related to former porphyritic/poikiloblastic crystals, similar to material seen in VSAC 20 32-34.

Figures 75 & 76. PPL & XP views. (Intrusive) breccia. Note secondary carbonate (colourless). Scale bar = 0.5 mm.

Figures 77 & 78. PPL & XP views. Semi-poikilitic/poikiloblastic hornblende, possibly representing a former tonalitic rock fragment. Scale bar = 0.2 mm.

Carbonate replacement is strong in places, occupying interstitial zones between fragmented host rock, occurring in veins up to 10 mm thick and replacing former crystals (e.g. feldspar).

<u>Comment.</u> My favoured interpretation of the rocks represented in this polished thin-section is that they are intrusive breccias produced by the intrusion of dacitic-andesitic lamprophyre into granitoids that had been brecciated by hydraulic fracturing processes. This may have been accompanied with, or followed by, gas-streaming, which resulted in the rounding of some of the clasts.

VSAC 34 47-48

Petrographic name: Highly altered cataclasites/ fault breccia/ intrusive breccias in granitoids

The polished thin-section consists of 16 chips (average size ~15 mm; range = 3-26 mm) comprising a full spectrum of variably deformed and recrystallised hornblende- and biotite-bearing granitoids that grade into fault-breccias (Figs 79-80), some of which look like tuffs/volcaniclastics.

Figures 79 & 80. PPL. Two different chips demonstrating the progressive disaggregation and brecciation of granitoids by the intrusion of lamprophyric magma. Scale bar = 0.5 mm.

However, there is irrefutable evidence of the progressive disaggregation of the granitoid rocks, with the penetration of the "tuff' (i.e. intrusive breccia) into fractures (e.g. Fig. 79)..

A very unusual feature of the rock is the blackening of many of the former minerals (especially hornblende and biotite) and clasts when viewed under the microscope (Fig. 80).

VSAC 35 39-41

Petrographic name: Variably altered dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of 26 chips (average size ~10 mm; range = 3-15 mm) comprising dacitic-andesitic hornblende lamprophyre (Figs 81-82), some of which are blackish (see Fig. 81) and most of which are veined by late-stage alkali feldspar (see Figs 81-82). Several chips contain xenocrystic feldspar.

Hornblende phenocrysts are commonly euhedral. A few show euhedral zoning and several have greenish cores (see Fig. 81).

Figures 81 & 82. PPL & XP views. Two chips of hornblende lamprophyre, one with euhedral, zoned hornblende, the other with late-stage euhedral ?alkali feldspar. Scale bar = 0.5 mm.

VSAC 36 7-8

Petrographic name: Weakly altered dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of 22 chips (average size ~10 mm; range = 3-18 mm) comprising slightly different variations of dacitic-andesitic hornblende lamprophyre. Some have a cryptocrystalline groundmass and were probably glass-rich, originally.

Hornblende is glomeroporphryritic in places. A few phenocrysts are intergrown with or replaced by alkali feldspar.

Most of the chips are traversed by alkali feldspar. Some are also cut by carbonate veins.

VSAC 36 27-28

Petrographic name: Moderately altered, deformed and recrystallised hornblende- and biotitebearing granitoids (some quartzitic)

The polished thin-section consists of 17 chips (average size ~10 mm; range = 3-15 mm) comprising mainly medium- to coarse-grained hornblende- and biotite-bearing granitoids. Several of them are very quartz-rich, ~80%, possibly reflecting a very coarse-grained granitoid precursor. Comparatively coarse-grained Fe-Ti oxides make up to 10 % of some of the granitoid chips (Figs 83-84).

Figures 83 & 84. PPL & XP views. Fe-Ti oxides in a hornblende- and biotite-bearing granitoid. Scale bar = 0.5 mm.

One chip in the polished thin-section, measuring 10 x 6 mm, consists of poikilitic plagioclase enclosing anhedral quartz, producing a coarse "pegmatitic" texture.

Three chips in the polished thin-section are dominated by well-crystallised medium- to coarsegrained carbonate, generally in a microcrystalline "groundmass" of crystalloblastic alkali feldspar, with minor chlorite and elongate hornblende crystals (Figs 85-86). It is possible that the chips were originally dacitic-andesitic lamprophyre.

Figures 85 & 86. PPL & XP views. Carbonate-dominated rock chip. Scale bar = 0.5 mm.

VSAC 40 37-38

Petrographic name: Highly altered fault and intrusive breccias derived from hornblende- and biotitebearing granitoids

The polished thin-section consists of \sim 38 chips (average size \sim 8 mm; range = 2-15 mm), most of which are fault- and intrusive-breccias derived from hornblende- and biotite-bearing granitoids. All types of gradational relationships of disaggregation are observed (Figs 87-88).

Figures 87 & 88. PPL & XP views. Brecciation and disaggregation of granitoid. Matrix comprises mainly ?alkali feldspar and white mica. Scale bar = 0.5 mm.

The granitoids rocks were originally mostly medium- to coarse-grained. Now they show all degrees of deformation, fracturing, recrystallisation and alteration (i.e. kaolinisation). Many now contain secondary carbonate and epidote.

One chip contains a sharp contact between microcrystalline-cryptocrystalline cataclasite/mylonite and disaggregated granitoid (Figs 89-90).

Figures 89 & 90. PPL & XP views. Cataclastic contact/zone with brecciated granitoid. Scale bar = 0.5 mm.

VSAC 41 11-12

Petrographic name: Dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of 18 chips (average size ~10 mm; range =3-23 mm) comprising dacitic-andesitic hornblende lamprophyre with superb euhedral hornblende phenocrysts and trachytic-textured groundmasses.

Hornblende phenocrysts range up to 3 mm in size. In some places they occur in glomeroporphryritic clusters (Figs 91-92). Some phenocrysts show euhedral zoning and some are intergrown with alkali feldspar (Figs 91-92) and/or the felsitic groundmass material (Fig. 93).

Figures 91 & 92. PPL & XP views. Glomeroporphyritic hornblende, showing euhedralism, zoning and intergrowth with alkali feldspar (and, in places, groundmass). Scale bar = 0.5 mm.

Figure 93. XP. Hornblende phenocryst embayed by felsitic groundmass material. Note zoning in the hornblende phenocryst and the presence of a thin alkali feldspar vein. Scale bar = 0.5 mm.

Locally, minor feldspar xenocrysts, strongly recrystallised, are present (Figs.94-95).

Figures 94 & 95. PPL & XP views. Recrystallised feldspar xenocryst in hornblende lamprophyre. Scale bar = 0.5 mm.

VSAC 41 18-19

Petrographic name: Variably altered dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of ~42 chips (average size ~8 mm; range = 1-16 mm) comprising dacitic-andesitic hornblende lamprophyre in all degrees of alteration by kaolinite/saussurite, alkali feldspar and carbonate.

Many good examples of "late-stage" penetration of alkali feldspar into the rock are present.

VSAC 41 19-20

Petrographic name: Dacitic-andesitic hornblende lamprophyre

The polished thin-section consists of 24 chips (average size ~12 mm; range = 3-18 mm) comprising dacitic-andesitic hornblende lamprophyre. There are many classic textures, including euhedral zoning in the hornblende.

Several chips are dominated by secondary alkali feldspar. Carbonate is abundant in one of them.

VSAC 43 12-13

Petrographic name: Variably altered dacitic-andesitic hornblende lamprophyre (intrusive into biotite granitoid)

The polished thin section consists of 29 chips (average size ~10 mm; range = 2-20 mm) comprising moderately to strongly altered, partly medium-grained crystalloblastic devitrified, dacitic-andesitic hornblende lamprophyre. One chip contains a classic intrusive contact between the lamprophyre (very fine-grained) and biotite granitoid (Fig 96).

Figure 96. PPL. Intrusive contact between hornblende lamprophyre and granitoid. Note hornblende phenocrysts (partially to completely altered), glassy nature of the matrix and the flaking off of granitoid pieces. At the SE corner of the photograph the edge of an adjacent chip is visible. Scale bar = 0.5 mm.

Hornblende phenocrysts are partially to completely altered (Figs 97-98), principally to two main types of colourless phyllosilicates. One very fine-grained, the other is more-or-less cryptocrystalline. The first type has a moderate birefringence and in some ways looks slightly like talc pseudomorphing olivine, hence the incorrect, earlier interpretations (e.g. see VSAC 02 17-18, Fig. 12). The evidence in this sample clearly shows that pseudomorphs that look like olivine are in fact after hornblende (Figs 97-98).

Figures 97 & 98. PPL & XP views. Partially altered hornblende phenocryst with a morphology that mimics olivine. Alteration products comprise mainly very fine-grained and cryptocrystalline varieties of ±colourless phyllosilicates. Scale bar = 0.2 mm.

Many of the chips show fine- to medium-grained crystalloblastic devitrification textures.

VSAC 43 25-26

Petrographic name: Variably altered dacitic-andesitic hornblende lamprophyre (intrusive into biotite granitoid)

The polished thin-section consists of 16 chips (average size \sim 10 mm; average = 2-24 mm) comprising moderately to strongly altered dacitic-andesitic hornblende lamprophyre. Three chips contain classic intrusive contacts with biotite granitoid (Figs 99-100).

Figures 99 & 100. PPL views. Two views of the intrusive contact between glassy lamprophyre and biotite granitoid. Note that the lamprophyre has flaked off pieces of the granitoid and intruded into fractures in the granitoid. Scale bar = 0.5 mm.

The rock chips in the polished thin-section are similar to above (VSAC 43 12-13).

Zoned hornblende and medium- to coarse-grained devitrification textures are present in places.

Anthony L. Ahmat BSc (Hon), PhD (Geology), FGAA

19 February 2010