

Corporate office

EXPLORATION

PERTH OFFICE Suite 1, 16 Brodie-Hall Drive Bentley, WA 6102 Australia

Anglo American Exploration Australia Pty. Ltd. A.C.N. 006 195 982

Project Name:	The Lynd Project, Dido Dam.		
Tenement Number/s:	EMP15915.		
Tenement Operator:	Anglo American Exploration (Australia) Pty Ltd.		
Tenement Holder:	Anglo American Exploration (Australia) Pty Ltd.		
Report Number:	AAEA2012/32		
Report Type:	Final Annual Report.		
Report Title:	EMP15915 – Dido Dam, Final Annual Report for the period 30 th October 2011 to 29 th October 2012.		
Report Period:	30 th October 2011 to 29 th October 2012.		
Author/s:	Kylie Dixon.		
Complied by:	Kylie Dixon.		
Date of report:	November 2012.		
1:250 000 map sheet/s:	Einasleigh (SE55-09).		
1:100 000 map sheet/s:	Conjuboy (7,860).		
Target Commodity:	Ni, Cu, PGE.		
Keywords:	Geographical (Greenvale), Commodities (Ni, Cu, PGE) Ages (Proterozoic), Geolog ical Pr ovince (Georgetown Inlier, Tasman Orogenic Zone).		
List of Assays:	Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr.		

DISTRIBUTION:

Department of Natural Resources and Mines Queensland - (1) Anglo American Exploration Australia - (1)

Department of Natural Resources and Mines

SUMMARY

The te nement EPM1 5915, D ido Dam, is p art of the Lynd Pr oject and is located within the Ge orgetown Inlier, Qu eensland Australia. Anglo American Exploration Australia Pty Ltd (AAEA) was granted the Licence on 30th October 2007 for a period of five years.

AAEA is seeking to discover significant NiS deposits in the Lynd area using a variety of magmatic NiS related empirical criteria and models.

The t enement ar ea c onsists d ominantly of C ambrian t o O rdovician metasediments in truded by a Si lurian mafic complex with minor Quaternary cover. The targets are Voisey's Bay style NiS and the area has not seen NiS exploration. Anglo American has the rights to proprietary technology that we believe will be able to detect massive NiS at great depths.

Work completed in the fifth year of the tenement has been limited to a site visit to inspect the ground geophysics survey target areas identified from the Spectrem Airborne geophysical survey.

Acknowledgement and Warranty

1. S ubject to 2, the tenure h older a cknowledges that th is R eport, including t he m aterial, in formation and da ta incorporated in it, h as been made under the direction or control of the State of Queensland (the State) within the meaning of section 176 of the Copyright Act 1968 (Cwth).

2. To the extent that copyright in any material included in this Report is not owned by the State, the tenure holder warrants that it has the full legal right and authority to grant, and does hereby grant, to the State, subject to any confidentiality obligation undertaken by the State, the right to do (including to a uthorise any other person to do) any act in the copyright, including to:

- us e;
- r eproduce;
- p ublish; and
- communicate in electronic form to the public, such material, including any data and information included in the material.

3. Without limiting the scope of 1 and 2 above, the ten ure holder w arrants that a ll relevant authorisations and consents have been obtained for all acts referred to in 1 and 2 above, to ensure that the doing of any of the acts is not unauthorised within the meaning of section 29(6) of the Copyright Act (Cwth).

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	TENURE	1
3.	REGIONAL GEOLOGY	2
4.	PREVIOUS EXPLORATION	3
	4.1 GEOPHYSICS	4 5 6 6 6
5.	EXPLORATION CONDUCTED	7
6.	CONCLUSION	8
7.	REFERENCES	8

LIST OF TABLES

Table 1: Tenements Details	. 1
Table 2: Sub-blocks that comprise EPM15915.	.1

LIST OF FIGURES

Figure 1	Lynd Project Tenement Location Plan
Figure 2	EPM15915 Tenement Graticular Blocks
Figure 3	Lynd Project EPM15915 Regional Geology
Figure 4	Lynd Project EPM15915 Surface Geology
Figure 5	Lynd Project EPM15915 IP Survey lines
Figure 6	Lynd Project EPM15915 Spectrem Target area
Figure 7	Lynd Project EPM15915 Spectrem Targets
Figure 8	Lynd Project EPM15915 L 13350 cross section
Figure 9	Lynd Project EPM15915 L 13360 cross section
Figure 10	Lynd Project EPM15915 RAB drilling locations
Figure 11	Lynd Project EPM15915 Interpreted geology map

LIST OF APPENDICIES

Appendix 1	Spectrem Aerial Geophysics
Appendix 2	AAEA Logging Codes
Appendix 3	Soil Geochemistry
Appendix 4	RAB Geochemical digital data
Appendix 5	Petrology report

1. INTR ODUCTION

EPM15915, Dido Dam, is p art of the Lynd Project, located approximately 30 km northwest of Greenvale and 220km northwest of Townsville. Access to the tenement is from T ownsville v ia the Gr egory Development Rd th at links Charters Towers to the Lynd Junction and then various station tracks. The tenement is situ ated on the Einasleigh (SE55-09) 1:250,000 map sheet and the Conjuboy (7,860) 1:100,000 map sheet.

Anglo Am erican Ex ploration Australia Pty Ltd (AAEA) was granted the tenement on 30th October 2007 for a period of five years. EPM15915 covers an area of approximately 94km² within the Georgetown Inlier.

This report summarises the exploration activities conducted on EPM15915, during the reporting period 30th October 2011 to 29th October 2012.

2. TENURE

The tenement EPM15915, was granted to AAEA on 30th October 2007 and originally consists of 57 graticule blocks. In August of 20 10, 28 blocks were surrendered, leaving 29 blocks. The tenement details are in *Table 1* be low and the tenement location plan is presented as *Figure 1*.

Table 1: Tenements Details					
Tenement Holder	Date Granted	Expiry Date	Area Km²	No Sub Blocks	
EPM15915 AAEA	30/10/2007	29/10/2012 94.2		29	

Table 2 (below) and *Figure 2* details the 29 sub blocks that t comprise the lease.

able 2: Sub-blocks that comprise EPM15915.			
1:1,000,000 Plan Name	Primary Number	Graticular Section	No of Blocks
	2457	jknoprstuvwx	12
Townsville	2528	ejknopstuwxy	12
	2529	abfgl	5
		TOTAL	29

3. REGIONAL GEOLOGY

EPM15915, is part of the Lynd Project which is loc ated in northeast Queensland along the Tasman Orogenic zone, on the south eastern margin of the predominantly Pala eoproterozoic to E arly Mesoproterozoic Georgetown Inlier. At this location, Palaeoproterozoic rocks of the Georgetown inlier are in faulted contact with yo unger Or dovician to Carboniferous s ediments of the Broken River Province further east (Fergusson et al., 2007). Recent work has replaced the western contact of the Tasman Orogenic zone from the Burdekin River Fault westward along the Lynd Mylonite Zone; the area between the two structural elements is named the Greenvale Province (Nishiya et al., 2003 and Fergusson et al., 2007).

The roughly N-S t rending Balcooma Mylonite Z one and N ickel Mine Fault divide the Gre envale Pro vince b etween the Lvn d Mylonite Z one and the Burdekin River F ault furthe r (Fergusson et al., 2 007). Early Palaeozoic metamorphic units and in trusions mak e up t he majority of rocks in the Greenvale p rovince (W hitnall et al., 1991). T he strati graphy i s youn ging towards the Ea st from the Cambrian (486±5 to 477 ±6 M a) Oasis Metamorphics and Lynwater complex west of the Bal cooma Myl onite zon e: the Ordo vician (4 71±4 Ma) Ba Icooma Meta Vol canic Gr oup and Silur ian (431±7 Ma) Dido Tonalite East of the Balcooma Mylonite Zone (Whitnall et al., 1991; Fergusson et al., 2007). An increase in age is documented through the stratigraphy further e ast with the Or dovician Lugano Me tamorphics, Cockiespring Tonalite, El and Metavolcanics and Paddys Creek Phyllite west of the Nickel Mine Fault: through to the Cambrian Halls Reward Metamorphics located between the Nick el M ine F ault and t he Burdekin Riv er F ault (Fergusson et al., 2007; Nishiya et al., 2003).

The older units in the Gre envale province; O asis M etamorphics, Lynwat er Complex and Halls Reward Metamorphics, have been affected by amphibolite grade meta morphism related to the C ambrian De lamerian Or ogeny (Fergusson *et al.*, 2007). D eposition of the Ba loooma Volc anic group to ok place in a b ack-arc setting (Withnall *et al.*, 1991). Subseq uent a mphibolite grade me tamorphism during the Silu rian to Early Devonian deformed the Balcooma Vo lcanic Group (Withnall *et al.*, 1991). The emp lacement of the Dido T onalite is associated with this Silu rian deformation event (W ithnall *et al.*, 1991). L ater def ormation pr oduced the p redominantly N-S tr ending foliation found in the Greenvale Province (Fergusson *et al.*, 2007).

The roc ks exposed in the central NNE-S SW trending axis on tenement EPM15915 are the Silurian Dido To nalite (W ithnall *et al.*, 1991). Several gabbroic intrusions of un known a geh ave been located w ithin the Dido Tonalite and on the tenem ent EPM15646. Me tasediments of the Lu gano Metamorphics and Eland Metavolcanics are the most eastern exposed rocks on tenement EPM15646. However, lithological contacts are not exposed and the location of the western contact of the Dido Tonalite with the Balcooma Mylonite Zone is uncertain due to a significant amount of Tertiary cover in the area. The 250,000 scale government mapped geology is included as *Figure 3*.

4. PREVIOUS EXPLORATION

Summary

During the 2007 to 2008 field season, AAEA completed: a ground geophysics survey - In duced Po larisation (I P) and R esistivity data collected along one 1300m long line using a di pole length of 100m; the coll ection of 307 soils samples from 13 traverses from 600m x 200m spaced centres and 4 rock chip samples; 27 RAB d rill holes for 647 metres w ere dril led with sam ples submitted for an alysis for ma jor elements in cluding PGE's. There we re several notable highlights from t he drilling program that included: the presence of visible native copper in d rill hole LYRB08-124; an intersection from LYRB08-123 of 29 m @ 212 ppm Cu, 123 ppm Ni, 25 ppb Pt and 32 ppb Pd from an mafic/ultramafic lithology; and an intersection from LYRB08-130 of 26m @ 26.9 wt.% FeO and 1.8 wt.% TiO2.

During the 2008 to 2009 field s eason, AAEA completed: a 1:50,000 sc ale geological d ata c ompilation, p ut together to gain a n i nsight into the l ocal geology a nd acquire an understanding of the dimensions a nd geological setting of the mafic intrusives from within the Lynd Project; a petrology study on rock chip s from the RAB drilling from 2008 (end of ho le s amples) w as completed and it was found that the ba sement geology was d ominated by medium gr ained, folia ted diorites a nd tonalites, most RAB hol es contained chips of finer grained gabbros and metagabbros (amphibolites) w hich were interpreted as mafic dykes with rare ultramafic rocks consisting of wehrlites, pyroxenites and hornblendites.

A PhD study led by student Fion a Best un der the supervision of Prof. Tony Crawford at CODES, University of Tasmania, was commissioned by AAEA in 2009 and incorporat es rock c hip and RAB drill s amples c ollected from EPM15915 sin ce 2007. The PhD research aims to determine the petrology, composition and age of the various mafic intrusions in tenements EPM15915, EPM15646, EPM 1 6070 and te nement a pplication EPM181 10 a nd their relationship with the Dido T onalite and ot her intermediate-mafic-ultramafic intrusions across the b roader s outhern Geor getown Inlier. This research is being used by AAEA to modify and enhance its exploration models for Ni-Cu-PGE mineralization in the Georgetown Inlier.

In 2009-2010, Spectrem Air Limited conducted an Airborne Electromagnetic (EM), Magnetics (TMI), DTM and Radiometric survey over the Lynd - Block 1 area. A total of 5,070 line km was surveyed for the whole of The Lynd - Block 1 area and approximately 1229 line km was surveyed within EPM15915.

In 2010-2011, exploration was limited to office based studies due to inclement weather c onditions throughout the y ear thus re ndering the tenem ent inaccessible. Activities included the interpretation and target generation of the Spectrem Airborne Geophysical survey and a project review.

4.1 Geophysics

IP Survey

Induced Polarisation (IP) and Resistivity data was collected using the dipoledipole method along one line over the tenement. The line was 1300m long and read out to n=6 using a dipole length of 100m.

A moderately chargeable body was detected on EPM 15915.

Figure 5 shows the location of the IP survey line.

Aerial Geophysics – Spectrem Air Survey

In Late 2009, Spectrem Air L imited c onducted an Air borne Electromagnetic (EM), Magnetics (TMI), DTM and Radiometric survey over the Lynd - Block 1 area. A total of 5,070 line km was surveyed for the whole of The Lynd - Block 1 area and ~1229 line km was surveyed within EPM15915 (covering all of the tenement). The digital data, details of the survey, the system specifications, standard Spectrem Air da ta processing stream and an atl as of ima ges are described and presented in Appendix 1.

Conductivity-depth images (CDI's) were generated for all the flight lines in the surveyed area. From these CDI's, the thickness of the cover was interpreted and reveal that the Lynd Block 1 survey area has cover thickness of 0 to 70m. In most areas, the cover is relatively thin (i.e. probably less than 20m). Within the tenement, there were some areas where the cover was up to 70m thick with conductance values as high as 14 siemens.

The results of the survey highlighted a number of dipole features, identified in several EM c hannels on EPM 15915. These could be considered to be possible kimberlite or la mproite intrusions capable of hosting diamonds. The importance of these targets is given weight by the discovery by AAEA of three micro-diamonds in term ite mo und samples c ollected from ten ement EPM15646 a pproximately four kilometres so uth of EPM15915 in 20 09. Reports of alluvial micro-diamonds in the Georgetown Inlier have been made by previous prospectors in the region: Diamonds, diamond indicator minerals and a review of exploration for diamonds in Queensland, however a kimberlite source has never been located.

Interpretation of the bedrock geology in conjunction with the Spectrem survey data s uggest that s everal low order AEM a nomalies (F igure 6) may be associated with ma fic-ultramafic in trusions or VH MS s ystems. The colou r aeromagnetic image pa ckage sho wing the location of Sp ectrem AEM anomalies identified by scrutinising individual line data. Alpha-identification of some anomalies is shown (Figure 7) and are referred to in the text as Line 13350 and 13360 (Figures 8 and 9).

An explanation and discussion of how the AEM data was interpreted and how the anomalies (and details) were generated is attached in Appendix 1.

4.2 Geochemistry

Mapping, Soil and Rock Chip Sampling

A soil sampling program was conducted during June and October 2008. The program cov ered areas id entified from fi eld mapping, ra diometric data and aeromagnetic images as being shallow-buried mafic intrusions. In total, 307 samples (i ncluding duplicates), from 1 3 traverses were collected and submitted for analysis (see Fi gure 5; digital data is in Appendix 3). Sam ple spacing for most of the pr ogram was conducted at 6 00m x 2 00m. The sampled terr ain was generally flat to gently un dulating (<9m slope). All soil samples were taken from depths ranging between 5 and 20cm. The lack of a well developed soil profile dismissed the need to target a specific soil horizon other than the near surface A horizon. All samples were homogenized in situ, and approximately 3 to 5 kg was sieved in the field for a <250 micron fraction. Samples were analysed at ACME Analytical Laboratories in Vancouver using the 1FMS (aqua regia) method, which reports 53 elements to sub ppm I evels by ICP-MS.

Soil types and compositions vary across the tenement depending on depth to basement a nd p roximity to the wide flood plains of the v arious d rainages, including the Ten Mile Creek. The geochemical data from these soils do not reveal significant anomalism. The maximum Cu, Zn, Pb and Ni concentrations are 105, 50, 21 and 51 ppm respectively.

The geochemical results for assays received are attached in Appendix 3, and Figure 5 shows the locations of these samples.

Four rock chip s amples were coll ected from EPM1 5915 (s ee Figure 4, Appendix 4). The sample numbers are AUX029896, AUX029897, AUX029898 and AUX029900. These samples were discovered as sub-cropping ironstone during the soil sampling program. The sub-cropping ironstone was found to be magnetite-dominated and can be tr aced along the surface for approximately 110m in a NE-SW direction. The samples were submitted for analysis using a four-acid d igest for bas e and major e lements a nd 30 gram fire assay for PGE's. The samples contain between 66.98 and 74.06 wt.% FeO, 4.24 and 5.57 wt.% TiO2, approximately 3500ppm V and up to 64 ppb Pt. Ni a nd Cu concentrations in th ese rocks are low, with m aximum values being 183 ppm and 39 ppm respectively. A RAB drill hole into one of these outcrops did not support the continuation of high FeO grades at depths (see below).

4.3 Drilling

RAB Drilling

A programme of RAB d rilling, comprising 27 drill holes for 647 metres, was completed during June 2008. The samples were submitted for analysis using a four-acid digest for base and major elements and 30 gram fire assay for PGE's. The geochemical digital data and logs are attached as Appendix 4 and the locations are included in Figure 10.

The RAB drilling revealed the presence of intermediate, mafic and ultramafic rock types within the Dido Tonalite Complex. All bottom of the hole samples were dispatched for petrological examination and results detailed in the next section. One notable highlight from this drilling program was the presence of visible native copper in drill hole LYRB08-124. However, geochemical results were only moderately encouraging with max imum Cu, Zn, Pb and Ni concentrations being 377, 187, 82 and 248 ppm respectively.

The best composite intersection of Ni-re lated min eralization was from dril I hole LYRB08-123, which assayed 29 metres at 212 ppm Cu, 123 ppm Ni, 25 ppb Pt and 32 ppb Pd in a mafic/ultramafic lithology.

A drill hole into one of the iron-stone subcrops discussed in section 6.2 above (LYRB08-130) intersected 26 m @ 26.9 wt.% FeO, 1.8 wt.% TiO2 and 1130 ppm V. Base metal anomalism in this drill hole was moderate and sporadic with maximum Cu, Ni and Pt v alues being 288 ppm, 129 ppm and 24 ppb respectively.

4.4 Petrology Study

A pe trology study on rock c hips from the 2008 RAB drilling program by F Best, a Un iversity of T asmania (CODES) PHD candidate was completed. Representative rock chips from each of the 27 RA B holes (LYRB08-118 to 144) drilled at on EPM15915 were thin sectioned and studied.

"The basement geology of EPM15915, covered by the RAB holes, was found to be dominated b y med ium gra ined, foli ated diorites and to nalites. Hornblende was the ma in mafic pha se in both roc k typ es an d biotite is widespread but generally less abundant. Plagioclase was the dominant felsic phase in the diorites, with k-feldspar and quartz becoming more significant in the to nalites. It was co mmon to o bserve gabbro, diorite and tonalite in individual RAB holes sugg esting a cl ose ass ociation and g radual transition between these rock typ es. Most RAB holes contained chips of fi ner grained gabbros an d metagabbros (a mphibolites) which are in terpreted as mafic dykes. Rare ul tramafic ro cks consisting of wehrlites, pyroxenites and hornblendites w ere al so obs erved in the drilled area. RAB ch ips composed entirely of o paques (magnetite) w ere associated with the pyroxenite." *(Best 2009).*

An overview of the main lithologies observed, the end of hole geology of each RAB hole and detailed petrology photographs are reported in Appendix 5.

Exploration work carried out on EPM1 5915, d uring the fift h y ear of the tenement has consisted of a site visit to inspect the ground geophysics survey target areas identified from the Spectrem Airborne geophysical survey (Figure 5).

In June 2012, a field visit was implemented to scout out the Lynd Project area before the geophysics crew was sent out to start the ground geophysics survey. It was determined that the country would be a difficult country to undertake the ground geophysics survey. An attempt was made in early July to start the ground geophysics survey but was abandoned due to excessive rain and ground flooding. The surveys were focused on tenements within the Lynd project that were not so inundated with rain. It is hope that the ground geophysics survey within the te nement will be completed at a later d ate pending ground conditions.

4.5 Geological Data Compilation - Mapping

The geology map of the Lynd project are a was constructed during January 2009 on a 1:5 0,000 scale. The objective of the mapping was to get a better insight in the local geology and gain an understanding of the dimensions and geological setting of the mafic intrusives from within the Ly nd Project. The mapping was compiled with the following datasets: AAEA aeromagnetic survey 1VD and RTP data; RTP open file aeromagnetic data; all geological data collected by AAEA during the course of the project; thin section analysis of all the drilling completed on the project and hand samples. The 1:25,000 scale geology map is presented as Figure 11.

5. EXPLORATION CONDUCTED

Exploration work carr ied o ut on EPM15915, during t he fifth year of the tenement has consisted of a site visit to inspect the ground geophysics target areas identified from the Spectrem Airborne geophysical survey (Figure 5).

In June 2012, a field visit was implemented to scout out the Lynd Project area before the geophysics crew was sent out to start the ground geophysics survey. It was determined that the country would be a difficult country to undertake the ground geophysics survey. An attempt was made in early July to start the ground geophysical survey but was abandoned due to excessive rain and ground flooding. The surveys were focused on tenements within the Lynd project that were not so inundated with rain. It is hope that the ground geophysical survey within the tenement will be completed at a later date pending ground conditions.

6. CONCLUSION

During the fifth year of the tenement, exploration activities consisted of a site visit to inspect the ground geophysics survey target areas identified from the Spectrem Airborne geophysical survey.

7. REFERENCES

Clarke River 1:250,000 Geological Map Series. 1963, 1st Edition. P ubl.: Geological Survey of Queensland. Prepared in collaboration with the Bureau of Mi neral R esources, Ge ology a nd Ge ophysics, Dep artment o f N ational Development and Energy.

Fergusson, C.L., et al 2005. Structure of the Early Palaeozoic Cape River Metamorphics, Tasmanides of north Queensland: evaluation of the roles of convergent and extensional tectonics. Au stralian Journal of Earth Sciences 52, Number 2, pp. 261-277.

Fergusson, C.L., Hen derson, R.A., W ithnall, I.W., Fa nning, C.M., 2 007. Structural history of the Greenvale Province, north Queensland: Early Palaeozoic extension and convergence on the Pacific margin of Gondwana. Australian Journal of Earth Sciences 54, Number 4, pp. 573-595.

Spectrem Air Limited., 2009. *Spectrem Survey of The Lynd - Block 1 Area (Australia) within EPM15915.* AAEA Confidential Internal Report.

Withnall, I. W., G rimes, K. G. &. Departm ent of Re source In dustries Queensland, 1991., *Explanatory notes on the Einasleigh 1:250000 geological sheet* Brisbane Department of Resource Industries.

247,	,500 mE 250,00	100 mE	252,500 mE	255,000 mE	257,500 mE
7,910,000 mN					7,910,000 mN
7,907,500 mN				EPM15915	7,907,500 mN
			 AUA042000 AUA043001 AUA043002 AUA043002 AUA043002 	 AUA043005 AUA043005 AUA043006 AUA043035 AUA043007 AUA043033 AUA043009 AUA043033 AUA043033 AUA043010 AUA043031 AUA043011 AUA043033 AUA043013 AUA043013 AUA043013 AUA043014 	
7,905,000 mN			 AUA042950 AUA042950 AUA042951 AUA042953 AUA042953 AUA042953 AUA042953 AUA042953 AUA042956 AUA042957 AUA042958 	 AUA042960 AUA042961 AUA042963 AUA042963 AUA042988 AUA042963 AUA042988 AUA042963 AUA042988 AUA042965 AUA042986 AUA042986 AUA042988 AUA042968 AUA042988 AUA042969 AUA042988 	 AUA042971 AUA042972 AUA042973 AUA042973 AUA042974 AUA042975 AUA042975 AUA042976 AUA042976 AUA042976 AUA042976
		 AUA042886 AUA042887 AUA042887 AUA042887 	 AUA042888 AUA042889 AUA042899 AUA042945 AUA042899 AUA042943 AUA042891 AUA042943 AUA042895 AUA042941 AUA042895 AUA042943 AUA042939 AUA042935 AUA042936 AUA042935 AUA042935 AUA042935 AUA042935 	 AUA042901 AUA042902 AUA042903 AUA042903 AUA042903 AUA042933 AUA042933 AUA042905 AUA042933 AUA042905 AUA042928 AUA04298 <	 AUA042911 AUA042912 AUA042913 AUA042913 AUA042914 AUA042915 AUA042919 AUA042915 AUA042919 AUA042917 AUA042918
00 mN		042819 042820 042821 042823 = AUA042884 042825 = AUA042883 042825 = AUA042881 042826 = AUA042881 042826 = AUA042880 042828 = AUA042870 042828 = AUA042870	042830 AUA042877 042831 AUA042876 042833 AI AUA042875 042835 AUA042875 042836 AUA042874 042837 AUA042877 142838 AUA042877 042840 AUA042868 042840 AUA042868 042841 AUA042866 042841 AUA042866 042841 AUA042866 042842 AUA042866	042843	 AUA042855 AUA042854 AUA042852 AUA042850 AUA042849 AUA042849 O02'Z06'Z
7,902,5	■ AUA042818 ■ AUA042817	 AUA042816 AUA042815 AUA042813 AUA042813 AUA042813 AUA042813 AUA042811 AUA042811 AUA042809 AU AUA042809 AU AUA042805 AU AUA042805 AU 	AUA042804 AUA AUA042803 AUA04280022 AUA042800866000 AUA042798 AUA AUA042796 AUA AUA042796 AUA AUA042795 AUA AUA042795 AUA AUA042795 AUA	 AUA042791 AUA042790 AUA042789 AU/ AU/<	
	38 a AUA042759 57 a AUA042760 66 a AUA042761	 755	 44 AUA042775 42 AUA042776 41 AUA042778 40 AUA042778 38 AUA042780 38 AUA042781 5 AUA042783 6 AUA042783 8 AUA042783 9 AUA042784 9 AUA042785 9 AUA042785 9 AUA042785 	AUA042788 AUA042788	
Nm C	■ AUA04275 ■ AUA04275 ■ AUA04275	JA042714 AUA0427 JA042715	UA042726 AUA0427 JA042729 AUA0427 JA042730 AUA0427 JA042731 AUA0427 JA042733 AUA0427 JA042733 AUA042736 AUA042736 AUA042736		7,900,0C
7,900,000		A042712 AL A042712 AL A2713 AL 42710 AL 42709 AL 42706 AL 42705 AL	342704 AI 142703 AI 142702 AI 042701 A AI A AI A AI		

254,000	mE 255,000	0 mE 2	56,000 mE
EPM15915			arth athr
			• LYREOL • LYREOL
•L ^{YR808/123} •L ^{YR808/18}			
• 1 XR808-120 • 1 XR808-119 • 1 R808-121 • R808-122			
254 000	mE 255 000	0 mE 2	256,000 mE

257,000 mE		258,000 m	ìΕ
			7,905,000 mN
REBER WAR DEBRINS			7,904,000 mN
			7,903,000 mN
			7,902,000 mN
257,000 mE		258,000 m	7,901,000 mN
LY RAB DRILL F	REGION: GEORGETOWN PROJECT: LYND DRAWING No: AUS_QLD_LYN_C Figure 10 YND PROJECT EPM 15915 HOLE LOCATION I	GC_12936.wor GC_12936.wor C DAT DAT PRO G M SCA 1	Polito APILED BY: Lucy FE: 6/11/2008 JECTION: DA94 GA Zone 55 ALE: :10,000

APPENDIX 1 SPECTREM AERIAL GEOPHYSICS APPENDIX 2 AAEA LOGGING CODES

LOGGING CODES

ROCK TYPES:

Weathering Product & Transported / Superficial Deposits (prefix L…)				
LAL	Alluvium	LST	Silt	
LCO	Colluvium	LSD	Sand	
LSO	Soil	LGR	Gravel	
LSCR	Scree	LSCO	Conglomerate	
LLO	Loess	LGO	Gossan	
LCY	Clay (produced by weathering or by alteration, include interp. of parent lithology in Rock 2)	LGYP	Gypsum / gypsiferous sediment (associated with salt lake systems)	
LFE	Ferricrete (arid / desert environments -NOT laterite)	LSIC	Silcrete (arid / desert environments)	
LAT	Lateritic duricrust (general)	LCC	Calcrete (arid / desert environments)	

	Sediments (prefix S…)				
S	Sediment (undifferentiated)	SOC	Coal - "organic" sediments		
SB	Black shale / carbonaceous (graphitic) sediments	SLC	Carbonate (undifferentiated or "dirty limestones")		
SU	Mudstones (general - includes slate & shale)	SLD	Dolomite - if "dirty" add descriptor (eg: sandy, silty)		
ST	Siltstone (general)	SLL	Limestone - if "dirty" add descriptor (eg: sandy, silty)		
SD	Sandstones / quartz-rich sediments	SLM	Marl		
SQZ	Quartzite (metamorphic)	SEV	Evapourites - gypsiferous		
SA	Arenites (general)	SC	Conglomerates (general)		
SAF	Arkosic arenites (>50% feldspathic / lithic fragments & 0- 15% silty / clayey matrix)	SCM	Monomict / oligomict conglomerates		
SAL	Lithic arenites (>50% rock / lithic fragments & 0-15% silty / clayey matrix)	SCP	Polymict conglomerates		
SGW	Greywacke (15-75% silty / clayey matrix)	SFE	Ferruginous sediments - not BIF		
SMF	Mass flow / debris flow				

Cherts (prefix C)			
С	Chert (undifferentiated)	CJ	Jaspilitic chert
СВ	Barite-bearing cherts (eg: in VHMS systems)	CL	White and grey / black banded cherts
CIF	BIF: Banded Iron Formation	СМ	Cherts - massive

Felsic Volcanics (prefix F)				
F	Felsic volcanic (undifferentiated)	FD	Rhyodacite	
FR	Rhyolite (plutonic equivalent: granite)	FT	Trachyte (plutonic equivalent: syenite)	
FVA	Felsic pyroclastic or volcaniclastic: ash / fine tuff (grain size <0.1mm)	FVG	Felsic pyroclastic or volcaniclastic agglomerate / breccia / lapilli tuff (grain size >4mm)	
FVT	Felsic pyroclastic or volcaniclastic: tuff / sandstone (grain size 0.1-4mm)	FVB	Felsic pyroclastic or volcaniclastic: bomb breccia / agglomerate (grain size >32mm)	

Intermediate Volcanics (prefix A…)			
А	Intermediate volcanics (undifferentiated)		
AA	Andesite (plutonic equivalent: diorite)	AB	Basaltic-andesite
AT	Latite / Trachy-andesite (plutonic equivalent: monzonite)	AD	Dacite (plutonic equivalent: granodiorite)
AVA	Intermediate pyroclastic or volcaniclastic: ash / fine tuff (grain size <0.1mm)	AVG	Intermediate pyroclastic or volcaniclastic agglomerate / breccia / lapilli tuff (grain size >4mm)
AVB	Intermediate pyroclastic or volcaniclastic: bomb breccia / agglomerate (grain size >32mm)	AVT	Intermediate pyroclastic or volcaniclastic: tuff / sandstone (grain size 0.1-4mm)

ROCK TYPES (cont'd):

Mafic Volcanics (prefix B…)				
В	Mafic volcanics (undifferentiated)			
BA	Andesitic-basalt	BT	Basalt	
BP	Plagioclase-phyric basalt	BB	Amphibole-phyric basalt	
BK	Komatiitic basalt / High-Mg basalt (generally in Archaean terranes)	BOP	Picrite (olivine-basalt)	
BVA	Mafic pyroclastic or volcaniclastic: ash / fine tuff (grain size <0.1mm)	BVG	Mafic pyroclastic or volcaniclastic agglomerate / breccia / lapilli tuff (grain size >4mm)	
BVT	Mafic pyroclastic or volcaniclastic: tuff / sandstone (grain size 0.1-4mm)	BVB	Mafic pyroclastic or volcaniclastic: bomb breccia / agglomerate (grain size >32mm)	

Komatiites (prefix K…)			
К	Komatiite / ultramafic volcanics (undiff.)	KS	Komatiite, spinifex textured
KAC	Komatiite, adcumulate	KMC	Komatiite, mesocumulate
KOC	Komatiite, orthocumulate		

Granitoids / Felsic-Intermediate Intrusions (prefix G)			
G	Granitoid (undifferentiated)	GMZ	Monzonite (<5% quartz / "quartz-poor" granite - volcanic equivalent: latite / trachy-andesite)
GDI	Diorite (<5% quartz / plagioclase rich - volcanic equivalent: andesite)	GMZQ	Quartz-Monzonite (5%-20% quartz / "quartz-poor" granite - volcanic equivalent: latite / trachy-andesite)
GDIQ	Quartz-Diorite (5%-20% quartz / plagioclase rich - volcanic equivalent: andesite)	GQ	Quartz-rich granitoid (>60% quartz)
GGD	Granodiorite (volcanic equivalent: dacite)	GSY	Syenite (volcanic equivalent: trachyte)
GGR	Granite (volcanic equivalent: rhyolite)	GTO	Tonalite (>20% quartz / plagioclase-rich)
GK	Alkali-feldpsar granite ("pink" granite)		

	Minor Porphyry / "Other	" Intrusive	s (prefix P…)
PF	Felsic intrusive (undifferentiated)	PI	Intermediate porphyry (undiff.)
PFF	Felsic porphyry, feldspar dominant / feldspar-phyric	PIA	Andesitic porphyry (keratophyre) -NOT andesite lava
PFQ	Felsic porphyry, quartz dominant / quartz-phyric	PID	Dacitic porphyry (quartz keratophyre) <i>NOT</i> dacite lava
PAP	Aplite	PL	Lamprophyre (undifferentiated)
PEG	Pegmatite	PLA	Lamprophyre, amphibole dominant
PGF	Pegmatite, feldspar-rich	PLB	Lamprophyre, phlogopite / biotite dominant
PGQ	Pegmatite, quartz-rich	PLX	Lamprophyre, pyroxene dominant
PCB	Carbonatite	PK	Kimberlite (undifferentiated)

Mafic Intrusives (prefix D)				
D	Mafic intrusives (undifferentiated)			
DD	Dolerite	DDQ	Quartz dolerite	
DG	Gabbro (NO olivine, <10% opx)	DHB	Hornblendite (>50% hornblende)	
DGL	Leucogabbro (plag >>olivine & pyx)	DN	Norite (opx bearing, <10% cpx)	
DGM	Melagabbro (olivine & pyx >>plag)	DNL	Leuconorite (plag >>olivine & pyx)	
DGN	Gabbronorite (cpx & opx bearing)	DNM	Melanorite (olivine & pyx >>plag)	
DGNL	Leucogabbronorite (plag >>olivine & pyx)	DNO	Olivine Norite (olivine & opx bearing, VO cpx)	
DGNM	Melagabbronorite (olivine & pyx >>plag)	DAN	Anorthosite (>90% plag, <10% olivine & pyx)	
DGNO	Olivine Gabbronorite (olivine, cpx & opx bearing)	DT	Troctolite (olivine & plag nearing,NO pyroxene)	
DGO	Olivine gabbro (olivine bearing/VO cpx)	DTL	Leucotroctolite (plag >>olivine & pyx)	
DGQ	Quartz gabbro	DTM	Melatroctolite (olivine & pyx >>plag)	

ROCK TYPES (cont'd):

Ultramafic Rocks (prefix U)				
U	Ultramafic (undifferentiated)	US	Serpentinised ultramafic (primary texture destroyed)	
UPX	Pyroxenite (>50% pyroxene, <40%olivineNO plagioclase)	USC	Serpentinite, chlorite dominated	
UCPX	Clinopyroxenite (<40% olivine, cpx present, VO opx & NO plagioclase)	USM	Serpentinite, tremolite dominated	
UOPX	Orthopyroxenite (<40% olivine, opx present,VO cpx & NO plagioclase)	UST	Serpentinite, talc dominated	
UWB	Websterite (opx & cpx, NO olivine & NO plagioclase)	UDU	Dunite (>90% olivine,NO plagioclase)	
UWBO	Olivine Websterite (opx & cpx, olivine present &VO plagioclase)	UPD	Peridotite; undiff (40-90% olivine,NO plagioclase)	
ULZ	Lherzolite (>40% olivine, both opx & cpx presentNO plagioclase)	UHZ	Harzburgite (>40% olivine, opx present/VO cpx & NO plagioclase)	
UWL	Wehrlite (>40% olivine, cpx present,NO opx & NO plagioclase)			

	High-Grade Metamorphic / Gneissic Rocks (prefix M…)				
MA	Amphibolite (undifferentiated)	MMB	Marble		
MAC	Amphibolite, actinolite dominated	MMG	Migmatite / migmatitic gneiss		
MAN	Amphibolite, anthophyllite dominated	MPE	Pelite (f.g c.g. aluminosilicate m'mic minerals). Use Key Mineral fields		
MBMG	Banded magnetic / magnetite gneiss (eg: after Archaean BIF)	MPH	Phyllite (f.g. micaceous rock). <i>NOTE</i> : schist codes may be more appropriate.		
MBDG	Banded gneiss	MPP	Psephite (original conglomerate)		
MCH	Charnockite	MPS	Psammite (original sandstone)		
MCS	Calc-silicate gneiss	MPX	Amphibolite, pyroxene dominated (high-grade)		
MEC	Eclogite	MQF	Quartzo-feldspathic gneiss / felsic gneiss		
MGN	Gneiss (undifferentiated)	MSZ	Schist, use Key Mineral fields		
MGR	Granulite	MTR	Amphibolite, tremolite dominated		
MHB	Amphibolite, hornblende dominated	MUGN	Ultramafic gneiss		
MITG	Intermediate gniess	MXC	Clinopyroxene-plagioclase rocks (high-grade)		
MLT	L-tectonite (use Key Mineral fields)	MXO	Orthopyroxne-plagioclase rocks (high-grade)		
MMAG	Mafic gneiss				

Mylonites / Cataclasites						
MCTC	MCTC Cataclasite (undifferentiated), use Key Mineral Fields MYL Mylonite (undifferentiated), use Key Mineral Fields					

MASSIVE SULPHIDES (>50% / >20cm of core) Use KEY MINERAL FIELDS for additional / subordinate sulphide species		SEMI-MASSIVE SULPHIDES (>20% / >20cm of core) Use KEY MINERAL FIELDS for additional / subordinate sulphide species and lithic clast types in breccias	
\$\$	Massive Sulphides, undifferentiated	\$S	Semi-massive sulphides, undifferentiated
\$AS	Arsenopyrite-rich massive sulphide	\$SAS	Arsenopyrite-rich semi-massive sulphide
\$BO	Bornite-rich massive sulphide	\$SBO	Bornite-rich semi-massive sulphide
\$CH	Chalcocite-rich massive sulphide	\$SCH	Chalcocite-rich semi-massive sulphide
\$CP	Chalcopyrite-rich massive sulphide	\$SCP	Chalcopyrite-rich semi-massive sulphide
\$CR	Chromite / Chromitite (ie: PGE)	\$SCR	Semi-massive Chromite / Chromitite
\$GA	Galena-rich massive sulphide	\$SGA	Galena-rich semi-massive sulphide
\$ML	Millerite-rich massive sulphide	\$SML	Millerite-rich semi-massive sulphide
\$PN	Pentlandite-rich massive sulphide	\$SPN	Pentlandite-rich semi-massive sulphide
\$PO	Pyrrhotite-rich massive sulphide	\$SPO	Pyrrhotite-rich semi-massive sulphide
\$PY	Pyrite-rich massive sulphide	\$SPY	Pyrite-rich semi-massive sulphide
\$SP	Sphaleriteite-rich massive sulphide	\$SSP	Sphaleriteite-rich semi-massive sulphide

Page 3

ROCK TYPES (cont'd):

Breccias (prefix X…) Use TEXTURE CODES to describe clasts (composition, shape etc…)				
х	Breccia (undifferentiated)	XHY	Hydrothermal breccia (must have clear evidence of vein phases), use Key Mineral fields to describe important vein mineral phases.	
XHE	Hematite-rich breccia (IOCG systems), use Key Mineral fields to describe other important minerals or clast types	XMT	Magnetite-rich breccia (IOCG systems), also use Key Mineral fields to describe other important minerals	
XIN	Intrusive breccia (near margins of intrusion), use texture codes to describe clasts, use Rock 2 to describe composition of intrusive unit.	XVO	Eruptive volcanic breccia (eg: on margins of breccia pipe / diatreme)	

Iron Ore Mineralisation (prefix I…)				
ICI	pisolitic channel iron deposit	IMH	massive hematite (eg: total replacement of BIF in BID systems)	
IDI	dedrital iron deposit	IMM	massive magnetite (eg: total replacement of BIF)	
IMG	massive geothite, undiff (eg: total replacement of BIF in BIE systems)	ISMG	semi-massive geothite, undiff (eg: partial replacement of Bl in BID systems)	
IMGO	massive geothite, ochrous (soft, friable ores in BID systems)	ISMH	semi-massive hematite (eg: partial replacement of BIF in BID systems)	
IMGV	massive geothite, vitreous / siliceous (hard, non-friable orea in BID systems)	ISMM	semi-massive magnetite (eg: partial replacement of BIF)	

Other				
STOPE	Void / stope	NS	No sample / core loss	
TAZ	Total alteration zone - not possible to determine original roo type: used as a <i>LAST RESORT</i> , must always indicate "bes guess" as to the original rock type	FLT	Fault - only to be used in <i>EXTREMELY</i> broken ground with near complete destruction of rock mass (eg: fault gouge): used as a LAST RESORT only if the mylonite / cataclasite codes are not applicable	
QZV	Quartz vein (use Key Minerals to describe important minerals other than quartz).	VN	Vein, not quartz-rich (use Key Minerals to describe vein minerals & see vein description)	

ROCK TEXTURES:

	General Terms / Textures				
CLY	clayey (eg: as a descriptor in weathered /altered rocks)	BX	breccia / brecciated (structural, hydrothermal or volcanic - clasts should be angular)		
SLT	silty (eg: as a descriptor for a dirty limestone)	IND	indurated / "hardpanised" (for surficial materials)		
SND	sandy (eg: as a descriptor for a dirty limestone)	JNT	jointed (only for strongly joint fractured rocks)		
QZ	quartzose / quartz-rich (as in sediment)	FR	fractured		
GRV	gravel / gravelly (eg: as a descriptor for colluvium)	MLD	milled, for clasts in volcanic breccias (gas-streaming) or effusive veins (often associated with vein sediment)		
PIS	pisolite / pisolitic	SPT	spotted		
GOE	goethite / goethitic (eg: for oxidised rocks)	WD	wood / organic clasts or fragments		
HEM	hematite / hematitic (eg: for oxidised rocks)	BND	banded (can be used in volcanic, metamorphic or sedimentary rocks - see also vein codes)		
MT	magnetic / magnetite	BDD	bedded (can be used in volcanic, metamorphic or sedimentary rocks - see also vein codes)		
GPH	graphitic (as in graphitic slate - higher grade than carbonaceous shale)	BOT	botryoidal / mammillated		
CLC	calcareous (eg: in calcareous siltstones / shales)	BXW	boxworked		
MSV	massive	HOM	homogeneous		

ROCK TEXTURES (cont'd):

Grain Size Terms			
VFG	very fine grained < 0.1mm (sediment)	PBL	pebbles / pebbly (sediment: 8-32mm)
FGR	fine grained <1mm (sediment & igneous)	CBL	cobbles / cobbly (sediment: 32-256mm)
MGR	medium grained (igneous: 1-5mm / sediment: 1-2mm)	BLD	boulder (sediment: >256mm)
CGR	coarse grained (igneous: 5-30mm / sediment: 2-4mm)	EQG	equigranular or granoblastic
VCG	very coarse grained (igneous: >30mm / sediment: 4-8mm)	SER	seriate (range in grain sizes)
MXT	megacrystic (eg: K-Spar megacrystic granite)	PEG	pegmatite / pegmatitic

Grain / Clast Morphology Terms / Textures				
EUH euhedral grains RND rounded clasts / grains / crystal fragments				
SBH	subhedral grains	SRN	subrounded / grains / crystal fragments	
ANH	anhedral grains	SAG	subangular clasts / grains / crystal fragments	
	1	ANG	angular clasts / grains / crystal fragments	

Sedimentary Terms / Textures			
LAM	laminated (for sediments and possibly large veins - see vein codes)	CBN	carbonaceous (as in carbonaceous / black shale,NOT calcareous or graphitic)
FLG	flaggy	IJD	injection dykes / flame structures (sedimentary)
PHL	phyllitic (weakly metamorphosed shale)	RUC	rip up clasts
FSF	fossiliferous	ERS	erosional scours
PSO	poorly sorted (sedimentary / voclanic rocks / volcanic breccias)	MSU	matrix supported (sedimentary / voclanic rocks / volcanic breccias)
WSO	well sorted (sedimentary / voclanic rocks / volcanic breccias)	CSU	clast supported (sedimentary / voclanic rocks)

	Bedding Terms / Textures				
BTN	bedded - thinly (<1cm)	BFF	fine grained beds >> coarse grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)		
BMO	bedded - moderately (1cm? to 30cm)	BFC	fine grained beds > coarse grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)		
ВТК	bedded - thickly (>30cm)	BFE	fine grained beds = coarse grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)		
BPM	bedded - poorly defined to massive (>1m) bedding	BCF	coarse grained beds > fine grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)		
ITB	interbedded	BCC	coarse grained beds >> fine grained beds (relative abundance of interbedded sediments: eg - sandstone and shale)		
XBD	cross bedded (including trough and ripple cross bedding)	BGR	bedding - graded bedding		

Volcano-Sedimentary Terms / Textures				
AP	accretionary lapilli	LC	lithic / lithic clasts	
ASH	ash / ash-rich (in matrix)	MM	momomict (conglomerates / volcanic sediments / volcanic breccias)	
BIM	bimodal (generally grainsize for sediments - can be for composition of volcanic clasts)	РМ	polymict (conglomerates / volcanic sediments / volcanic breccias)	
XTR	crystal-rich / crystal fragments			

ROCK TEXTURES (cont'd):

	Volcanic Terms / Textures				
PH	phyric: for lavas with phenocrysts (use porphyritic / porphyroblastic for igneous / metamorphic rocks)	SX	spinifex textured; undifferentiated (specific to komatiites, may also occur at quench / contact zones)		
APH	aphanitic (glassy lavas)	SXC	coarse spinifiex		
FB	flow banded	SXF	fine spinifex		
PLW	pillowed (for lavas)	SXM	medium spinifex		
HYA	hyaloclastite / hyaolclastitic	SXR	randomly oriented spinifiex grains		
PP	peperite / peperitic (lava intruding wet, unconsolidated sediments)	SXS	sheaf / book spinifex grains		
SPH	spherultic	SXO	olivine spinifex		
PBD	pebble dykes	SXP	pyroxene spinifex		
VS	vesicular, amygdaloidal (in lavas)				
WLD	welded (for use in pumiceous tuffs / volcaniclastic rocks / ignimbrites): MUST have evidence of compaction or flowage	∍ SXB	sheeted pyroxene spinifex ("stringy beef" texture)		
PUM	pumiceous / pumice / scoria fragments				

Igneous / Metamorphic Terms / Textures				
ACL	acicular / needle-like minerals (not bladed / spinifex textured)	AC	cumulate textured: adcumulate (generally in ultramafic rock or layered intrusions)	
ΑΤΟ	atoll textured grains (eg: quenched olivine crystals)	MC	cumulate textured: mesocumulate (generally in ultramafic rocks or layered intrusions)	
AUG	augen textured	OC	cumulate textured: orthocumulate (generally in ultramafic rocks or layered intrusions)	
INT	intruded / intercalated	LEU	leucocratic (<35% ferro-magnesian / dark minerals)	
HF	hornfels / hornfelsed	MES	mesocratic (35-65% ferro-magnesian / dark minerals)	
SCC	saccharoidal / sugary (mainly for metamorphic rocks)	MEL	melanocratic (>65% ferro-magnesian / dark minerals)	
GN	gneissose	PMM	melanosome (partial melt texture)	
GRP	graphic textured (as in granites & pegmatites)	PML	leucosome (partial melt texture)	
SKL	skeletal grains	MIA	miarolitic cavities	
SOP	sub-ophitic	MIG	migmatitic	
HRS	harrisitic grains, distinct from acicular grain (eg: harrisitic olivine in komatiite)	MYR	myrmektite	
HPR	hopper grains (olivine mineral texture)	OPH	ophitic (distinct in some dolerites)	
HYP	hypidiomorphic	PK	poikolitic	
IDO	idiomorphic	PO	porphyritic (generally for intrusive rocks) / porphryoblastic (metamorphic rocks)	
VRT	varitextured	BOU	boudinaged	
LAY	layered (for igneous rocks only, use bedding terms for sediments)	PTG	ptygmatic (as in ptygmatically veined gneiss)	

Breccia Clast (compostions / litholotypes)			
X\$	breccia clast; sulphidic (undiff)	XI	breccia clast; intermediate (undiff)
XS	breccia clast; sediment (undiff)	XIV	breccia clast; intermediate volcanic
XSU	breccia clast; fine grained sediment (shale, slate, mudstone sitlstone etc)	ХМ	breccia clast; mafic (undiff)
XSD	breccia clast; medium grained sediment (arkose, sandstone etc)	XMV	breccia clast; mafic volcanic
XSC	breccia clast; coarse grained sediment	XDD	breccia clast; doleritic
XCB	breccia clast; carbonate / limestone	XDG	breccia clast; gabbroic
XC	breccia clast; chert / BIF	XDA	breccia clast; anorthositic
XF	breccia clast; felsic (undiff)	XDT	breccia clast; troctolitic
XFV	breccia clast; felsic volcanic	XU	breccia clast; ultramafic (undiff)
XGR	breccia clast; granitic	XPX	breccia clast; pyroxenitic
XDI	breccia clast; dioritic	XPD	breccia clast; peridotitic

ROCK TEXTURES (cont'd):

Sulphide Textural Terms Note: Use ORE MINERAL FIELDS to describe habits of important / ore minerals			
NT net-textured sulphides STR stringer sulphides			
NTR	reverse net-textured sulphide		

	Structural Terms / Textures		
DH	downhole facing direction (younging direction)	FO	fold / folded (undifferentiated style)
UH	uphole facing direction (younging direction)	FM	fold: M-fold (looking up-hole)
CLV	cleavage	FS	fold: S-fold (looking up-hole): use ONLY in oriented drill co or if cleavage relationships can be determined
FOL	foliated (tightly spaced cleavage to weakly sheared)	FZ	fold: Z-fold (looking up-hole): use ONLY in oriented drill cor or if cleavage relationships can be determined
SZ	strongly schistose	CRN	crenulated
MYL	mylonitic - strongly sheared	LIN	lineated (as in L- and L-S tectonites)
STY	stylolite / stylolitic		

MINERAL SPECIES:

Metal / Ore / Sulphide Minerals			
CU	Native copper	ILM	Ilmenite
AU	Native gold	LOE	Loellingite
AG	Native silver	MAL	Malachite
ELT	Electrum	MAR	Marcasite
PT	Platinum	ML	Millerite
PD	Palladium	MO	Molybdenite
ALL	Allanite	MNZ	Monazite
AN	Antinomy	NIC	Niccolite / Nickeline (NiAs)
AGT	Argentite	ORP	Orpiment
AS	Arsenopyrite	PN	Pentlandite
AZR	Azurite	PBL	Pitchblende
BI	Bismuthanite / Bismuth	PY	Pyrite
BO	Bornite	PO	Pyrrhotite
CAS	Cassiterite (tin)	SCH	Scheelite
CER	Cerussite (Pb Carbonate)	SP	Sphalerite
СН	Chalcocite	STB	Stibnite
CP	Chalcopyrite	SXX	Sulphide: unknown
CR	Chromite	S	Sulphur
CRY	Chrysocolla	TA	Tantalite
CNB	Cinnabar	TEL	Telluride (undifferentiated)
CBT	Cobaltite	TNN	Tennantite
CV	Covellite	TET	Tetrahedrite
CUB	Cubanite (Cu sulphide)	TBN	Torbenite (Cu-U Phosphate)
CUP	Cuprite	TRL	Troilite (FeS in meteroites)
DMD	Diamond	URN	Uranite
DSP	Diaspore (assoc with bauxite)	VIO	Violarite (N½FeS4)
ENR	Enargite	WO	Wolframite
GA	Galena	WLL	Willemite (ZnSi0 ₂)
GNT	Garnierite (Ni laterites)	WUR	Wurtzite
GDF	Gersdorffite (Ni(Pt)AsS)	ZIN	Zincite (ruby zinc)
GBB	Gibbsite (bauxite mineral)	ZRC	Zircon

Carbonate Minerals			
CB	Carbonate (undifferentiated)	DLM	Carbonate - Dolomite
ANK	Carbonate - Ankerite	MGN	Carbonate - Magnesite
СТ	Carbonate - Calcite	SD	Carbonate - Siderite
ARG	Aragonite	RDC	Rhodocrosite (Mn-carbonate)
HZC	Hydrozincite	SMT	Smithsonite (Zn carbonate)

MINERAL SPECIES (cont'd):

Silicate Minerals			
AXN	Axinite	ALB	Feldspar - Albite
BRL	Beryl	AMZ	Feldspar - Amazonite (Pb - bearing)
BST	Bustamite	ANO	Feldspar - Anorthite
FLR	Flourite	LAB	Feldspar - Labradorite
EPD	Epidote	MCR	Feldspar - Microcline
CLZ	Clinozoisite (epidote mineral)	OLG	Feldspar - Oligoclase
PDM	Piedmontite / Piemontite (red-brown epidote)	ORT	Feldspar - Orthoclase
SPN	Sphene / Titanite	PLG	Feldspar - Plagioclase
TPZ	Тораz	KFS	Feldspar - Potassium-feldspar (undiff)
TML	Tourmaline (undifferentiated)	SAN	Feldspar - Sanidine
AMP	Amphibole (undifferentiated)	FLD	Feldspar (undifferentiated)
ACT	Amphibole - Actinolite	PRX	Pyroxene (undifferentiated)
ANT	Amphibole - Anthophyllite	AUG	Pyroxene - Augite / Aegerine
CUM	Amphibole - Cummingtonite	BRZ	Pyroxene - Bronzite (opx)
GRN	Amphibole - Grunerite	CPX	Pyroxene - Clinopyroxene (undiff)
HMQ	Amphibole - Holmquistite (K-bearing)	DIO	Pyroxene - Diopside (cpx)
HBL	Amphibole - Hornblende	ENS	Pyroxene - Enstatite (opx)
TRM	Amphibole - Tremolite	HEN	Pyroxene - Hendenbergite (cpx: Fe-rich end member to Diopside)
ATG	Asbestos - Antigorite	HYP	Pyroxene - Hypersthene (opx)
ACR	Asbestos - Chrysotile	OMP	Pyroxene - Omphacite (cpx)
ASB	Asbestos (undifferentiated)	OPX	Pyroxene - Orthopyroxene (undiff)
QZ	Quartz (use for mesothermal grains)	SPO	Pyroxene - Spodumene (Li-bearing cpx)
QZS	Quartz: (sub)chalcedonic silica (amorphous) - common in epithermal veins	RHD	Rhodonite (pyroxenoid)
AMT	Quartz: Amethyst	OLV	Olivine (undifferentiated)
QZB	Quartz: blue quartz (BH type)	FAY	Olivine - Fayalite
QZM	Quartz: microcrystalline	FOR	Olivine - Forsterite
SI	Silica / Silicified (use for alteration instead of quartz)	ZEO	Zeolite (undifferentiated)
LAZ	Feldspathoid - Lazurite	LAU	Zeolite - Laumontite
LEU	Feldspathoid - Leucite	NAT	Zeolite - Natrolite
NPH	Feldspathoid - Nepheline	PRE	Zeolite - Prehnite
SOD	Feldspathoid - Sodalite	PUM	Zeolite - Pumpellyite
		SLB	Zeolite - Stilbite

	Metamorphic Minerals		
AND	Andalusite	GAR	Garnet (undifferentiated)
SLM	Sillimanite	ALM	Garnet - Almandine
KYA	Kyanite	ADR	Garnet - Andradite
COR	Cordierite	GGR	Garnet - Grossular
STR	Staurolite	PYP	Garnet - Pyrope
GHN	Gahnite (Zn-spinel)	SPS	Garnet - Spessertine / Spessarite
SCA	Scapolite (Ca-rich m'mic rocks / alt'n of plagioclase)	GLP	Glaucophane
SPL	Spinel	JAD	Jadeite (Hi-P pyroxene)
WLS	Wollastonite (Ca-pyroxenoid)	SPP	Sapphirine (Hi-P m'mic)
CRS	Cristobalite (Hi-T quartz)		

Epithermal / Porphyry Minerals			
ADU	Adularia	KAO	Kaolinite
ALU	Alunite	MTM	Montmorillonite
DIK	Dickite	PYR	Pyrophyllite
ILT	Illite	SMC	Smectite
CLY	Clay (undifferentiated: illite / dickite / kaolinite / smectite	.)	

	Oxide N	linerals	
OX	Oxides (undifferentiated)	MGH	Maghemite
GOE	Goethite / Limonite	MNO	Manganese Oxide
HEM	Haematite	MKT	Mushketovite (magnetite psuedomorph on hematite)
SPC	Specularite / Specular Hematite	PRL	Pyrolusite (MnO2)
MT	Magnetite	RUT	Rutile / Leucoxene

MINERAL SPECIES (cont'd):

	Phyllosilicate Minerals		
SER	Sericite / Phengite	GLC	Glauconite
MV	Muscovite	GPH	Graphite
BT	Biotite	LEP	Lepidolite
PHG	Phlogopite	PRG	Paragonite
BRU	Brucite (Mg(OH)2	PRV	Perovskite
CHL	Chlorite	SRP	Serpentine
TLC	Talc	STC	Stichtite (Mg-Cr muscovite, bright purple in serpentinite)
FU	Fuchsite (Cr muscovite)	STL	Stilpnomelane

Sulphate / Phosphate / Other Minerals				
ANH Anhydrite GYP Gypsum				
APA	Apatite	HAL	Halite / Salt	
BAR	Barite	JAR	Jarosite	
CRN	CRN Corundum SUL Sulphates (undifferentiated)			

VEINS & STRUCTURE:

	Vein Type Codes			
BL	Bladed (epithermal veins)	PT	Ptygmatic veins	
BN	Banded (eg: by mineral composition)	SH	Sheeted (numerous thin veins with similar orientation)	
BX	Hydrothermal breccia	ST	Stringer veins	
СВ	Comb-textured ("sparry / dog-tooth")	SW	Stock-work (numerous veins with 2-3 dominant orientations	
CD	Chalcedonic	SY	Stylolitic veins	
CF	Colloform (eg: fine rhythmic banding in epthermal veins)	TG	Tension gashes / en-echelon veins	
LA	Laminated veins	VL	Veinlets - very thin, minor veins	
MA	Massive vein (ie: massive quartz vein)	VU	Vugghy / drusy (open space)	
PG	Pegmatitic / Pegmatite (granitic "veins")			

	Degree of Shearing
% Breaks	Definition
0	Unfoliated and undeformed rock
10	Very weak or incipient foliation; no associated mineral growth or recrystallisation (may be mistaken for flow banding) stylolites, spaced cleavages
20	Weak foliation; continuous or slatey cleavages and other primary flattening deformation involving mineral alignment
30	Moderate foliation; poorly developed metamorphic segregation
40	Strong foliation; development of segregation banding. Micaceous minerals dominant to sub-dominant; pervasive foliation, original ro type discernible
50	Schistocity; moderate to strong segregation banding; some primary structures preserved; most textures destroyed in volcanic rocks preserved in sediments and phaneritic rocks
60	Schistocity; strong mineral segregation into compositional laminae
70	Schistocity; strong foliation with slickensiding and mineral growth on s-surfaces, broken rock.
>80	Mylonite / cataclastite

VEINS & STRUCTURE (cont'd):

	Structure Types Max of 1 descriptor per feature / structure measured.				
S0	Bedding / Geological Contact	L	Lineation: undifferentiated		
S1	1st Fabric / Cleavage (if structural relationships known accurately)	LM	Mineral lineation		
S2	2nd Fabric / Cleavage (if structural relationships known accurately)	L1	Lineation related to 1st fabric / cleavage		
S3	3rd Fabric / Cleavage (if structural relationships known accurately)	L2	Lineation related to 2nd fabric / cleavage		
S4	4th Fabric / Cleavage (if structural relationships known accurately)	L3	Lineation related to 3rd fabric / cleavage		
SA	Fabric / Cleavage - Axial Plane to fold (if structural relationships not accurately known)	L4	Lineation related to 4th fabric / cleavage		
SE	Early Fabric / Cleavage - based on observed relationships/timing (if structural relationships not accuratel known)	FA	Fold axis / fold hinge: undifferentiated		
SL	Late Fabric / Cleavage - based on observed relationships/timing (if structural relationships not accuratel known)	F1	Fold axis: 1st deformation event		
SZ	Shear	F2	Fold axis: 2nd deformation event		
SZDS	Shear with dip-slip movement sense (unable to determine i Reverse or Normal Shear)	F3	Fold axis: 3rd deformation event		
SZDX	Shear with dextral movement sense (as determined by kinematic indicators)	F4	Fold axis: 4th deformation event		
SZNM	Normal Shear (as determined by kinematic indicators)	FL	Foliation (default fabric/foliation if structural relationships an not known)		
SZRV	Reverse Shear (as determined by kinematic indicators)	FT	Fault (undifferentiated)		
SZSS	Shear with strike-slip movement sense (unable to determin if Sinistral of Dextral movement)	^e FTDS	Fault with dip-slip movement sense (unable to determine if Reverse or Normal Fault)		
SZSX	Shear with sinistral movement sense (as determined by kinematic indicators)	FTDX	Fault with dextral movement sense (as determined by kinematic indicators)		
BD	Banding - in metamorphic rocks: NOT bedding	FTNM	Normal Fault (as determined by kinematic indicators)		
BX	Breccia	FTRV	Reverse Fault (as determined by kinematic indicators)		
IC	Geological Contact - Intrusive	FTSS	Fault with strike-slip movement sense (unable to determine if Sinistral of Dextral movement)		
JN	Joint	FTSX	Fault with sinistral movement sense (as determined by kinematic indicators)		
VN	Vein - undifferentiated (put composition in Vein Type & Vei Minerals columns)				

ALTERATION:

Alteration Intensity Guidelines:			
Breaks (%)	Definition		
0	No alteration		
10	Weak alteration		
30	Moderate alteration		
50	Strong alteration, replacement of mineralogy, fabric preserved		
80	Intense alteration, near-total replacement of original fabric and mineralogy		

ALTERATION (cont'd):

Nature / character / setting of ALTERATION (not composition)

Fracture / plumbing network that allows fluid access to the rock-mass

Maximum of 1 descriptor to be used. Use dominant/main descriptor.

prefix U: UNDIFFERENTIATED / UNIDENTIFIED plumbing - ONLY for use when unable to confidently identify plumbing system for the alteration (eg: in large-scale High-sulphidation epithermal systems)						
UP	Pervasive overprint without shearing UC Preferential replacement of clast in fragmental / cla rock.					
UI	Irregular or patchy alteration	UB	Preferential replacement ofbedding in fragmental / clastic rock.			
UX	Preferential replacement o fmatrix in fragmental / clastic rock.	UM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)			

	prefix S: SHEARING / FOLIAITON acting as plumbing / pathway for alteration fluids (eg: in orogenic deposits)						
SP	SP Pervasive within zone of shearing SC Preferential replacement of clast in fragmental / clastic rocl SP SC ONLY if still identifiable as clasts (eg: relict pebbles or cobbles are recognisable)						
SI	Irregular or patchy alteration within shear	SB	Preferential replacement of bedding in fragmental / clastic rock - <i>ONLY</i> if bedding is preserved and recognisable				
SX	Preferential replacement ofmatrix in fragmental / clastic rock - <i>ONLY</i> if still identifiable as matrix (eg: relict pebbles or cobbles are recognisable)	SM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)				

prefix V: Selvedge to VEIN / VEIN-SET that is the likely feature that acted as plumbing / pathway for alteration fluids							
VP	VP Pervasive alteration centred on the vein / vein-set VC Preferential replacement of clast in fragmental / clast						
VI	Irregular or patchy alteration adjacent to the vein / vein-set	VB	Preferential replacement of bedding in fragmental / clastic rock - can produce the classic "telegraph" or "chirstmas- tree" alteration patterns at the local and/or deposit scale				
VX	Preferential replacement o fmatrix in fragmental / clastic rock	VM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)				

prefix W: Alteration assoicated with a STOCKWORK set of veins that is the likely feature that acted as plumbing / pathway for alteration fluids						
WP	WP Pervasive alteration centred on the vein stockwork WC Preferential replacement of clast in fragmental / of					
WI	Irregular or patchy alteration adjacent to the vein stockwor	k WB	Preferential replacement ofbedding in fragmental / clastic rock			
WX	Preferential replacement o fmatrix in fragmental / clastic rock	WM	Preferential replacement of specific mineral species within rock-mass (distinct from pervasive alteration)			

	prefix X:				
	HYDROTHERMAL BRECCIAS				
х	Alteration associated hydrothermal / vein breccias (for alteration intensity >30% only) OTE - different ambient conditions related to brecciation (eg: P & T) can produce modified alteration products from the same ore fluid				

ORE MINERAL HABITS:

Ore Mineral Habits				
AC	Acicular	IC	Intercumulus	
AG	Mineral aggregates	IN	Inclusions	
AM	Amorphous	IT	Insterstitial	
BC	Breccia clast	IR	Irregular	
BD	Bedded (distinct from replacement of bedding)	MA	Massive	
BL	Blebby	NT	Net-textured	
BM	Breccia matrix	PK	Poikolitic	
BN	Banded (distinct from replacement of bedding)	PV	Pervasive	
BO	Botryoidal / mammillated	RA	Radiating	
BX	Brecciated	RB	Preferential replacement of bedding (sediment / volcaniclastic)	
CF	Colloform	RC	Preferential replacement of clasts (sediment / volcaniclastic)	
CO	Concretion(s)	RM	Preferential mineral replacement	
CV	Cleavage plane / foliation (along / aligned)	RN	Reverse net-textured	
DN	Dendritic	RX	Preferential replacement of matirx (sediment / volcaniclastic	
DS	Disseminated	SM	Semi-massive	
FB	Framboydal	ST	Stringer	
FL	Flame-textured	TL	Telegraph	
HD	Heavy disseminated	VN	Internal to vein	
HY	Hydrothermal breccia infill (part of)	VS	Vein selvedge	

REGOLITH & WEATHERING:

Regolith & Weathering Guidelines				
Code	Description			
TPD	Transported or superficial deposits: Material that has undergone significant transportation from source (eg: loess, gravels or colluvium). <i>NOT</i> scree.			
SOIL	Residual soil: Dervided from basement / bedrock material			
LAT	Lateritic residuum: Duricrust and lateritic gravels; complete replacement of primary and secondary fabric (rare in ChinalyOTE: Silcrete and ferricretes are often transported and not residual landform features.			
USAP	Upper saprolite: Lack of primary rock fabric; clay dominated; leached or secondary cemented.			
REDOX	Redox front: Strong Fe-rich zone between upper and lower saprolite denoting base of leaching of upper saprolite. Usually strongly goethitic (yellow) if acidic or occasionally hematitic (red) if alkaline. Generally <5m thick. <i>Not always present / identifiable</i>			
LSAP	Lower saprolite: Clay mineral dominated; <70% secondary oxides; primary fabric preserved; sulphides absent or replaced; may preserve rock colour.			
SAPRK	Saprock: <20% secondary oxides; fine detail in fabric preserved; sulphides weathered; preserved felsic minerals			
FRESH	Fresh rock: Fresh sulphides and silicates.			

PERCENTAGE RANGES:

To be used for: Mineral%, Shearing, Alteration Intensity, Vein%, Ore Mineral% & Sample Recovery

0, 0.5 (trace), 1, 2, 3, 5, 7, 10 (only 5% increments after 10%), 15, 20, 25, 30, 35.......85, 90, 95, 100

GEOTECHNICAL LOGGING CODES:

ROCK STRENGTH			
Code	DEFINITION & DESCRIPTION		
VW	VERY WEAK: Crumbles, can scratch with finger-nail, cut & peel with knife (eg: Clay)		
W	WEAK: Can scratch with iron nail, can cut but not peel with knife (eg: Gypsum)		
М	MEDIUM: Scratch with nail with difficulty, scratch with knife hammer 2-3 mm dent multiple blows to break		
S	STRONG: Difficult to scratch with a knife, hammer makes small dent (>1-2 mm), multiple blows to break		
VS	VERY STRONG: Hammer causes superficial damage (eg: Silicified rhyolite & BIF)		

NUMBER OF FRACTURE SETS (NFS)

Any whole number equal or greater than 0 (no decimals).

FRACTURE ROUGHNESS				
-	No Fractures			
PR	Planar rough	PP	Planar polished	
PS	Planar smooth	PK	Planar slickensided	
SR	Stepped rough	SP	Stepped polished	
SS	Stepped smooth	SK	Stepped slickensided	
UR	Undulating rough	UP	Undulating polished	
US	Undulating smooth	UK	Undulating slickensided	

LOGGING CODES

Colour Codes:

Colour Code	Colour Description	Colour Code	Colour Description	Colour Code	Colour Description
-	Not logged	KH	Khaki	RD	Red
BK	Black	KH1	Light Khaki	RD1	Light Red
BK1	Light Black	KH2	Dark Khaki	RD2	Dark Red
BK2	Dark Black	OR	Orange	TN	Tan
BN	Brown	OR1	Light Orange	TN1	Light Tan
BN1	Light Brown	OR2	Dark Orange	TN2	Dark Tan
BN2	Dark Brown	PK	Pink	WH	White
BU	Blue	PK1	Light Pink	WH1	Light White
BU1	Light Blue	PK2	Dark Pink	WH2	Dark White
BU2	Dark Blue	PU	Purple	YE	Yellow
GN	Green	PU1	Light Purple	YE1	Light Yellow
GN1	Light Green	PU2	Dark Purple	YE2	Dark Yellow
GN2	Dark Green				
GY	Grey				
GY1	Light Grey				
GY2	Dark Grey				

Drill Hole Types:

Drill Type	Drill Type Description
AC	Air Core Drill Hole
AUG	Auger Drill Hole (for geochemical sampling)
DDH	Diamond Drill Hole
PC	Percussion Drill Hole (open hole)
RAB	RAB Drill Hole
RC	Reverse Circulation Drill Hole
RCX	Reverse Circulation Drill Hole with Cross-over
TRENCH	Trench (treat as horizontal drill hole in database)
TUNNEL	Tunnel (treat as horizontal drill hole in database)
VAC	Vacuum

Drill Extensions / Re-entries:

Extension Type	Description
NONE	None
RE-ENTRY	Re-entry
WEDGE	Wedge

Naming convention for wedges / daughter holes:

	Description	Hole Name
	Parent / Mother Hole	SXDD105
	1 st Wedge / Daughter Hole	SXDD105W1
Γ	2 nd Wedge / Daughter Hole	SXDD105W2
Γ	3 rd Wedge / Daughter Hole	SXDD105W3
	4 th Wedge / Daughter Hole	SXDD105W4

Sample Type Codes:

Sample Type Code	Sample Type	Sample Type Code	Sample Type
WHCORE	Whole Core	PETROLOGY	Petrology sample
1/2CORE	1/2 Core Sample	ROCK	Rock Chip samples (trench / rock / tunnel)
1/3CORE	1/3 Core Sample	SOIL	Soil samples
1/4CORE	1/4 Core Sample	STREAM	Stream Sediment samples
AC 1m	Air core drilling 1m samples	AUGER	Auger Samples
AC 2m	Air core drilling 2m samples	VEG	Vegetation sample
AC 3m	Air core drilling 3m samples	STANDARD	Sample Standard / Blank (details in Sample Category)
AC 4m	Air core drilling 4m samples		
MUD 1m	Mud Rotary 1m sludge sample	RAB 1m	RAB drilling 1m samples
MUD 2m	Mud Rotary 2m sludge sample	RAB 2m	RAB drilling 2m composite samples
MUD 3m	Mud Rotary 3m sludge sample	RAB 3m	RAB drilling 2m composite samples
MUD 4m	Mud Rotary 4m sludge sample	RAB 4m	RAB drilling 4m composite samples
MUD 6m	Mud Rotary 6m sludge sample	RC 1m	RC Drilling 1m samples
PC 1m	Open Hole Percussion 1m samples	RC 2m	RC Drilling 2m composite samples
PC 2m	Open Hole Percussion 2m composite samples	RC 3m	RC Drilling 3m composite samples
PC 3m	Open Hole Percussion 3m composite samples	RC 4m	RC Drilling 4m composite samples
PC 4m	Open Hole Percussion 4m composite samples		

Note 1: For drill chip samples from RAB / AC / RC etc... choose the sample type used for the compositing interval. A smaller interval sample type will have a higher rank in the database than a wider sample interval. EG: If a 4m composite is resampled as 1m samples the assay results from an AC 1m sample will supersede an AC 4m sample. For database integrity the re-sampling is required to be done within the original composite sample interval.

Note 2: For drill core it is important to document what core remains in the core trays - samples are classed accordingly.

Sample Categories, used to identify / document standards, blanks and duplicate samples.

SampCat Code	Sample Category	SampCat Code	Sample Category
BLANK	Blank Sample (either quartz or barren country rock)	STD OREAS 13P	Mineralised Gabbro Norite (Disseminated NiS)
DUPLICATE	Duplicate sample from same site / interval	STD OREAS 14P	Massive Sulphides (2.1%Ni)
ORIGINAL	Original Sample	STD OREAS 24P	Unmineralised Gabbro
STD AANI-2		STD S2	
		STD S3	
		STD S4	

APPENDIX 3 SOIL GEOCHEMISTRY

APPENDIX 4 RAB GEOCHEMICAL DIGITAL DATA APPENDIX 5 PETROLOGY REPORT

Report Name:	Petrology of RAB holes (LYRB08-118 to 144). at the Lynd Project - Dido Dam. Tenement Number EPM15915.
Author:	Fiona Best – PHD Candidate CODES University of Tasmania
Date:	April – May 2009

Representative rock chips from each of the 27 RAB holes (LYRB08-118 to 144) drilled at the Lynd Project, Dido Dam, EPM15915, were thin sectioned and studied at the University of Tasmania. An overview of the main lithologies observed in these holes is given in *Table 1* and *Figure 1*, and the end of hole geology of each RAB hole is detailed in *Table 2*.

The basement geology of the area of EPM15915 covered by the RAB holes is dominated by medium grained, foliated diorites and tonalites. Hornblende is the main mafic phase in both rock types, and biotite is widespread but generally less abundant. Plagioclase is the dominant felsic phase in the diorites, with k-feldspar and quartz becoming more significant in the tonalites. It was common to observe gabbro, diorite and tonalite in individual RAB holes suggesting a close association and gradual transition between these rock types. Most RAB holes contained chips of finer grained gabbros and metagabbros (amphibolites) which are interpreted as mafic dykes. Rare ultramafic rocks consisting of wehrlites, pyroxenites and hornblendites were also observed in the drilled area. RAB chips composed entirely of opaques (magnetite) were associated with the pyroxenite.

Figure 1: Photomicrographs of thin sections from RAB holes, EMP15915, under polarized light: (a) wehrlite composed of cumulus olivines (partially serpentinised), clinopyroxene and magnetite (cross polarised light); (b) clinopyroxenite composed of interlocking clinopyroxenes and partially actinolite-replaced pyroxenes, oikocrystic hornblende, and intercumulus magnetite (cross polarised light); (c) hornblendite composed of flattened and aligned hornblende and plagioclase and minor small magnetites (plane polarised light); (e) fine grained hornblende gabbro composed of interlocking subhedral hornblende and plagioclase, minor biotite laths and small magnetites (plane polarised light); (f) medium grained hornblende gabbro to diorite composed of interlocking hornblende and plagioclase, minor biotite laths and small magnetites (plane polarised light); (g) biotite hornblende quartz diorite composed of interlocking hornblende and plagioclase, minor biotite laths and small magnetites (plane polarised light); (g) biotite hornblende quartz diorite composed of interlocking hornblende and plagioclase, minor k-feldspar and clots of biotite and hornblende (cross-polarised light); and (h) biotite tonalite dominated by k-feldspar, quartz and plagioclase and containing minor clots of biotite/ chlorite (plane polarised light).

ock type Petrographic description	
Wehrlite	
OI (35), Cpx or Amp (55), Mt (<10)	 Equigranular, medium grained 1mm rounded, fractured and partially serpentinised olivines 1mm, intercumulus, oikocrystic clinopyroxenes Clinopyroxenes entirely replaced by brown amphibole in places Smaller 0.5 mm cumulate magnetites, often forming small clots and occassionally included in olivines and clinopyroxenes/ amphiboles No sulphides
Clinopyroxenite Cpx (70), Hbl (25), Mt (5)	 Inequigranular, coarse grained Rounded clinopyroxenes/ relic clinopyroxenes generally 1- 2 mm in size Oikocrystic hornblendes (1-2mm) and smaller subhedral intercumulus hornblendes (<1mm) Low amphibolite facies - Clinopyroxenes partially to entirely replaced by actinolite and have thin hornblende rims Magnetite grains, <0.5 mm, occupies the intercumulus space and is enclosed within pyroxenes Based on other rock chips from the same hole it is possible that the clinopyroxeneite contains >cm-scale veins/ clots of magnetite
Hornblendite Hbl (100)	 Variable texture - medium to fine grained Euhedral to subhedral interlocking hornblendes Hornblendes flattened in places defining a weak foliation
Amphibolite Hbl (50), Pl (45), Mt (5)	 Inequigranular, fine to medium grained Hornblendes >1 mm, plagioclase <0.5 mm Flattened, elongate hornblendes and plagioclase define a strong foliation Magnetites <0.2mm, flattened and frequently enclosed within hornblende
Hornblende to hornblende biotite gabbro Hbd (40-45), Bt (5-10), Pl (40-45), Mt (2-5)	 Fine grained Equigranular, interlocking subhedral hornblende and plagioclase (partially altered by sericite). Laths of brown biotite define a weak foliation, <0.2 mm magnetites Medium grained Granular, interlocking subhedral hornblende and plagioclase. Hornblende is deep green, often twinned and predominantly slightly larger (1-2 mm) than plagioclase (1 mm). Smaller rounded plagioclase crystals are commonly included in hornblende. Magnetites (generally <0.5 mm) have curved boundaries at the contact with hornblende and plagioclase.
Hornblende to hornblende biotite diorite Hbd (20-35), Bt (0-15), Pl (50-55), Qtz (<5),	 Medium to coarse grained Equigranular, interlocking subhedral plagioclase and lesser hornblende Biotite (when present) often forms mm-scale clots enclosing smaller anhedral plagioclase crystals and is frequently strained Rare, rounded and partially actinolite altered clinopyroxenes Minor, mm-scale patches of strained quartz Small (<2 mm) magnetites generally closely associated with mafic minerals
Quartz diorite Hbd (15-20), Bt (0-10), Pl (60-65), Kfls (<5), Qtz (10-15), Mt (<1)	 Medium to coarse grained Equigranular, dominated by interlocking subhedral plagioclase Plagioclase is generally partially replaced by sericite Deep green hornblendes are subhedral to slightly rounded and frequently enclose small rounded plagioclase laths Biotite (when present) is generally small (<1mm) and occassionally forms minor clots
Tonalite Hbd (0-7), Bt (0-10), Pl (65-70), Kfls (5-10), Qtz (15-20)	 Medium to coarse grained Equigranular interlocking plagioclase and quartz dominates Feldspars are often partially replaced by sericite and epidote alteration is common in same samples Dark brown biotite laths (when present) are generally smaller than the felsic minerals (<1mm) and frequently form small clots Dark green subhedral hornblendes are frequently oikocrystic, enclosing small, rounded plagioclase Generally weakly foliated, defined by a flattening of quartz and biotite alignment

Table 1: Modal compositions and major petrographic characteristics of the main lithologies observed in RAB holes from the EPM15915, Lynd area (modal composition in volume %)

Hole ID	End of hole geology
LYRB08-118	Qtz diorite (hbl + bt)
LYRB08-119	Gabbro (hbl + bt)
LYRB08-120	Diorite (hbl + bt)
LYRB08-121	Tonalite (bt)
LYRB08-122	Qtz diorite (hbl + bt)
LYRB08-123	Wehrlite
LYRB08-124	Metagabbro/ amphibolite
LYRB08-125	No thin section available
LYRB08-126	Diorite (hbl + bt)
LYRB08-127	Diorite (hbl)
LYRB08-128	Diorite (hbl)
LYRB08-129	Diorite (hbl)
LYRB08-130	Hornblendite and clinopyroxenite
LYRB08-131	Diorite (hbl)
LYRB08-132	Diorite (hbl + bt)
LYRB08-133	Diorite (hbl + bt)
LYRB08-134	Diorite (hbl)
LYRB08-135	Qtz diorite (hbl + bt + ep)
LYRB08-136	Qtz diorite (hbl + bt + ep)
LYRB08-137	Tonalite (hbl + chl)
LYRB08-138	Qtz diorite (hbl)
LYRB08-139	Qtz diorite (hbl)
LYRB08-140	Qtz diorite (hbl + bt)
LYRB08-141	Tonalite (hbl + bt)
LYRB08-142	Tonalite (hbl)
LYRB08-143	Diorite (hbl + bt)
LYRB08-144	Gabbro (hbl)

Table 2: End of hole geology, RAB holes LYRB08-118 to LYRB08-144