

Tibor-1

ATP 539

Cooper/Eromanga Basin Queensland

Well Completion Report

CONTENTS

1. Well Data Card

2. Drilling and Completion Data

- 2.1 General Data
- 2.2 Rig Data
- 2.3 Well Schematic
- 2.4 Time vs Depth
- 2.5 Drilling Data Summary

3. Formation Sampling, Evaluation and Testing

- 3.1 Wellsite Geologist
- 3.2 Mudlogging
- 3.3 Ditch Cutting Samples
- 3.4 Conventional Coring
- 3.5 Sidewall Cores
- 3.6 Mud Gas Sampling
- 3.7 Cuttings Lithology Descriptions
- 3.8 Hydrocarbon Shows
- 3.9 LWD Logging
- 3.10 Wireline Logging
- 3.11 Temperature
- 3.12 Velocity Survey (VSP/CS)

4. Geology

- 4.1 Reasons for Drilling
- 4.2 Stratigraphic Formation Tops
- 4.3 Well Stratigraphy
- 4.4 Hydrocarbon Shows
- 4.5 Petrophysical Evaluation and Core Analysis
 - 4.5.1 Petrophysics
 - 4.5.2 Coring
- 4.6 Prospect Evaluation
 - 4.6.1 Trap
 - 4.6.2 Seal
 - 4.6.3 Reservoir
 - 4.6.4 Charge
- 4.7 Formation Testing
 - 4.7.1 Wireline Pressures/Samples
 - 4.7.2 DrillStem Testing

5. Conclusions and Contributions to Geological Knowledge

Figures

- 1. Location Map
- 2. Location Map water bore P2
- 3. Horner Plot Temperature from Wireline Runs
- 4. Generalised Stratigraphic Column, Eromanga and Cooper Basins
- 5. Tibor-1: Depth Structure Map on Hutton Formation (pre/post –drill)
- 6. Tibor-1: inline Seismic Section 3238 through the Triclops Structure showing wellpath, formation tops (pre-drill) and major bounding fault
- 7. Tibor-1: Inline Seismic Section 3238 through the Triclops Structure showing wellpath, formation tops (post-drill) and major bounding fault

Tables

- 1. Wireline logs suites for Triclops-1
- 2. Maximum temperatures recorded for Tibor-1
- 3. Tibor-1, Formation Tops, Actual vs Prognosed
- 4. Petrophysical Net Pay Summary

Appendices

- 1. Daily drilling reports
- 2. Drilling mud reports
- 3. Deviation survey report
- 4. Leak-Off test report
- 5. Casing and cementing report Halliburton
- 6. Bit record Baker Hughes
- 7. Daily geology reports
- 8. Composite log
- 9. Cuttings descriptions
- 10. Wireline report and Log data Schlumberger
- 11. Petrophysical report
- 12. MudLogging data Geoservices
- 13. Wireline formation pressure and fluid sampling none on Tibor-1
- 14. Core data none on Tibor-1
- 15. Drill stem tests none on Tibor-1

Well Data Card

General

Location:	Latitude GDA 94:	25°52′17.80″S	Operator	Drillsearch 10	0%
	Longitude GDA 94:	141°16′19.39″E	Status:	Plugged & Ab	andoned
	GDA 94, Zone 54	527 256	Rig:	Ensign 918	
	GDA 94, Zone 54	7 138 506	Total Depth:	Driller:	1723.0m
	Seismic Survey	2012 Kaden 3D		Logger:	1723.5m
	Seismic Lines	Inline 4334			
		Crossline 2392	Plugs:	#1 1637m	n - 44.0 bbl
Permit		ATP 539P		#2a 1329m	n - 18.5 bbl
Elevation:	GL (AMSL):	135.0 m		#2b 1281m	n - 27.7 bbl
	RT (AMSL):	140.2 m		#3 781m	-28.5 bbl
				#4 Surface	e - 6.1 bbl
Мар:	1:250,000	Canterbury			
Date spudded	: 07/02/2013	19:00 hrs.	Casing	Size	Shoe
Date release:	23/02/2013	12:00 hrs.		9-5/8"	750.9m
	-,-,				
Type Structure	: Fault-Bou	nded Anticline	Hole Size	12-14"	754 mMD
				8-1/2"	1723mMD

Stratigraphy

Age	Formation	Depth (m KB)	Elevation (m SS)	Thickness (m)
Recent - Late Cretaceous	Surficial & Winton Formation	5.0	140.2	628.0
	Mackunda Formation	633.0	-492.8	116.9
	Allaru Mudstone	749.9	-609.8	188.1
Early Cretaceous	Toolebuc Formation	938.0	-797.7	40.2
	Wallumbilla Formation	978.2	-837.9	232.4
	Cadna-Owie Formation	1210.6	-1070.3	79.5
Early Cret - Late Jurassic	Murta Formation	1290.1	-1149.8	25.8
	Namur Sandstone	1315.9	-1175.6	92.2
Late Jurassic	Westbourne Formation	1408.1	-1267.8	92.2
	Adori Sandstone	1500.3	-1360.3	24.8
Late to Middle Jurassic	Birkhead Formation	1525.1	-1385.3	96.9
Middle Jurassic	Hutton Sandstone	1622.1	-1481.8	101.4
	Loggers TD	1723.5		

Wireline Logs

Log	Run	Interval	BHT / Time		
SP	1 TD to Surface Casing Shoe				
PPC	1	TD to Surface Casing Shoe			
HNGS	1	TD to Surface Casing Shoe	108.8°C / 10.78 hours after final		
PEX (TDL)	1	TD to Surface Casing Shoe	circulation at 1690.7m.		
HRLA	1	TD to Surface Casing Shoe			
ADT	1	TD to Surface Casing Shoe			
PPC	2	TD to 10m			
MAST	2	TD to 10m	114.4°C / 20.17 hours after final		
GPIT	2	TD to 10m	circulation at 1698.6m.		
VSI1 3		TD to 10m	119.4°C / 28.58 hours after final circulation at 1711.0m.		

Drill Stem Tests

No	Interval / Formation (metres)	Periods (mins)	EMP IP/FP (psig)	EMP FSIP (psig)	Fluid To Surface (mins)	Max. Surface Press. (psia)	TC. mm	BC. mm	Rev Out	Result
	No drill stem tests conducted.									

Conventional Full Bore Cores

No.	Interval	Formation	Cut (m)	Rec.(m)			
	N/A No Cores Cut.						

Sidewall Cores

Depth	Formation	Recovered	Depth	Formation	Recovered		
No SideWall Cores.							

Perforations

Interval	Formation	Shots / m	Interval	Formation	Shots / m		
Plugged and abandoned. Not cased.							

Log Interpretation

Interval	Formation	Porosity (%)	Sw (%)	Vsh (%)	Gross (m)	Net Pay (m)
1315.8 to 1408.0	Namur Sandstone	11.6	57.9	14.2	92.2	2.44
1526.0 to 1622.0	Birkhead Formation	10.2	60.7	23.0	96	0.15
1622.0 to 1725.0	Hutton Sandstone	11.5	60.1	10.3	103	0.91

Core Analysis

Interval	Por.	Perm.	So	Sw	Interval	Por.	Perm.	So	Sw
	N/A No Cores Cut.								

Summary

The objectives of Tibor-1 were to

- Test the hydrocarbon prospectivity of a new play fairway within the "Inland Cook" region by demonstrating oil migration from the Yamma Yamma Depression into the western flank of the SWQ Eromanga Basin.
- Evaluate the potential for economic oil within Tibor-1.

Tibor-1 is an oil exploration well located 7.1 km southeast of Curalle-1 and 11.4km northeast of Planet Downs-1 in ATP 539P, southwest Queensland. The primary targets were the Hutton Sandstone and sands of the Birkhead Formation. Secondary targets were the Namur Sandstone and sands of the Adori and Westbourne Formations. The pre-drill structure was interpreted as a fault-related anticline with 14m of independent closure.

Participation interest in Tibor-1 was 100% Drillsearch Energy Limited.

Tibor-1 spudded on 7th February 2013 and 12-1/4" surface hole was drilled to 754m MDRT while taking teledrift surveys approximately every 3 stands drilled. Maximum measured deviation was 1.0deg at 402m MDRT. The 9-5/8" surface casing was set at 750.9m MDRT. The well was displaced to 9.8ppg mud and a Leak-Off Test (LOT) was performed (Appendix 4). Leak-off occurred at 16.6ppg EMW.

The Blow-Out-Preventer (BOP) was nippled up and the 8-1/2" production hole drilled to 1357m MDRT. A wiper trip was performed to 735m RKB while some minor rig repairs were effected and no hole problems were observed. Drilling continued from 1357m MDRT to 1473m MDRT working tight hole at 1463m MDRT and 1473m MDRT. Drilling continued to 1486m MDRT encountering problems on connections which required excessive backreaming to clear the hole. The mud properties were adjusted, mud weight increased to 9.3ppg and the water loss reduced but this made little difference. Problems were thus suspected with the BHA and a decision was made to Pull Out Of Hole (POOH) to inspect the BHA and change the bit. Overpulls of up to 10-15klbs were observed while Running In Hole (RIH) at connections at 1463m MDRT, 1473m MDRT and 1482m MDRT. These intervals were washed and reamed clear.

The 8-1/2" production hole was drilled to a Total Depth (TD) of 1723m MDRT and the hole was circulated clean. TD was reached on 18th February 2013. A normal Eromanga Basin sedimentary section (Cretaceous and Jurassic) was penetrated with the formation tops being from 50m (Allaru Mudstone) low to 16.2m high (Hutton Sandstone) to prognosis. The Hutton Sandstone primary target was 16.2m high to prognosis and drilling was terminated after penetrating 100.9 m of the Hutton Sandstone as per the criteria set out in the Well Proposal (ref ATP 539, Tibor-1 Well Proposal and Geological Program).

Hydrocarbon fluorescence observed in the Namur Sandstone, sandstone of the Adori Formation and Hutton Sandstone are all interpreted as being residual oil shows.

Final TD logging was conducted by Schlumberger Wireline and consisted of three runs from TD to 750.9m MDRT, the 9-5/8" casing shoe (**Table 1 and Appendix 10**):

Run 1: PEX/ADT/HRLA/HNGS.

Run 2: MAST/PPC

Run 3: VSI-1

Net pay, interpreted from the petrophysical analysis, ranged from 0.5m to 2.4 m through the Namur, Hutton and Birkhead formations (**Table 4** and **Appendix 11**).

The maximum measured hole deviation was 2.0deg at 960m MDRT but the well was "brought back" to ca 0.8 deg by TD.

Tibor-1 was plugged and abandoned with four cement plugs (Section 2.3).

The drilling rig Ensign 918 was released at 12:00hrs 23rd February 2013.

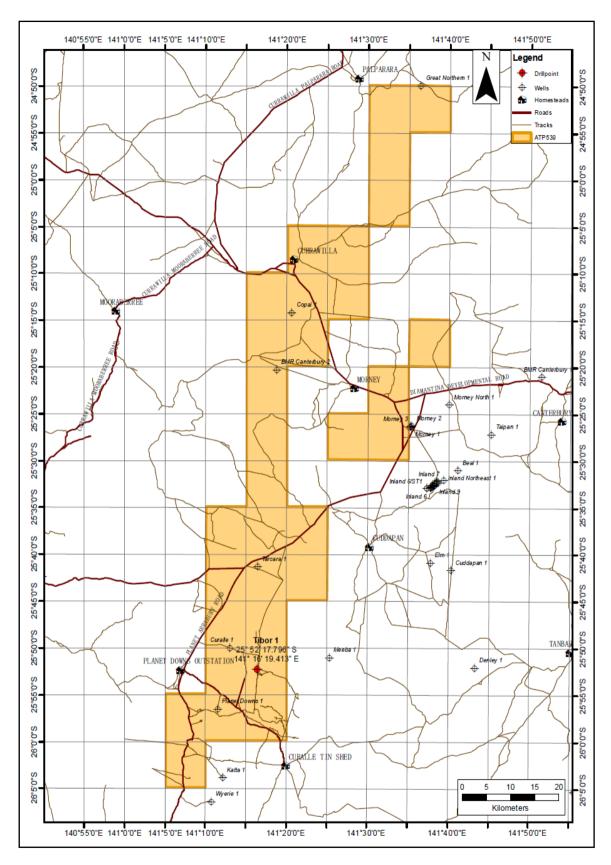


Figure 1: ATP 539: Location map with Tibor-1 Location

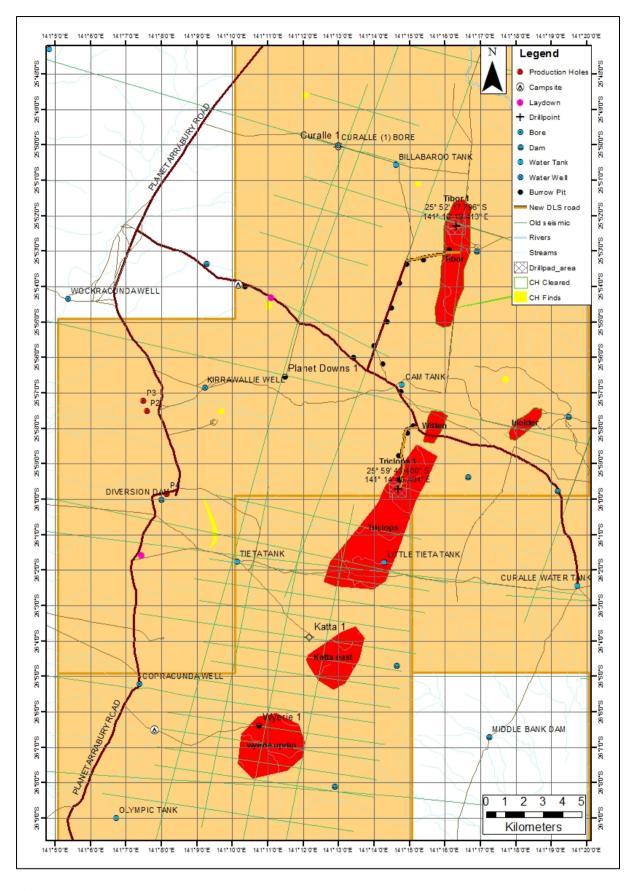
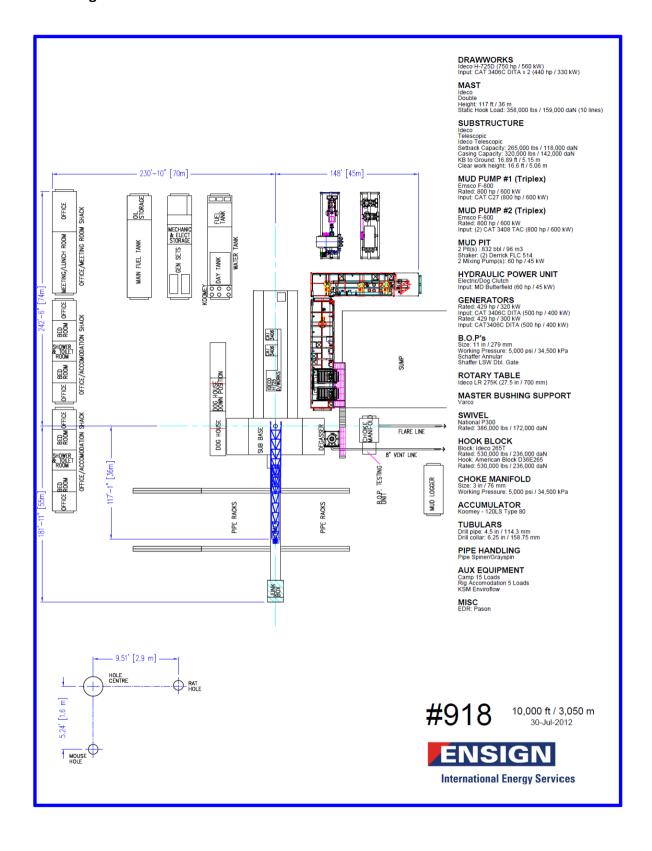


Figure 2: Water Bore Location

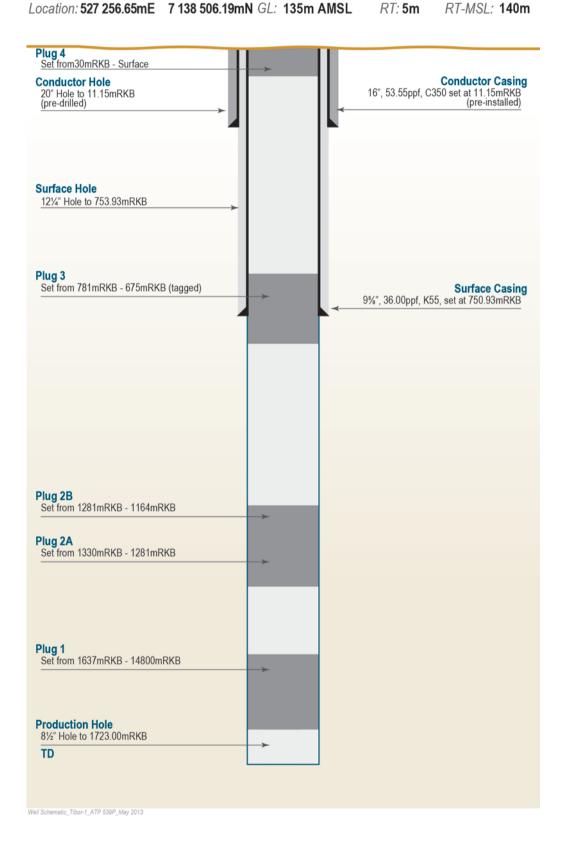
2. Drilling & Completion Data

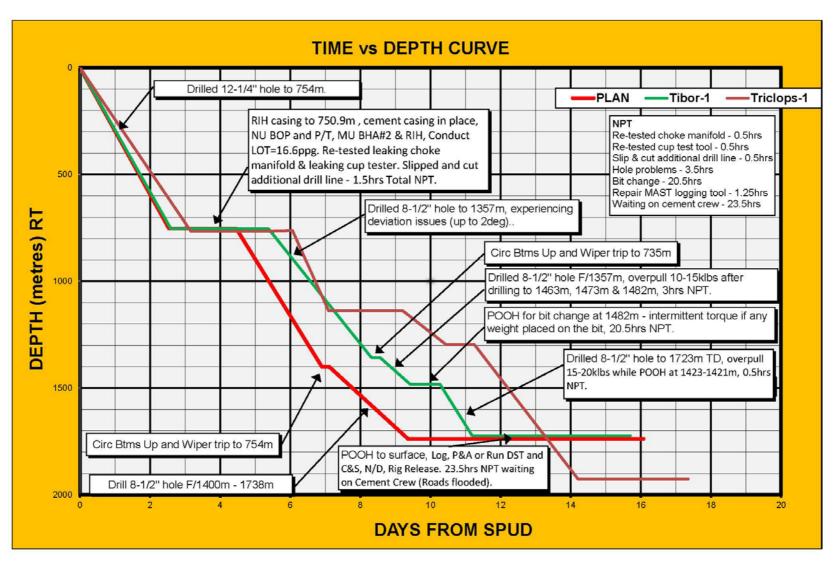
A well Schematic is included in **Section 2.3**. A final time-depth curve is provided in **Section 2.4**.


The daily drilling reports are contained in **Appendix 1**. Daily Mud Reports are all included in **Appendix 2**.

A full Deviation Survey Report is included in **Appendix 3**. Drilling water for the well was supplied from Water Bore 2 (P2 – Figure 2), located approximately 12kms south west of Tibor-1. Water was transported by tanker.

2.1 General


Well Name		Tibor-1
Operator		DrillSearch (100%)
		55 Clarence Street
		Sydney NSW 2000
Permit		ATP – 539P, Cooper Basin, Queensland
Well Designation		Vertical Exploration
Location	Latitude	25°52′17.80″S
	Longitude	141°16′19.39″E
	Easting:	527 256
	Northing:	7 138 506
	Projection	MGA 54
	Spheroid	GRS 80
	Datum	GDA 94
	Seismic	Inline 4334
		Crossline 2392
Elevations	RT (mAMSL)	140.2
	GL (mAMSL)	135m
Date Drilling Commenced		19:00 hrs. 7th February 2013
Date drilling Completed		23:30 hrs. 18th February 2013
Date Rig Released		12:00 hrs. 23rd February 2013
Total Depth	Driller	1723.0 m
	Logger	1723.5 m
Status		Plugged and Abandoned


2.2 Rig Data

2.3 Well Schematic

WELL SCHEMATIC Well: TIBOR-1 Block: ATP 539P Date: May 2013

2.5 Drilling Data Summary

The following is the daily operations summary for Tibor-1. It has been compiled from the daily drilling reports, all of which are contained in **Appendix 1**. The depths in the following summary are those reached at 24:00 hours on each day with the operations given for the previous 24 hour period.

Ray Millar and Guy Holmes provided onsite drilling supervision for Drillsearch Energy Ltd.

Date	Depth (m MDRT)	24 Hour Summary
01 Feb 2013		Commenced rigging down and rig move to Tibor-1 location. Rigged down 5%, Rig moved 0%.
02 Feb 2013		Continued rigging down and rig move operations. Commenced rigging up on Tibor-1 location. Rigged down 80%, Rig moved 10%, Rigged up 5%.
03 Feb 2013		Continued rigging down and rig move operations. Continued rigging up on Tibor-1 location. Rigged down 90%, Rig moved 70%, Rigged up 25%.
04 Feb 2013		Continued rigging down and rig move operations. Continued rigging up on Tibor-1 location. Rigged down 100%, Rig move 100%, Rigged up 60%.
05 Feb 2013		Continued rigging up on Tibor-1 location. Rigged up 80%.
06 Feb 2013		Continued rigging up on Tibor-1 location.
07 Feb 2013	34.0	Continued rigging up on Tibor-1 location. Spudded well and drilled 12-1/4" hole from surface to 34m MDRT.
08 Feb 2013	331.0	Drilled 12-1/4" hole from 34 - 331m MDRT. Took teledrift surveys every 3 x joints. Ran single shot wireline survey every 150m.
09 Feb 2013	655.0	Drilled 12-1/4" hole from 331 - 655m MDRT. Took teledrift surveys every 3 x joints. Ran single shot wireline survey every 150m.
10 Feb 2013	754.0	Drilled 12-1/4" hole from 655 - 754m MDRT. Circulated hole clean. POOH to surface and laid out BHA #1. Rigged up to run casing. Ran 9-5/8" surface casing to 597m MDRT.
11 Feb 2013	754.0	Ran and cemented 9-5/8" casing (shoe set at 750.9m). Installed landing ring

Date	Depth (m MDRT)	24 Hour Summary
		slips. Installed A-section wellhead. Nippled up BOP, bell nipple and flowline.
12 Feb 2013	754.0	Completed nippling up BOP. Pressure tested BOP rams, annular and connections. Ran cup tester and tested casing/wellhead connection. Performed Koomey drawdown test. Installed wear bushing. Made up BHA#2 and RIH. Tagged cement at 737.6m MDRT. Drilled plugs, float collar, shoe track and cement shoe. Cleaned rat hole to 754m MDRT.
13 Feb 2013	933.0	Displaced well with 8.9ppg mud while drilling 3m new formation. Circulated and conditioned mud. Conducted LOT. Drilled ahead 8-1/2" hole from 757 - 933m MDRT.
14 Feb 2013	1100.0	Drilled 8-1/2" hole from 933 - 1100m MDRT.
15 Feb 2013	1338.0	Drilled 8-1/2" hole from 1100 - 1338m MDRT. Ran single shot surveys every 150m MDRT.
16 Feb 2013	1473.0	Drilled 8-1/2" hole from 1338 - 1357m MDRT. Circulated bottoms up. Performed wiper trip to shoe while repairs were made to hydromatic. RIH and drilled 8-1/2" hole from 1357 - 1473m MDRT. Worked tight connections at 1463m and 1473m.
17 Feb 2013	1486.0	Drilled 8-1/2" hole to 1486m MDRT. Encountered problems on connections from 1460 - 1486m MDRT (Adori Member). Excess backreaming required to make connections. Increased mud weight to 9.3ppg and reduced water loss to 4. No improvement. POOH and inspected BHA. Made up new bit and RIH. Washed and reamed from 1412 - 1453m MDRT.
18 Feb 2013	1723.0	Washed and reamed from 1453 - 1486m MDRT. Drilled 8-1/2" hole from 1486 - 1723m MDRT. Circulated hole clean.
19 Feb 2013	1723.0	Circulated hole clean at 1723m TD. Performed wiper trip to 1365m MDRT. RIH to 1723m MDRT. No Fill observed. Ran magnetic single shot survey. POOH. Rigged up Schlumberger and ran PEX-ADT-HRLA-HNGS (Run 1). POOH and laid out tools. Schlumberger RIH with MAST tool (Run 2).
20 Feb 2013	1723.0	Continued running wireline logs with Schlumberger Run 2. POOH and laid out tools. Schlumberger RIH with VSI tool (Run 3). Rigged down Schlumberger. RIH with BHA and POOH, laying out drill pipe sideways. Made up 2-7/8" cement stinger and RIH on DP.

Date	Depth (m MDRT)	24 Hour Summary
21 Feb 2013	1723.0	Pumped cement Plug #1 at 1637m MDRT. POOH to 1330m MDRT (Plug 2a setting depth) and circulated.
22 Feb 2013	1723.0	Set and displaced cement plugs #2a, #2b and #3. Waited on cement, laid down drill pipe. Tagged cement plug #3. Laid down drill pipe. Displaced the hole contents to inhibited water. Recovered wear bushing.
23 Feb 2013	1723.0	Pressure tested Plug #3 to 1500psi for 10mins. Halliburton set Plug #4 at surface. Removed BOP and cleaned mud tanks. Laid out Kelly and cut off the wellhead. Released rig at 12:00hrs.

3 Formation Sampling, Evaluation and Testing

3.1 Wellsite Geologist

Alan Wrightstone and Craig Bunting provided onsite geological supervision for Drillsearch Energy Ltd and prepared the Well Composite Log included as **Appendix 8**.

3.2 Mudlogging

Geoservices Overseas S.A provided mudlogging services. Cuttings gas was monitored from surface conductor shoe to TD using a FID gas chromatograph. A mudlog recording lithology, penetration rate, mud gas and other data was prepared and, along with the Drill Log, 24hr TimeLog, digital mudlogging drill and gas data and the sample manifest, is included in **Appendix 12**

3.3 Ditch Cutting Samples

Three sets (each 250gms) of washed and air-dried cuttings were collected and described from 10m to 1723mMD. They were stored in suitably labelled plastic bags with one set preserved in Samplex trays.

The sampling frequency was every 10m from 10m to 1300m, and every 3m from 1300m to 1723m

All samples were delivered to *Challenger Geological Services, 13-17 Weaver Street, Edwardstown 5039, South Australia* for storage and distribution.

Set 1 was despatched to the Queensland Government Regulator in Brisbane.

Sets 2 and 3 (Samplex) were retained for Drillsearch at Challenger Geological in Adelaide.

3.4 Conventional Coring

No cores were obtained from Tibor-1

3.5 Sidewall Cores

No sidewall coring was conducted in Tibor-1

3.6 Mud Gas Sampling

No Isotubes or Isojars were collected for Mud Gas Isotope Logging

3.7 Cuttings Lithology Descriptions

Descriptions for each individual ditch cuttings sample (collected at 3m and 10m intervals) are included in **Appendix 9**.

3.8 Hydrocarbon Shows

Total gas was recorded and analysed (chromatograph) from surface to TD. All ditch cuttings were checked for hydrocarbon fluorescence. Hydrocarbon fluorescence was recorded in sandstones of the Namur, Adori and Hutton Formations from 1380.0 - 1713.0mMDRT. Descriptions of hydrocarbon fluorescence observed in the drill cuttings are included in **Section 4.4**.

3.9 LWD Logging

MWD/LWD was not utilised on Tibor-1.

3.10 Wireline Logging

Wireline logs were run by Schlumberger. The full details of the wireline runs along with the digital data files are included in **Appendix 10**. Alan Wrightstone and Craig Bunting (Wellsite Geologists) and Rothi Hamza (AfriQA) were the wireline witnesses. In Run 2 the GR and Sonic were continued up through the 9-5/8" casing to surface.

Run #	Type log	Name	Interval mMD
1	EDTC/SP/HGNS/PEX-TLD / HRLA/ADT	Laterolog, Compensated Z-Density, Compensated Neutron Log, Spectral Gamma Ray Log, Dielectric, Spontaneous Potential	754 – 1723.5
2	EDTC/PPC/MAST/GPIT	Power Positioning Caliper, Sonic Scanner, Geometric Position Inclination Tool	0 – 1723.5
3	VSI-1	Checkshot	10 – 1723.5

Table 1: Wireline logs suite for Tibor-1

3.11 Temperature

The following maximum temperatures (**Table 2**) were recorded from wireline logs (logger depth).

Run	Temperature	Time Since Circ. stopped
EDTC/SP/HGNS/PEX-TLD / HRLA/ADT	108.8 Deg C at 1690.7mMDRT	10.78 hours
EDTC/PPC/MAST/GPIT	114 Deg C at 1698.6mMDRT	20.17 hours
VSI	119 Deg C at 1711m MDRT	28.58 hours

Table 2: Maximum temperatures recorded for Tibor-1

The extrapolated bottom-hole temperature is calculated at 125 deg C.

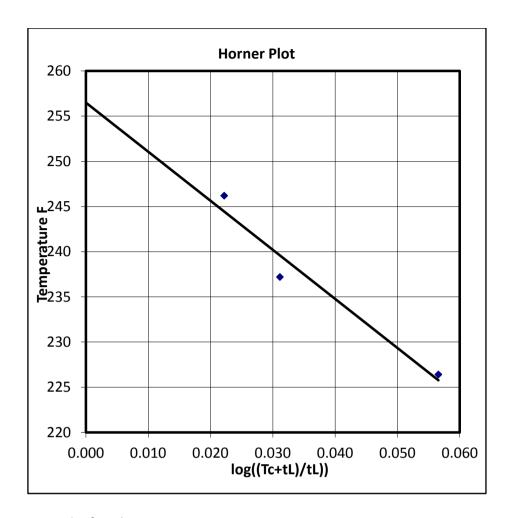


Figure 3: Horner Plot for Tibor-1.

3.12 Velocity Survey

A Checkshot survey was performed at TD over the entire well to surface (Table 1). Full details of the survey including the digital files are included in *Appendix 10*.

4. Geology

4.1 Reasons for Drilling

Tibor-1 was proposed as an exploration well to test the hydrocarbon potential of a four-way dip closure (a fault related anticline with approximately 14m of independent closure) on the Curalle anticline on the northern flank of the Cooper/Eromanga basin.

The primary targets were the Middle Jurassic Hutton Sandstone and sands of the Late Jurassic Birkhead Formation. Secondary targets were sands of the Late Jurassic Namur Sandstone. Stacked pay was anticipated as mapping indicated the closure extended from the Top of the Early Cretaceous Murta Formation to within the Middle Jurassic Hutton Sandstone. Sands of the Westbourne Formation and the Adori Sandstone were also considered to have potential to be hydrocarbon bearing if porosity was preserved.

The closest wells to Tibor-1 are Planet Downs-1, Curalle-1 and Meeba-1 (**Figure 1**). Curalle-1 and Planet Downs-1 are located on the Curalle Dome, and are respectively 6.8km NW and 11km SW of the Tibor-1 drilling location. Meeba-1 was drilled on a NNW-SSE trending anticline 15km east of the proposed well location. The Inland Oil Field, a Hutton oil producer, is located 52km to the southwest, and the Cook Oil Field, a Hutton oil producer as well, is approximately 92km north east.

4.2 Stratigraphy - Formation Tops

The stratigraphic prognosis for Tibor-1 was made utilising the results of surrounding wells and interpretation of the 3D seismic data. The well penetrated a stratigraphic section comprising approximately 1723m of surficial and Eromanga Basin sediments (Cretaceous-Jurassic) and terminating in the Hutton Sandstone.

Formation	Actua	I	Pred	icted	High /	Low
Formation	m SS	m MD	m SS	m MD	(m)
Winton	140.2	5.0				
Mackunda	-492.8	633.0	-475	615	17.8	low
Allaru Mudstone	-609.8	749.9	-560	700	49.8	low
Toolebuc	-797.7	938.0	-789	929	8.7	low
Wallumbilla	-837.9	978.2	-835	975	2.9	low
Cadna-owie	-1070.3	1210.6	-1075	1215	-4.7	high
Murta Formation	-1149.8	1290.1	-1146	1286	3.8	low
Namur Sst	-1175.6	1315.9	-1176	1316	-0.4	high
Westbourne	-1267.8	1408.1	-1272	1412	-4.2	high
Adori Sst	-1360.3	1500.3	-1342	1482	18.3	low
Birkhead	-1385.3	1525.1	-1401	1541	-15.7	high
Hutton Sst	-1481.8	1622.1	-1498	1638	-16.2	high

Table 3: Tibor-1: Formation Tops Actual vs. Prognosed

4.3 Stratigraphy

The stratigraphic section encountered in Tibor-1 is briefly described below.

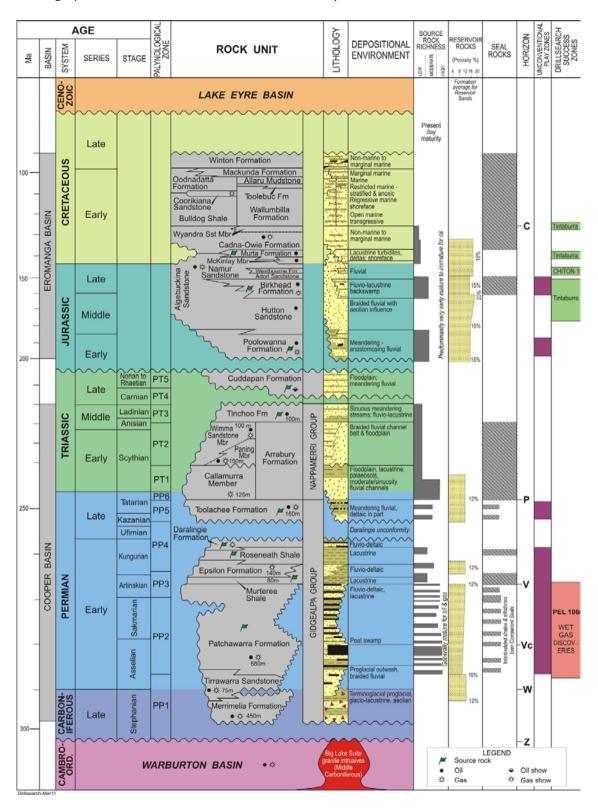


Figure 4: Generalised Stratigraphic Column: Eromanga and Cooper Basins.

Detailed lithology descriptions of the section encountered in Tibor-1 are presented in **Appendix 8** - Composite Well Log and **Appendix 9** - Cuttings Descriptions

The following stratigraphic description is a summary of the lithologies seen in the well, based on their broad lithostratigraphic subdivisions. All depths are measured and referenced to the rotary table.

There have been no Biostratigraphic studies performed and any ages referred to are inferred.

Surficial & Winton Formation

Depth: 5.0 – 633.0 m MDBRT **Thickness**: 628.0 m

The Winton Formation is a very argillaceous sequence characterised by interbedded argillaceous sandstone, limestones, claystones and siltstone with abundant carbonaceous laminae.

SANDSTONE: light grey to very light greenish grey, very fine grained, sub-angular to sub-rounded, well sorted, friable to moderately hard, weak siliceous cement to locally moderate calcareous cement, occasional very light grey argillaceous matrix, minor green grey lithic fragments, minor brownish black carbonaceous material, nil to very poor visible porosity, no hydrocarbon fluorescence.

CLAYSTONE: light grey to greenish grey becoming brownish grey to medium grey with depth, very light grey in parts, , sub-blocky, soft to firm, silty in part, moderately calcareous in part, trace carbonaceous detritus, trace very loose quartz.

SILTSTONE: light grey to greyish brown with depth, minor very light grey, , sub-blocky, soft to firm minor very fine quartz grains, 10% lithic fragments, micro-micaceous in part, trace brownish black carbonaceous specks, rare fine coaly laminations.

LIMESTONE: mudstone, brownish grey to olive grey, blocky to sub-blocky, firm to commonly moderately hard, silty in part, commonly argillaceous, trace carbonate specks.

Mackunda Formation

Depth: 633.0 –749.9 m MDBRT **Thickness**: 116.9 m

The Mackunda Formation is represented by weakly calcareous siltstones interbedded by strongly calcareous sandstone and argillaceous limestone.

SILTSTONE: olive grey to greyish brown transitioning to medium dark grey with depth, sub-blocky to occasionally blocky, soft to firm, weakly calcareous, traces of very fine quartz grains, lithics, occasionally argillaceous in part.

SANDSTONE: very light to medium grey, translucent light greenish grey, very fine to fine, sub-angular to sub-rounded, moderately well sorted, sub-spherical, firm and friable, trace argillaceous matrix, common moderate to strong calcareous cement, nil to very poor visible porosity, no hydrocarbon fluorescence.

LIMESTONE: mudstone, yellowish grey to occasionally light grey, sub-blocky, soft, commonly argillaceous

Allaru Mudstone

Depth: 749.9 – 938.0 m MDBRT **Thickness:** 188.1 m

The Allaru Mudstone is characterised by siltstones with minor interbedded strongly calcareous sandstones and argillaceous limestone.

SILTSTONE: olive grey to greyish brown becoming medium dark grey with depth, sub-blocky to occasionally blocky, firm to moderately hard, weakly calcareous, trace very fine quartz grains, occasionally argillaceous in part.

SANDSTONE: very light to medium grey, translucent, very fine to fine, sub-angular to sub-rounded, moderately well sorted, sub-spherical, firm to friable, trace argillaceous matrix, common moderate to strong calcareous cement, nil to very poor visible porosity, no hydrocarbon fluorescence.

LIMESTONE: mudstone, yellowish grey to occasionally very light grey, sub-blocky, soft, commonly argillaceous.

Toolebuc Formation

Depth: 938.0 – 978.2 m MDBRT **Thickness**: 40.2 m

The Toolebuc Formation is represented by weakly calcareous siltstone.

SILTSTONE: olive grey to greyish brown becoming medium dark grey with depth, sub-blocky to occasionally blocky, firm to moderately hard, weakly calcareous, trace very fine quartz grains, occasionally argillaceous in part.

Wallumbilla Formation

Depth: 978.2 – 1210.6 m MDBRT **Thickness**: 232.4 m

The Wallumbilla Formation is represented by siltstone interbedded by calcareous sandstone and slightly dolomitic limestone.

SILTSTONE: greyish black to olive black, minor medium grey to dark grey, sub-blocky to sub-fissile moderately hard to occasionally very hard, minor firm, argillaceous in part, commonly arenaceous in part, weakly calcareous in part, trace loose very fine grained quartz, trace soft white calcareous material.

SANDSTONE: translucent to very light grey, very fine to minor fine, common silt sized, moderately well sorted, sub-angular to sub-rounded, sub-spherical, friable to moderately hard aggregates, occasionally friable, minor weak calcareous cement, trace quartz silt matrix, minor argillaceous matrix, rare to minor very fine grained glauconite, trace fine grained black lithic fragments, nil to very poor visible porosity, no hydrocarbon fluorescence.

LIMESTONE: mudstone, white to very light brown, sub-blocky, soft to crumbly common brown argillaceous microlaminations, slightly dolomitic, trace loose medium to coarse calcite grains.

Cadna-Owie Formation

Depth: 1210.6 – 1290.1 m MDBRT **Thickness**: 79.5 m

The Cadna-Owie Formation is characterised by siltstone locally grading into arenaceous siltstone, interbedded with calcareous sandstone.

SILTSTONE: dark grey to medium grey, common greyish black to olive black, , sub-blocky to trace sub-fissile, slightly hard to very hard, commonly brittle, argillaceous in part, commonly arenaceous in

part locally grading to arenaceous siltstone with common strong calcareous-dolomitic cement, weakly calcareous in part, trace loose medium grained white calcite, rare k-feldspar rare coal grains. SANDSTONE: translucent to very light grey becoming medium dark grey to greyish black with depth, very fine to lower very fine grained, commonly silt, well sorted, sub-angular to sub-rounded, sub-spherical to sub-elongate, hard to very hard, locally grading to arenaceous siltstone, strong calcareous-dolomitic cement, rare white lithic and feldspar fragments, trace glauconite, nil to very poor visible porosity, no hydrocarbon fluorescence.

Murta Formation

Depth: 1290.1 – 1315.9 m MDBRT **Thickness**: 25.8 m

The Murta Formation is characterised by weak calcareous-dolomitic sandstone.

SANDSTONE: light grey to medium light grey, sub-blocky to blocky, rare medium to very fine grained, rare coarse shattered quartz grains/mineral vein fragments, moderately sorted, sub-angular, sub-spherical to sub-elongate, moderately hard, variable, weak calcareous-dolomitic cement in places grading to strong siliceous cement, common K-feldspar, common kaolin, nil to poor visible porosity, *no hydrocarbon fluorescence*.

Namur Sandstone

Depth: 1315.9 – 1408.1 m MDBRT **Thickness:** 92.2 m

The Namur Sandstone is comprised of translucent loose sandstone with carbonaceous siltstone laminations.

SANDSTONE: translucent to very light grey, localised brownish black to greyish black (50%), very fine to medium grained, very well sorted, sub-angular to angular, moderate sphericity, loose to common friable aggregates, locally grading into arenaceous siltstone, weak siliceous cement, rare lithic fragments, k-feldspar grains, poor to good inferred porosity, 10% pin-point pale dull green/yellow fluorescence, bluish white crush cut, thick yellowish white residual ring (1380.0 – 1383.0 m) SILTSTONE: dark grey to grey black, rare olive black, , sub-blocky to blocky, firm to occasionally moderately hard, where olive black crumbly, rarely arenaceous to commonly argillaceous, carbonaceous, trace micro-mica in part.

Westbourne Formation

Depth: 1408.1 – 1500.3 m MDBRT **Thickness**: 92.2 m

The Westbourne Formation is an interbedded and interlaminated sandstone and siltstone sequence.

SILTSTONE: greyish black to brownish black becoming dark yellowish brown to yellowish brown with depth, firm to minor moderately hard, sub-blocky to rarely sub-fissile, commonly arenaceous grading to arenaceous siltstone in part, micro-micaceous in part, non-calcareous.

SANDSTONE: translucent to very light grey, platy, very fine to medium, rare coarse grains, moderately well sorted, sub-rounded to rarely sub-angular, sub-elongate, sub-spherical, slightly firm, brittle, loose, weak siliceous cement, common k-feldspar grains, poor to fair inferred porosity, very rare mineral fluorescence, no hydrocarbon fluorescence.

Adori Sandstone

Depth: 1500.3 – 1525.1 m MDBRT **Thickness**: 24.8 m

The Adori Sandstone is represented by medium to fine translucent sandstone.

SANDSTONE: translucent, sub-blocky, occasionally medium to fine, moderately to well sorted, angular, sub-elongate, commonly loose sand slightly hard to hard, crumbly to brittle, white kaolinite infill in places, variable weak to strong siliceous cement, rare K-feldspar, poor to fair porosity, rare patchy dull yellow fluorescence, crush cut, no residual ring (1470.0 – 1473.0 m)

Birkhead Formation

Depth: 1525.1 – 1622.1 m MDBRT **Thickness:** 91.4 m

The Birkhead Formation is characterised by arenaceous siltstone with interbedded sandstone and coal beds.

SILTSTONE: olive black to brownish black, sub-blocky to dominantly sub-fissile, firm to moderately hard, abundantly arenaceous, moderately calcareous with trace white calcite laminations/veins, common fine black carbonaceous grains and flakes, micro-micaceous in part, trace very carbonaceous, locally grading to silty coal, no fluorescence.

SANDSTONE: translucent to very light grey, lower medium to upper fine, occasionally very fine, moderately well sorted, sub-rounded to commonly sub-angular, sub elongate, occasionally loose, friable to commonly firm, trace white kaolinite infill in places, occasional weak siliceous cement, trace quartz overgrowths, minor calcareous cement, minor calcite infill, fine black carbonaceous grains/specks in matrix, rare k-feldspar, poor to fair inferred porosity, *no fluorescence*.

COAL: brownish black, , blocky, very hard, sub-vitreous, slightly argillaceous in part.

Hutton Sandstone

Depth: 1622.1 – TD of 1723.5 m MDBRT **Thickness**: unknown

The Hutton Sandstone is comprised of translucent grained sandstone with minor interbedded arenaceous siltstone.

SANDSTONE: translucent to very light grey, loose, upper very coarse to lower very fine, common coarse reworked shattered quartz, occasionally sub-rounded to angular, sub-spherical to elongate, poorly sorted, trace quartz overgrowths, grain supported, trace light brownish grey clay washing out during sample preparation, trace dull yellow/green patchy fluorescence, very bluish white crush cut, and thin pale blue/white residual ring (1677.0 – 1680.0m, 1686.0–1689.0m and 1710-1713m MDRT). SILTSTONE: olive black to brownish black, sub-blocky to blocky, firm to moderately hard, moderately calcareous, abundantly arenaceous, common fine black carbonaceous grains and flakes, rarely micromicaceous in part.

4.4 Hydrocarbon Shows

Total gas and chromatographic analysis were recorded and analysed from surface to TD. All ditch cuttings were checked for hydrocarbon fluorescence. Descriptions of hydrocarbon shows observed in drill cuttings are detailed below.

Namur Sandstone

1380.0 – 1383.0m: 10% pin-point pale dull green/yellow fluorescence, bluish white crush cut, thick yellowish white residual ring.

Adori Sandstone

1470.0 – 1473.0m: trace dull yellow/green patchy fluorescence, very pale bluish white crush cut, thin pale blue/white residue ring.

Hutton Sandstone

1677.0 – 1680.0m, 1686.0–1689.0m and 1710-1713m: Trace dull yellow/green patchy fluorescence, very bluish white crush cut, and thin pale blue/white residual ring.

4.5 Petrophysical Evaluation and Core Analysis

4.5.1 Petrophysics

Net pay (interpreted with residual Hydrocarbons) was identified from wireline log in the Namur Sandstone, the Birkhead Formation and the Hutton Sandstone. The calculated petrophysical results are summarised in **Table 4.**

The detailed Petrophysical Analysis Report is included as **Appendix 11**.

Interval	Formation	Porosity (%)	Sw (%)	Vsh (%)	Gross (m)	Net Pay (m)
1315.8 to 1408.0	Namur Sandstone	11.6	57.9	14.2	92.2	2.44
1526.0 to 1622.0	Birkhead Formation	10.2	60.7	23.0	96	0.15
1622.0 to 1725.0	Hutton Sandstone	11.5	60.1	10.3	103	0.91

Table 4: Petrophysical Pay Summary

4.5.2 Coring

No cores were cut in Tibor-1

4.6 Prospect Evaluation

The differences between the predicted and actual depths of formation tops in Tibor-1 are given in the well card and shown in **Table 3**.

Pre- and post-drill depth interpretation maps of the top Hutton Formation are included as Figure 5.

Pre- and post-drill seismic sections through the Tibor-1 location are presented in **Figures 6 and 7** respectively.

4.6.1 Trap

Tibor-1 was drilled to test a four-way dip closure on the Curalle anticline, approximately 3.0km long and on average 0.5km in width. At the well there was predicted approximately 12m of vertical closure.

4.6.2 Seal

The shales of the Birkhead Formation were predicted to act as a top seal for both the primary and secondary target sands. The shales were intersected as expected.

4.6.3 Reservoir

The porosity of sands of both the Birkhead Formation and Hutton Sandstone were as predicted predrilling. However the target sands were wet with only a trace of hydrocarbon shows observed.

4.6.4 Charge

A trace to 30% fluorescence was observed in a number of tight argillaceous sandstones. The shows are interpreted as residual oil caught in the poorest quality sands and siltstones.

Pre-drill, hydrocarbons in Tibor-1 were interpreted to be sourced from the nearby Windorah Trough or Yamma Yamma Depression. Prolific oil shows were observed in wells locally, however structural timing is considered a likely reason for failure at Tibor-1. The structure is interpreted as post-dating peak oil expulsion (~90mya).

4.7 Formation Testing

4.7.1 Wireline Pressures/Samples

No pressures or samples were obtained in Tibor-1.

4.7.2 Drillstem Testing

A drillstem test was not conducted in Tibor-1.

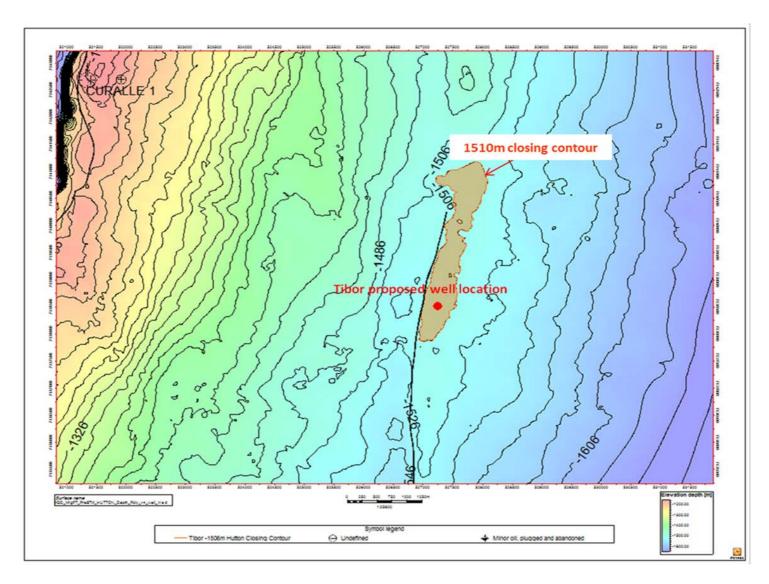
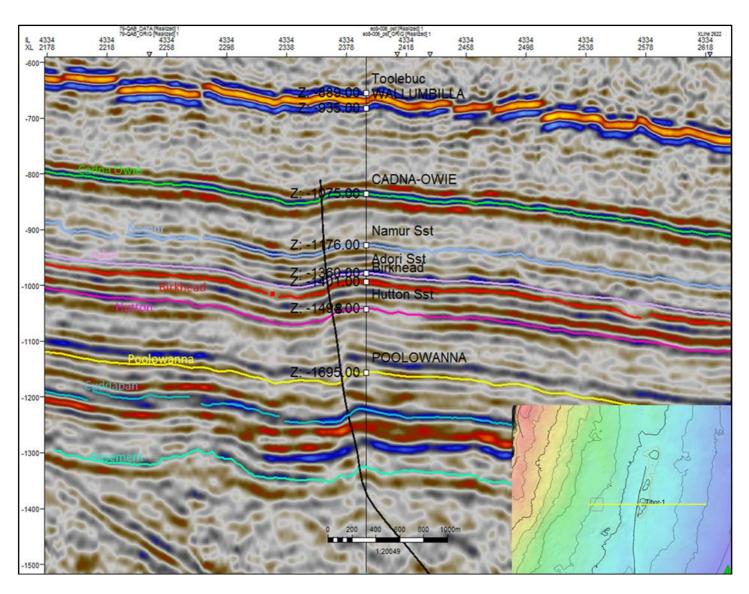
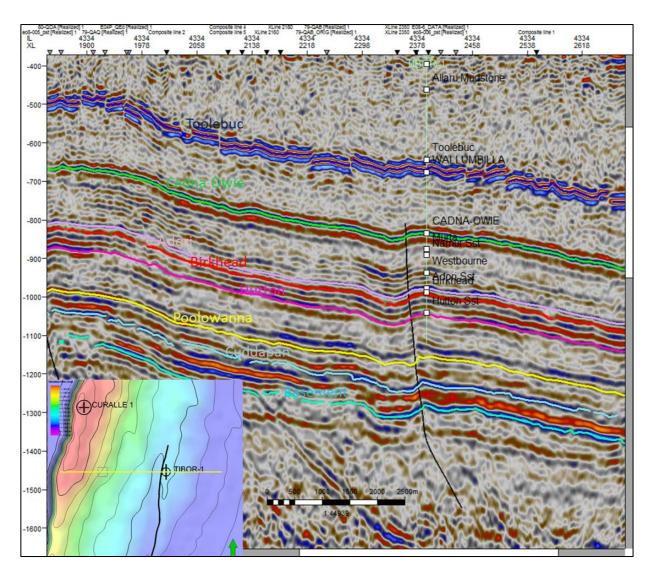




Figure 5: Tibor-1: Hutton Formation pre-drill (no change post-drill) depth structure map

Figure 6: Inline Seismic Section IL4334 through the Tibor Structure showing wellpath, formation tops and major bounding fault (pre drill)

Figure 7: Inline Seismic Section IL4334 through the Tibor Structure showing wellpath, formations and major bounding fault (post drill)

5. Conclusions and Contribution to Geological Understanding

The Tibor-1 well was designed as a vertical oil exploration well to test a four-way dip closure on the Curalle anticline on the northern flank of the Cooper/Eromanga Basin. The Basal Birkhead Formation and Hutton Sandstone were the primary targets of the well whilst the sandstones of the Namur Sandstone, Westbourne Formation and Adori Sandstone were considered secondary targets.

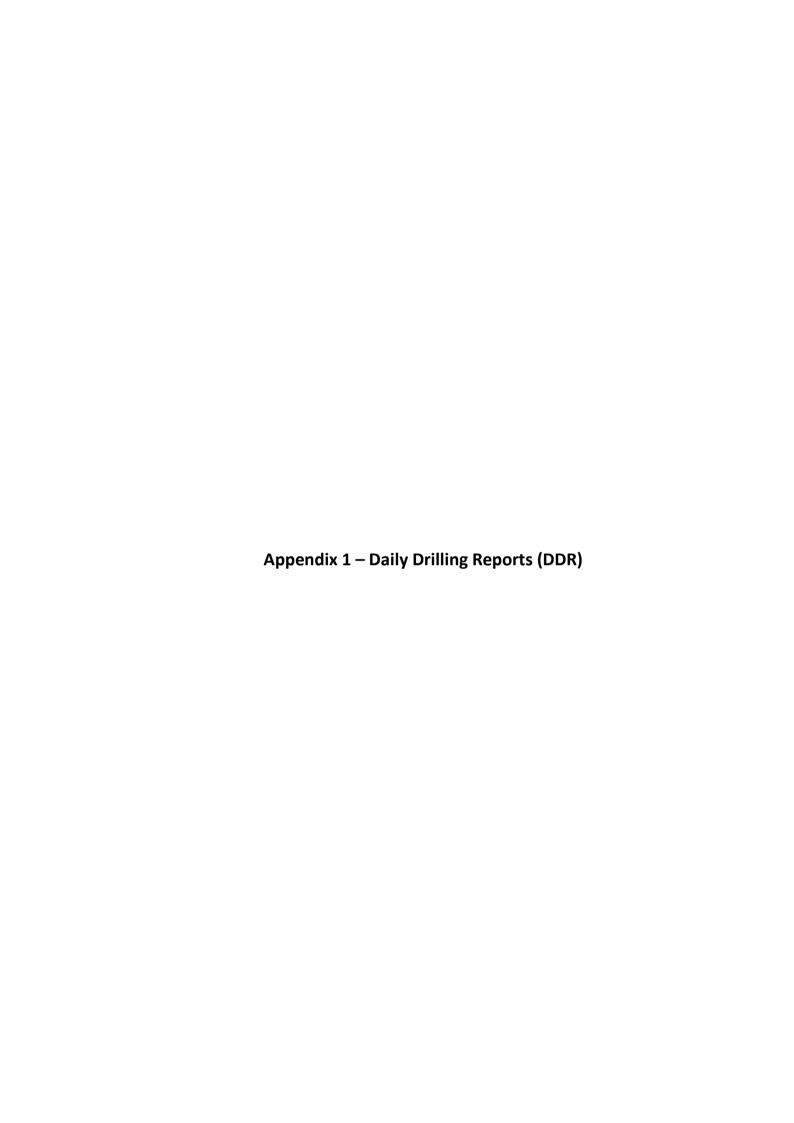
The well intersected the expected stratigraphic section with all primary and secondary targets penetrated and their hydrocarbon potential investigated.

The primary targets, the Birkhead Formation and Hutton Sandstones, were both intersected 16m high to prognosis but well within the margins of error dictated by the seismic time/depth ties. They did not have significant hydrocarbon shows.

The secondary objectives, the Namur Sandstone, Westbourne Formation and Adori Sandstone were intersected 0.4m high, 4m high and 18m low to prognosis respectively. Apart from the Westbourne Formation which had no shows, all had insignificant oil shows.

Interpretation of the well data indicates the primary target sands were tighter than expected, and peak hydrocarbon migration likely pre-dated the timing of the structural closure. Wireline log analysis indicated small amounts of net pay in the Namur Sandstone, Birkhead Formation and Hutton Sandstone of only 2.4m, 0.15m and 0.9m respectively. The interpreted net pay is considered to contain residual hydrocarbons.

Despite the target formations coming in close to prognosis only limited quantities of net pay were present and although minor hydrocarbon shows were seen, the well failed to intersect commercial quantities of unswept oil in the primary targets.


The well was drilled to the planned TD of 100m below the top of the Hutton Sandstone, meeting the criteria for TD set out in the Well Proposal (ref. ATP 939P Tibor-1 Well proposal and Geological Program)

Tibor-1 was subsequently plugged and abandoned as a dry well with oil shows. Ensign Rig 918 was released on 23rd February 2013

6.0 Bibliography

Drillsearch Energy Ltd., 4th **Jan 2013**: ATP 539P Tibor-1 Well Proposal and Geological Program (unpub)

Drillsearch Energy Ltd., 4th Jan 2013: ATP 539P Tibor-1 Drilling Program (unpub)

Well: Tibor-1 Drilling

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		1 Day Wellsite Representa 52' 17.80" Night Wellsite Represent 16' 19.41"				Guy L Holmes Kevin Gordon	Rig Mana Drilling Co Wellsite C	ompany:	Scott Cameror ENSIGN
Well Data									
Country: Field: Rig: Ground Level: RT to GL Plan TD (MD): Plan TD (TVD):	Australia Ensign 918 135.0 m 5.15 m 1,738.0 m 1,738.0 m	Measure True Ver 24 Hr Pro Days On	tical Depth: ogress: Well: ce Spud: P Date:	0.54 0.00	Casing OD: Casing MD: Casing TVD TOL MD: TOL TVD: Lnr Shoe M Lnr Shoe TV): D:	Oriç Sup Oriç AFE Dai Cur Las	ly Cost: m. Cost: st LTI Date:	OPS-13-018 05 Feb 2012 362
Current Op @ 0600: Held PJSM with ITAC and Ensign personnel prior to continuing rigging down. Planned Op: Rig down, lower floor, lower mast, move and spot sub base on Tibor-1, prepare rig for move to Tibor-1.									
Summary for Perio	Summary for Period 0000 Hrs to 2400 Hrs on 01 Feb 2013								

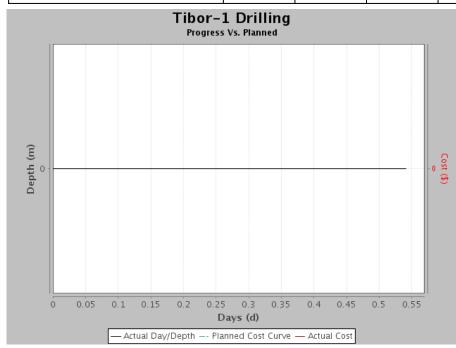
Commenced rigging down at 11:00hrs. Broke tour and prepared tanks and rig for move. Operations ceased at 20:00hrs. Rigged down 5%, Rig moved 0%.

HSE Summary					
Events	Num. Events	Date of Last	Days Since	Description	Remarks
Pre-Tour Safety Meeting	1	01 Feb 2013 11:30	0	Pre tour meeting for rig down	Discussed hazards involved in rig down operations.

Operation	Operations for Period 0000 Hrs to 2400 Hrs On 01 Feb 2013										
PHSE	CLS	OP	From	To	Hrs	Depth	Activity Description				
	(RC)					(m)					
RMO	Р	RUD	11:00	20:00	9.00	0.0	Commence rigging down for move to Tibor-1. Slip & cut drill line. Lay out				
							Kelly. Rig down rig floor. Lower V-door. Rig down doghouse.				
RMO	Р	WOD	20:00	24:00	4.00	0.0	Wait on daylight.				

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 02 Feb 2013										
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description				
	(RC)					(m)					
RMO	Р	WOD	00.00	06:00	6.00	0.0	Wait on daylight				

Performance Summary										
Daily Cumulative Well										
	Hrs % Hrs %									
Р	13.0	100.0	13.0	100.0						
Undefined	0.0	0.0	0.0	0.0						
Total	13.0	100.0	13.0	100.0						


Pumps	3									
Pump data - Last 24 Hrs										mp Data
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP
1 2	Continental Emsco F-800 Continental Emsco F-800	5.500 5.500		97 97						
	Continental Emsco F-600	5.500		97						

Well: Tibor-1 Drilling

Personnel On Board			
Job Title	Personnel	Company	Pax
		ENSIGN	21
		Drillsearch	3
		Sub Contractor	12
		Oil Industry Catering Services	3
	•	Total	39

Bulk Stocks											
Name	Unit	Start	Previous	In	Used	Adjust	Balance				
		Amount	Balance								
Rig Fuel (ltr)	ltr	21,500		0	1,500	0	20,000				
Camp Fuel (ltr)	ltr	1,950		0	350	0	1,600				
Pot Water (Itr)	ltr	0		0	0	0	0				

Well: Tibor-1 Drilling

Tibor-1 Drilling											
Report Number :		2	Day Wellsite Representative:		Guy L Holmes		Rig M	lanager:	Scott Cameron		
Latitude (South)	25° 5	52' 17.80"	Night Wellsite Representative		e:	: Kevin Gordon Dri		g Company:	ENSIGN		
Longitude (East)	141° 1	6' 19.41"			Wellsite Geologist:			ite Geologist:			
Well Data											
Country:	Australia	Current H	łole Size:	Casing OD:			AFE Number: OPS-13-018				
Field:		Measure	d Depth:	Casing MD:			Original AFE:				
Rig:	Ensign 918	True Ver	tical Depth:	Casing TVD:			Supp AFE No:				
Ground Level:	135.0 m	24 Hr Progress:			TOL MD:			Orig. & Sup.			
RT to GL	5.15 m	Days On Well: 1.54			TOL TVD:			AFE:			
Plan TD (MD):	1,738.0 m	Days Sin	Days Since Spud: 0.00			MD:		Daily Cost:			
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:		Lnr Shoe TVD:			Cum. Cost:			
		FIT/LOT:		/				Last LTI Date:	05 Feb 2012		
							Days Since LTI:	363			
Current Op @ 0600: Held PJSM and discussed day work plan with Drill Crews and Rig Movers.											
Planned Op: Position Rig. Move and spot mud tanks and rig up same. Move and spot fuel tanks and generators. Ger									ators. Gerneral		
·	rig up.										

Summary for Period 0000 Hrs to 2400 Hrs on 02 Feb 2013

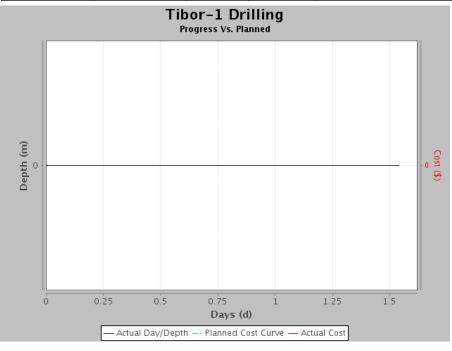
Continued rigging down. Scoped in and lowered mast. Pulled out pumps and loaded tanks. Spotted sub base and pony base on Tibor-1. Offloaded carrier onto pony base.

Rigged Down 80%, Rig Moved 10%, Rigged Up 5%.

Operation	Operations for Period 0000 Hrs to 2400 Hrs On 02 Feb 2013										
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description				
	(RC)					(m)					
RMO	Р	WOD	00:00	06:00	6.00	0.0	Wait on daylight.				
RM	Р	RM	06:00	18:00	12.00	0.0	Lower floor. Scope down mast and lower. Load out sub base and spot on Tibor-1. Load out carrier and pony base. Rig down pumps and tanks. Load tanks. Load out centrifuge. Pull out pumps. Drill crew working on module change out. Transfer diesel to camp. Spot pony base and off load carrier. General rig down.				
RM	Р	WOD	18:00	24:00	6.00	0.0	Wait on daylight				

Op	Operations for Period 0000 Hrs to 0600 Hrs On 03 Feb 2013										
Р	PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description			
		(RC)					(m)				
	RM	Р	WOD	00:00	06:00	6.00	0.0	Wait on daylight			

Performance Summary										
	Daily Cumulative Well									
	Hrs	%	Hrs	%						
Р	24.0	100.0	37.0	100.0						
Undefined	0.0	0.0	0.0	0.0						
Total	24.0	100.0	37.0	100.0						


Pumps	Pumps										
	Slow Pump Data										
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP	
1	Continental Emsco F-800	5.500		97							
2	Continental Emsco F-800	5.500		97							

Personnel On Board			
Job Title	Personnel	Company	Pax
		Drillsearch	3
		ISOS	1
		Geoservice	4
		Rheochem	1
		Scomi (KMC)	1
		ENSIGN	22
		Oil Industry Catering Services	3
		Rig Movers	15
		Total	50

Bulk Stocks	Bulk Stocks											
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance					
Rig Fuel (Itr)	ltr		20,000	0	1,000	-10,000	9,000					
Camp Fuel (Itr)	ltr		1,600	4,000	350	0	5,250					
Diesel Fuel (Litre)	Litre	6,000		0	0	0	6,000					
Pot Water (Itr)	ltr		0	0	0	0	0					
Cementing Water (bbl)	bbl	0		0	0	0	0					

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Truck		17:30	06:15	Dispatched: 5 x 2 7/8" NEW VAM Tubing
				Received: 20 x 2 7/8" EUE Tubing. 20' Shipping Container.
Truck		11:00	16:00	Received:
				Transco - 6 1/2" Drilling Jar. Scomi - 11 Pallets Screens,
				Dispatched:
				Transco - 6 1/2" Drilling Jar. Drillsearch - 8 1/2" PDC Bit (Used)

Tibor-1 Drilling									
Report Number :		3	Day Wellsite Repres	entative:	e: Guy L Holmes Rig I			Manager:	Scott Cameron
Latitude (South)	25° 5	2' 17.80" Night Wellsite Representativ			e:	Kevin Gordon	Drilli	ng Company:	ENSIGN
Longitude (East)	141° 1	6' 19.41"					Well	site Geologist:	
Well Data									
Country:	Australia	Current F	Current Hole Size:			D:		AFE Number:	OPS-13-018
Field:		Measure	d Depth:	Casing MD:			Original AFE:		
Rig:	Ensign 918	True Ver	tical Depth:	Casing TVD:			Supp AFE No:		
Ground Level:	135.0 m	24 Hr Pro	24 Hr Progress:					Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	2.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	0.00	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:		Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		1				Last LTI Date:	05 Feb 2012
								Days Since LTI:	364
Current Op @ 0600:		Held PJS	M with Drill Crew, Rig	Movers,	rucking and	d crane Operators	s. Dis	cussed safety plan fo	or the days work
		and risk r	nanagement.						
Planned Op:		Complete movement of all loose equipment from Triclops-1. Move mini-camp and restablish on Tibor-1. Clean							
		triclops si	te for handover. Cont	tinue with	n rig up.				

Summary for Period 0000 Hrs to 2400 Hrs on 03 Feb 2013

Continued rigging down and loading out from Triclops-1 Well Site, continued rigging up on Tibor-1. Continued repairing mud pump No #1.

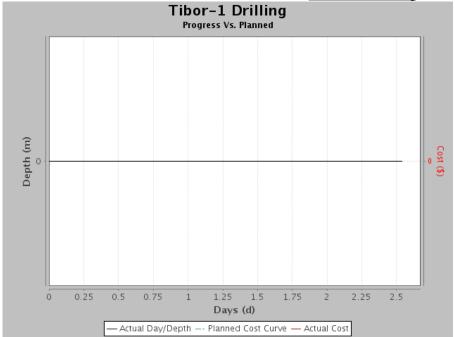
Rigged Down 90%, Rig Moved 70%, Rigged Up 25%.

HSE Summary					
Events	Num. Events	Date of Last	Days Since	Description	Remarks
Pre-Tour Safety Meeting	1	03 Feb 2013 06:00	0	Pretour Safety Meeting	Includes all Rig Movers and other third party contractors. Discussed work plan hazards and risk mitigation.
Incident	1	03 Feb 2013 09:30	0	Equipment Damage	Toll Energy perator was backfilling the sump using the loader in a resticted space between the rig carrier and the sump. While backing up he lost sight of the loader rear quarter which hit the hand rail on the carrier damaging the tail light.
Weekly Safety Meeting	1	03 Feb 2013 17:00	0	Weekly Safety Meeting including all Drill crews, third party contractors and rig movers	Discussed previous weeks work and any incidents. All attendees speaking on an issue regarding the previous week or rig move activities.

Operation	Operations for Period 0000 Hrs to 2400 Hrs On 03 Feb 2013											
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description					
RM	Р	WOD	00:00	06:00	6.00	0.0	Wait on daylight					
RM	Р	RM	06:00	12:00	6.00	0.0	Held PJSM with all personnel involved in rig move activities. Spot tank and pump matting. Established pad for centrifuge. Loaded out BOP, dog house, catwalk, pipe bins x 2, Geoservice x 2 and miscellaneous equipment.					
RM	Р	RM	12:00	18:00	6.00	0.0	Loaded out pipe bins x 2, medic trailer, Koomey day tank, bulk fuel tank and miscellaneous equipment. Spot centrifuge and mud tanks.					

	Well: Hibbi-1 Diffilling											
Operation	Operations for Period 0000 Hrs to 2400 Hrs On 03 Feb 2013											
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description					
RM	Р	WOD	18:00	24:00	6.00	0.0	Wait on daylight.					
Operation	ns for Perio	d 0000 Hrs	to 0600 H	Irs On 04	Feb 20	13						
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description					
RM	Р	WOD	00:00	06:00	6.00	0.0	Waited on daylight.					
Performa	Performance Summary											

Performance Summary										
	Da	nily	Cumulative Well							
	Hrs	%	Hrs	%						
Р	24.0	100.0	61.0	100.0						
Undefined	0.0	0.0	0.0	0.0						
Total	24.0	100.0	61.0	100.0						


Pumps	Pumps											
Pump data - Last 24 Hrs Slow Pump												
No	Type Liner SPM Eff. Flow SPP Depth MW (in) (%) (galUS/min) (psi) (m) (ppg)									SPP		
1 2	Continental Emsco F-800 Continental Emsco F-800	5.500 5.500		97 97								

Personnel On Board			
Job Title	Personnel	Company	Pax
		Drillsearch	3
		ISOS	1
		Geoservice	4
		Rheochem	1
		Scomi (KMC)	1
		ENSIGN	22
		Oil Industry Catering Services	3
		Rig Movers	15
		Total	50

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (ltr)	ltr		9,000	0	0	0	9,000
Camp Fuel (Itr)	ltr		5,250	0	0	0	5,250
Diesel Fuel (Litre)	Litre		6,000	0	0	0	6,000
Pot Water (Itr)	ltr		0	24,500	5,000	0	19,500
Cementing Water (bbl)	bbl		0	0	0	0	0

Tibor-1 Drilling									
Report Number : Latitude (South)	25° F	4 52' 17.80"	Day Wellsite Representative: Night Wellsite Representative		-		Rig Manager: Drilling Company:		Scott Cameron ENSIGN
Longitude (East)		16' 19.41"	Night Wellsite Representative. Reviil Goldon			/III Goldon	l	site Geologist:	LINGIGIN
Well Data									
Country:	Australia	Current Hole Size:			Casing OD:			AFE Number:	OPS-13-018
Field:		Measured Depth:			Casing MD:			Original AFE:	
Rig:	Ensign 918	True Vert	tical Depth:		Casing TVD:			Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	ogress:		TOL MD:		Orig. & Sup.		
RT to GL	5.15 m	Days On	Well:	3.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	0.00	Lnr Shoe MD:		Daily Cost:		
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:		Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/				Last LTI Date:	05 Feb 2012
								Days Since LTI:	365
Current Op @ 0600	:	Holding F	TSM with all Drill crew	/.	_	•			•
Planned Op:		Continue	rig up on Tibor-1.						

Summary for Period 0000 Hrs to 2400 Hrs on 04 Feb 2013

Waited on daylight. Rigged down mini camp on Triclops-1. Moved mini camp and rigged up on Tibor-1. Raised lower section of mast. Installed monkey board. Scoped upper mast section. Raised and rigged up rig floor. Spotted mud pumps. All Itac trucks released.

Rig Down 100%. Rig Moved 100%. Rigged Up 60%

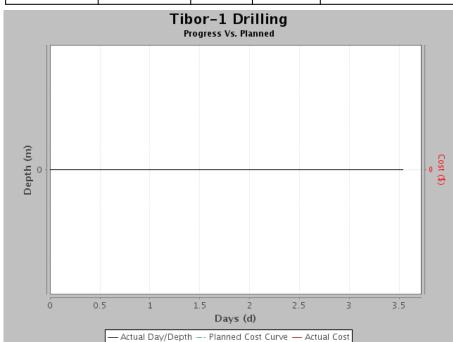
Events	Num.	Date of Last	Days	Description	Remarks
Pre-Tour Safety Meeting	Events 1	04 Feb 2013 06:00	Since 0	Pre tour meeting to cover daily operations.	Discussed hazards moving and spotting loads with trucks and loaders. Pinch points, loads moving, potential of winch lines beaking.
Pre-Job Meetings	3	04 Feb 2013 00:00	0	Raise mast. Scope mast. Raise rig floor.	Discussed hazards of each section of this operation. Dropped objects, cables fouling, pinch points. Assigned spotters for each stage of operations.
Pre-Job Meetings	1	04 Feb 2013 00:00	0	Scope mast.	Discussed hazards of each section of this operation. Dropped objects, cables fouling, pinch points. Assigned spotters for each stage of operations.
Pre-Job Meetings	1	04 Feb 2013 00:00	0	Raise rig floor.	Discussed hazards of each section of this operation. Dropped objects, cables fouling, pinch points. Assigned spotters for each stage of operations.

Operation	Operations for Period 0000 Hrs to 2400 Hrs On 04 Feb 2013												
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description						
	(RC)					(m)							
RM	Р	WOD	00:00	06:00	6.00	0.0	Waited on daylight.						
RM	Р	RUD	06:00	08:30	2.50	0.0	Held PTSM with all personnel. Rigged down mini camp. Continued						
							rigging up drilling equipment on Tibor-1.						

							bot i brinning					
Operations for Period 0000 Hrs to 2400 Hrs On 04 Feb 2013												
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description					
RM	Р	RUD	08:30	12:00	3.50	0.0	Moved mini camp to Tibor-1. Spotted mini camp generator and shacks, rigged up electrical and sewerage lines. Continued rigging up drilling equipment. Spotted generator shack and fuel tank. Ran electrical cables and air lines. Raised lower section of mast.					
RM	Р	RUD	12:00	18:00	6.00	0.0	Installed monkey board. Raised upper section of mast. Raised rig floor and rig up hand rails. Spotted mud pumps.					
PS	Р	WOD	18:00	24:00	6.00	0.0	Waited on daylight.					

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 05 Feb 2013												
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description						
PS	P	WOD	00:00	06:00	6.00	0.0	Waited on daylight.						

Performance Summary					
	Da	aily	Cumulative Well		
	Hrs	%	Hrs	%	
Р	24.0	100.0	85.0	100.0	
Undefined	0.0	0.0	0.0	0.0	
Total	24.0	100.0	85.0	100.0	


Pumps	S									
	Slow Pump Data									
No	No Type Liner SPM Eff. Flow SPP Depth MW (in) (%) (galUS/min) (psi) (m) (ppg)									
1	Continental Emsco F-800	5.500		97						
2	Continental Emsco F-800	5.500		97						

Personnel On Board			
Job Title	Personnel	Company	Pax
		Drillsearch	3
		ISOS	1
		Geoservice	4
		Rheochem	1
		Scomi (KMC)	1
		ENSIGN	20
		Oil Industry Catering Services	3
		Rig Movers	2
		Total	35

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	ltr		9,000	0	0	0	9,000
Camp Fuel (Itr)	ltr		5,250	0	350	0	4,900
Diesel Fuel (Litre)	Litre		6,000	0	0	0	6,000
Pot Water (Itr)	ltr		19,500	26,000	0	0	45,500
Cementing Water (bbl)	bbl		0	0	0	0	0

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		08:30	16:30	

Tibor-1 Drilling									
Report Number :		5	Day Wellsite Represe	entative		Guy L Holmes Rig N		Manager:	Scott Cameron
Latitude (South)	25° 5	52' 17.80" Night Wellsite Representat			e:	Kevin Gordon	Drilli	ing Company:	ENSIGN
Longitude (East)	141° 1	16' 19.41"	6' 19.41"				Well	site Geologist:	
Well Data									
Country:	Australia	Current F	Current Hole Size:			D:		AFE Number:	OPS-13-018
Field:		Measure	d Depth:	Casing MD:			Original AFE:		
Rig:	Ensign 918	True Ver	tical Depth:		Casing TVD:			Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:		TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	4.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	0.00	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:		Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/				Last LTI Date:	05 Feb 2012
								Days Since LTI:	366
Current Op @ 0600:		Held PTS	M with rig crew and th	ird party	<i>'</i> .				
Planned Op:		Continue wiith rig up. Clean BHA. Lay out, strap and clean casing. Complete repairs to Mud pump #2 and							
		complete	installation. Complete	e tank rig	g up and che	eck for leaks. Mix	spud	mud. Pressure test	surface lines.
		Lay out, s	trap and clean casing.	. Carry	out prespud	check. Hold pre	spud ı	meeting and spud Tit	oor-1.

Summary for Period 0000 Hrs to 2400 Hrs on 05 Feb 2013

Waited on daylight. Completed rigging up of rig floor, catwalk, V-door, kelly and tongs. Rigged up MD instrumentation. Installed mouse hole. Replaced damaged Koomey control hose. Installed riser and flow line. Rigged up turkeys nest pump. Continued repariring mud pump #2. Waited on daylight.

Rig Moved: 100%. Rigged Up: 80%

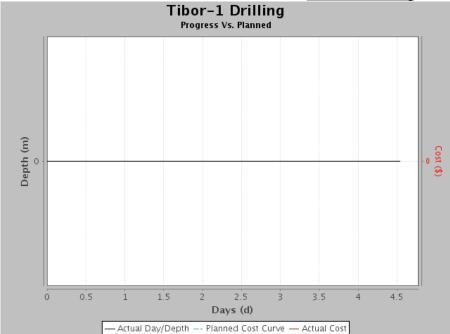
HSE Summary					
Events	Num.			Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	05 Feb 2013 06:00	0	Pretour meeting for rigging up.	Discussed planned operations, highlighted hazards and assigned duties to personnel.
Hazard Cards	10	05 Feb 2013 18:00	0	Crew hazardous observation cards.	Various hazards noted, rectified and reported.
On such and for David of 0000 Har to	0.400 11	- O OF F-1- 0040			

								Observation cards.	and reported.		
Operation	s for Perio	d 0000 Hrs	to 2400 H	irs On 05	Feb 20	13					
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description				
PS	Р	WOD	00:00	06:00	6.00	0.0	Waited o	n daylight.			
PS	Р	RUD	06:00	12:00	6.00	0.0	-door. H into ratho subbase	aul cables. Continued repairing the Rigged up tongs. Installe transport beams. hemicals to Tibor-1 location at	les. Assembled catwalk. Installed V ing mud pump #2. Made up Kelly ind false floor on rig floor. Removed and 5 1/2" casing from Triclops-1 to		
PS	Р	RUD	12:00	18:00	6.00	0.0	Kelly bus Installed line. Cut pump. L Continue	shings and safety guard. Insta all stairs and handrails. Char conductor and installed riser aid out and strapped BHA.	an MD instrumentation. Installed halled bails. Installed mousehole. Inged out damaged Koomey control and flowline. Installed turkeys nest		
PS	Р	WOD	18:00	24:00	6.00	0.0	Waited o	n daylight.			

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 06 Feb 2013											
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description					
PS	Р	WOD	00:00	06:00	6.00	0.0	Waited on daylight.					

Performance Summary										
	Da	aily	Cumulative Well							
	Hrs	%	Hrs	%						
Р	24.0	100.0	109.0	100.0						
Undefined	0.0	0.0	0.0	0.0						
Total	24.0	100.0	109.0	100.0						

Pumps											
Pump data - Last 24 Hrs											
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP	
1 2	Continental Emsco F-800 Continental Emsco F-800	5.500 5.500		97 97							


Personnel On Board										
Job Title	Personnel	Company	Pax							
		Drillsearch	3							
		ISOS	1							
		Geoservice	4							
		Rheochem	1							
		Scomi (KMC)	1							
		ENSIGN	21							
		Oil Industry Catering Services	3							
		Total	34							

Bulk Stocks											
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance				
Rig Fuel (Itr)	ltr		9,000	2,100	1,100	0	10,000				
Camp Fuel (Itr)	ltr		4,900	0	350	0	4,550				
Diesel Fuel (Litre)	Litre		6,000	0	0	-2,100	3,900				
Pot Water (Itr)	ltr		45,500	0	7,500	0	38,000				
Cementing Water (bbl)	bbl		0	0	0	0	0				

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		15:00	07:00	Ensign Safety Advisor, Transferred from Rig 16. Return Sattelite finder
				equipment to Acer Yanapurra Canmp
Truck		08:00	12:00	Toll; Pathfinder DD Tools back loaded to base

Tibor-1 Drilling									
Report Number :		6	Day Wellsite Represe	entative	: Guy L Holmes		Rig	Manager:	Scott Cameron
Latitude (South)	25° 5	52' 17.80"	Night Wellsite Repres	sentativ	e: Kevin Gordon		Drilli	ng Company:	ENSIGN
Longitude (East)	141° 1	6' 19.41"					Well	site Geologist:	
Well Data									
Country:	Australia	Current H	łole Size:		Casing O	D:		AFE Number:	OPS-13-018
Field:		Measure	Measured Depth:			D:		Original AFE:	
Rig:	Ensign 918	True Ver	True Vertical Depth:			/ D:		Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:		TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	5.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	0.00	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:		Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/				Last LTI Date:	05 Feb 2012
								Days Since LTI:	367
Current Op @ 0600:		Pressure	tested surface lines, re	epaired	leaks in mud	d tanks.			
Planned Op:									
		Spud Tibe	or-1.						

Summary for Period 0000 Hrs to 2400 Hrs on 06 Feb 2013

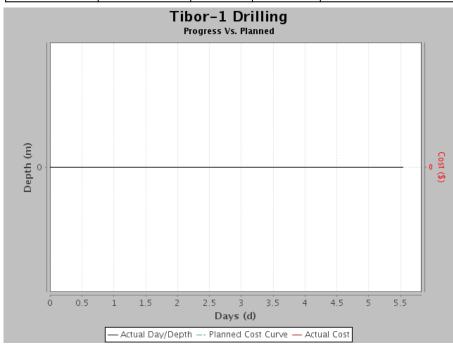
Waited on Daylight. Continued repairing mud pump #2. Set up pipe racks. Unloaded chemicals. Modified vehicle access path through lease. Laid out 2 x trailer loads of 9-5/8" casing. Laid out and strapped BHA. Continued rigging up mud tanks. Flood tested mud tanks. Recharged pulsation dampeners on mud pumps. Rigged up suction and discharge mud lines to mud pumps. Ran electrical cables and function tested lighting. Repositioned settling tank, choke/degasser skid and Geoservices unit. Reinstalled flow line.

HSE Summary								
Events	Num. Events	Date of Last	Days Since	Description	Remarks			
Pre-Tour Safety Meeting	3	06 Feb 2013 06:00	0	PTSM	Discuss forward work programme, associated hazards, mitigation and procedures.			
Accident/incident/near miss	1	05 Feb 2013 00:00	1	Unsafe use of equipment.	Operator left loader parked with mousehole on forks above catwalk after being called to another job. New operator attempted to lower mousehole onto catwalk but tilted forks excessively causing it to roll off catwalk onto the ground. No personnel were near catwalk and no damage was done to mousehole. Risk potential was high.			
Equipment Incident	1	06 Feb 2013 00:00	0	Windscreen damaged.	Windscreen was cracked when struck by rock thrown up by vehicle travelling in opposite direction at a high speed.			
Operations for Period 0000 Hr	s to 2400 Hrs	s On 06 Feb 2013						
PHSE CLS OP (RC)	From	To Hrs Depth (m)	Activity Description					

Operations for Period 0000 Hrs to 2400 Hrs On 06 Feb 2013											
PHSE CLS OP From To	Hrs Depth	Activity Description									
(RC)	(m)										
PS P WOD 00:00 06:00	6.00 0.0	Waited on daylight.									

Operati	ions for Period											
			to 2400 H	irs On 06	6 Feb 20							
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)			Activity Des	cription		
PS	Р	RUD	06:00	12:00	6.00	0.0	Held PTSM. Continued repairing mud pump #2. Spotted Covered raising rams. Installed Teledrift sensor on stands chemicals, re-stacked broken pallets. Improved lease accadjusted road crossing alignment. Strapped BHA. Contin and prepare to spud.					Unloaded nd
PS	Р	RUD	12:00	24:00	12.00	0.0	Continued repairing mud pump #2. Continued rigging up mud tanks. Continued unloading chemicals. Moved subs and stabilizers for BHA #1 to rig floor. Unloaded 2 x trailer loads of 9-5/8" casing. Removed flowlir and respotted settling tank, choke/degasser skid and Geoservices unit. Center riser and reinstalled flowline. Flood test mud tanks and repaired leaks. Installed security chains on pipe racks and catwalk. Rigged up and function tested rig lighting. Finished running electrical cables. Pre charged mud pump pulsation dampers. Rigged up suction and discharg lines on mud pumps. Rigged up survey barrel. Finished installing stairs and walkways.					BHA #1 ed flowline es unit. repaired ged up es. Pre discharge
Operati	ions for Period	d 0000 Hrs	to 0600 H	irs On 07	7 Feb 20	13						
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description					
PS	P	RUD	00:00	06:00	6.00	0.0	[In Progress] Continued rigging up and mads welding repairs on mud tanks. Installed Poorboy degasser overflow line. Removed protectors, drifted and strapped 9-5/8" casing. Installed shade cloth and lights over shale shakers. Made up saver sub and Kelly cock. Pressure tested surface lines to 2,000psi for 10mins. Arranged DLS equipment beside DLS container to clear site access. Unload chemicals (restack broken pallets). Carried out repairs to mud pump pulsation dampeners and charged with nitrogen. Mixed spud mud. Function tested ESD's from all stations, (5secs from remote station).					
Perforn	mance Summa	ry										
					Dail	y			C	umulative W	/ell	
			F	Irs			%		Hrs		%	
)			2	4.0			100.0		133.0		100.0)
Indefine	ed		C	0.0			0.0		0.0		0.0	
otal			2	4.0			100.0		133.0		100.0)
Pumps	1											
				Pu	mp data	- Last 24	Hrs				Slow Pu	ımp Data
No	Тур	oe	Lin (ir		PM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP
1 2	Continental E			.500 .500		97 97						
Person	nel On Board											
. 613011	Job Title			Pe	ersonnel		(Company			Pax	
	232						Drillsearch ISOS Geoservice					

Rheochem Scomi (KMC) ENSIGN


20

Personnel On Board			
Job Title	Personnel	Company	Pax
		Oil Industry Catering Services	3
		Total	33

Bulk Stocks											
Name	Unit	Start Amount	Previous Balance	ln	Used	Adjust	Balance				
Rig Fuel (Itr)	Itr		10,000	3,500	1,000	0	12,500				
Camp Fuel (ltr)	ltr		4,550	0	350	-350	3,850				
Diesel Fuel (Litre)	Litre		3,900	0	0	-3,500	400				
Pot Water (Itr)	ltr		38,000	0	0	0	38,000				
Cementing Water (bbl)	bbl		0	0	0	0	0				

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		11:00	09:30	Crew Change
Van		09:00	07:30	Crew Change
Van		16:00	08:00	Electrician from Rig 16

Tibor-1 Drilling									
Report Number :		7	Day Wellsite I	Representative		Guy L Holmes		lanager:	Scott Cameron
Latitude (South)	25° 5	52' 17.80"	Night Wellsite	Wellsite Representative		Kevin Gordon	Drillir	ng Company:	ENSIGN
Longitude (East)	141° 1	6' 19.41"					Wells	site Geologist:	
Well Data									
Country:	Australia	Current F	łole Size:	12.250 in	Casing OE):		AFE Number:	OPS-13-018
Field:		Measure	d Depth:	34.0 m	Casing MD):		Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	34.0 m	Casing TV	D:		Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	23.3 m	TOL MD:	TOL MD:		Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	6.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	0.29	Lnr Shoe I	MD:		Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	Date:		Lnr Shoe 7	ΓVD:		Cum. Cost:	
		FIT/LOT:		1				Last LTI Date:	05 Feb 2012
								Days Since LTI:	368
Current Op @ 0600:		Drilled to	99mRT survey	@ 97m Inclina	ation 0.5 deg	rees			
Planned Op:		Continue	drill 12 1/4" hol	e to section TD	at 753m. P	ressure test BOF	and cl	koke manifold offline	e. Clean casing
		and prep							

Summary for Period 0000 Hrs to 2400 Hrs on 07 Feb 2013

Continue repairs on mud tanks. Continue rig up. Hold Pre-spud meeting with 2 drill crews. Conduct hazard hunt and rectify major hazards identified. Spud well at 19:00hrs. Drill 12 1/4" surface section hole from 10.7m to 34mRT.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	07 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	07 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Pre-spud meeting	1	07 Feb 2013 12:15	0	Pre-spud Meeting	Pre-spud meeting with 2 drill crews.
Hazard Hunt	1	07 Feb 2013 00:00	0	Hazard Hunt	Held pre-spud hazard hunt. Listed and rectified observed hazards.
Pre-Job Meetings	2	07 Feb 2013 20:00	0	PJSM	Discussed SOP and hazards for picking up 8" drill collars to rig floor.

Operation	s for Period	d 0000 Hrs	to 2400 F	irs On 07	7 Feb 201	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
PS	Р	RUD	00:00	10:00	10.00	0.0	Continued rigging up and mads welding repairs on mud tanks. Installed Poorboy degasser overflow line. Removed protectors, drifted and strapped 9-5/8" casing. Installed shade cloth and lights over shale shakers. Made up saver sub and Kelly cock. Pressure tested surface lines to 2,000psi for 10mins. Arranged DLS equipment beside DLS container to clear site access. Unload chemicals (restack broken pallets). Carried out repairs to mud pump pulsation dampeners and charged with nitrogen. Mixed spud mud. Function tested ESD's from all stations, (5secs from remote station).
PS	TU (RE)	RUD	10:00	12:00	2.00	0.0	Function tested mud pump pressure relief valves. Valves failed to release at designated pressure. RIH and tagged bottom at 10.7m RT. Welder continued repairing mud tank leaks. Repaired fault in Generator electrical ESD and retested, good test.

							Well : Ti	bor-1 Drilling					
Operations	s for Period	d 0000	Hrs to 2	2400 H	lrs On 07	7 Feb 20	13						
PHSE	CLS (RC)	O	P F	rom	То	Hrs	Depth (m)			Activity	Description	on	
PS	Р	RL	JD 1	12:00	13:00	1.00	0.0	Held Pre-Spud (•		onducted hazard	d hunt.
PS	TU	RL	JD 1	13:00	19:00	6.00	0.0	Re-built and pre				sure relief valve	s.
	(RE)							Transfered spudidentified in haz chemical area. Completed pres	ard hu Made	int. Arranged up 12-1/4" P	l bunding a DC bit, bit	and signage for sub and 8" Tele	hazardous
SH	Р	D,	A 1	19:00	20:00	1.00	16.0	Held PJSM. Spudded well and drilled 12-1/4" surface section from 10.7m to 16m.					
SH	Р	HE	3H 2	20:00	21:00	1.00	16.0	Racked back Ke	elly. R	tigged up elev	vators. He	eld PJSM. Picke	ed up 2 x 8"
SH	Р	D	A 2	21:00	23:00	2.00	34.0	Drill 12-1/4" hole			Took Tel	ledrift survey at	33m.
SH	Р	HE	3H 2	23:00	24:00	1.00	34.0	•					ed up 2 x 8"
Operations	s for Period	d 0000	Hrs to (0600 H	lrs On 08	8 Feb 20	13						
PHSE	CLS (RC)	O	P F	rom	То	Hrs	Depth (m)			Activity	Description	on	
SH	Р	HE	вн о	00:00	00:45	0.75	34.0	Ran 8" drill colla	ar in m	ousehole. R	emoved el	levators. Picked	d up Kelly.
SH	Р	D	A 0	00:45	06:00	5.25	163.0	[In Progress] Dr survey every 3 s			om 34mR ⁻	T to 163mRT. T	Took Teledrift
Performan	ice Summa	ıry											
						Daily	/				Cumula	ative Well	
					Irs			%		Hrs			%
Р				16	3.0 			66.7		149.0		9	4.9
TU				8	.0			33.3		8.0			5.1
Undefined				0	.0			0.0		0.0		(0.0
Total				24	4.0			100.0		157.0		10	0.00
WBM Data	1											Cost Today:	\$ 5,711
Mud Desc:	Spu	ıd mud	API FL:		15.0	cm³/30mir	CI:			Solids:	2.8 %	Glycol:	
Check Depth:		-	Filter-Cal			1 /32nd			5.0 %			Viscosity:	36 s/qt
Time:			HTHP-FL				Hard/Ca:	400.0	0 mg/L			PV:	7 cP
Weight:			HTHP-Ca		•	1.00 /32nd	" MBT: Pm:			pH: PHPA:	10 1.00 ppb	YP:	4 lbf/100ft ² 2 lbf/100ft ²
Temp:		J1.0 C	HTHP-Pr	•			Pfii.		0.17			Gel 10s. Gel 10m:	4 lbf/100ft ²
Comment:				300.			Į. i.		5.17	·····	1.50 111	RPM	Reading
												3	2
												6	3
												100	6
												200	8
												300	11

18

600

Shakers, Volumes a	and Losses Data		Engineer : I				
Equipment	Description	Mesh Size	Available	466 bbl	Losses	0 bbl	
Centrifuge	Scomi DE-1000		Active	413 bbl	Downhole		
Shaker	Derrick Shale Shaker	100 x 4	Mixing	53 bbl	Surf. + Equip.		
Shaker	Derrick Shale Shaker	100 x 4	Hole		Dumped		
			Slug		De-Gasser		
			Reserve		De-Sander		
			Kill		De-Silter		
			Other		Centrifuge		
					Other		
			•				

Comment:

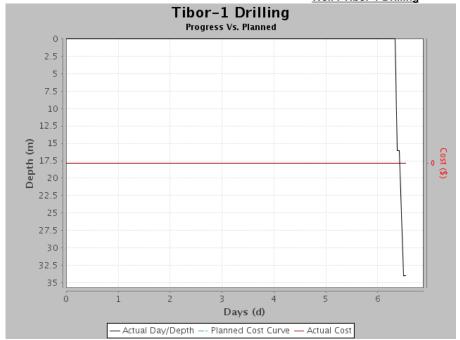
Pumps	3									
			Pump d	ata - Last 24	4 Hrs				Slow Pu	mp Data
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP
1	Continental Emsco F-800	5.500	86	97		50		8.70		
2	Continental Emsco F-800	5.500		97				9.70		

BHA #1									
ВНА Туре:			Pendulum	Total Weight Wet:					41 klb
Depth In/Out:		10.7	m/754.0 m	Weight Below Jar	Wet:				36 klb
Date In/Out:	#7 (07 Feb	2013)/#10 (10	Feb 2013)						
Total Length:			23.5 m						
BHA Description:	12 1/4" PDC	Bit, Bit Sub (w	ith float), Te	eledrift Sub (0.5 - 3.5	degree tool), 8 1/4" NM	IDC, 12 1/4"	' Stab, 3 x 8"	DC, X/O,
	8 x 6 1/2" D	C, 6 1/2" Drilling	g Jar, 4 x 4 ⁻	1/2" HWDP,					
BHA Run Comment:									

BHA Daily Summary					
Pickup Weight:	31 klb	Torque (max):	900 ft-lbs	D.C. (1) Ann Velocity:	1 ft/s
Slack-Off Weight:	29 klb	Torque Avg. Off Bottom:	300 ft-lbs	D.C. (2) Ann Velocity:	1 ft/s
String Weight:	30 klb	Torque Avg. On Bottom:	900 ft-lbs	H.W.D.P. Ann. Velocity:	1 ft/s
Jars Hours Logged:				D.P. Ann. Velocity:	1 ft/s
Summary:				•	

BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit	Re-run from Triclops-1	0.38			7032698	
8" Bit Sub	Ported Float -Type:G 5F6R	0.95	7.810	3.000	ENS002	
Teledrift		2.63	8.500	2.810	2431	
NMDC (MWD)		9.41	8.310	2.750	Hofco M8-16	
Stabilizer		1.32	7.930	2.810	12017-0	
8" DC		8.84	7.750	2.810	ODE-04	
8" DC		8.88	7.810	2.875	ODE-2	
8" DC		9.43	8.125	2.875	16376	
X-Over		0.74	7.810	2.875	1850	
6-1/2" DC		8.74	6.187	3.062	30-2-21	
6-1/2" DC		9.30	6.187	2.937	29013	
6-1/2" DC		8.92	6.187	3.000	30-2-2	
6-1/2" DC		9.10	6.125	2.937	922-22	
6-1/2" DC		9.09	6.125	2.937	592226	
6-1/2" DC		8.97	6.000	2.500	29-008	
6 1/2" DC		9.20	6.187	2.937	29-018	
6-1/2" DC		9.49	6.437	2.375	EDC 03231	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
6-1/2" DC		8.46	6.125	3.062	GP3922-31	
6-1/2" DC		8.82	6.187	3.062	GP5922-9	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.810	A58730	
HWDP		9.47	6.250	2.810	A58716	
HWDP		9.45	6.187	2.810	A58720	

Directional Data					
Slide Time:	0.00 h	Rotate Time:	3.00 h	Circ. Time:	3.00 h
Slide (%):	0.0 %	Rotate (%):	100.0 %	Circ. (%):	100.0 %
Total Slide Time:	0.00 h	Total Rotate Time:	3.00 h	Total Circ. Time:	3.00 h
Total Revs:	5 Krevs	HSI:	0.05 hp/in ²		


Bit #1RR-1							N	ozzles
Size:	311 mm (12 1/4")	Type:	PDC	IADC #:	M323	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	FC519	TFA:	1.052 in ²	7		14
	Christensen)	Bit Wear:	1-1-WT-A-X-I-ER-TD	Cost:	\$	′	Х	14
Serial #:	7032698							
Bit Run Comment:	Rerun from Tri	clops-1						
	1 plugged noz	zle when pulled	from Tibor-1					
Bit Wear Comment:								

				Well : Tibo	or-1 Drilling				
Drilling Paramet	ers								
BHA Run #1									
Top Depth:					PWD ECD:				
Bottom Depth:									
			Min			Avg		Max	
Flow			223 galUS			galUS/min		231 galUS	
Surface RPM			50 rpm			60 rpm		70 rpm	
Downhole RPM			50 rpm			60 rpm		70 rpm	
Pressure Torque			50 psi 800 ft-lb			328 psi 350 ft-lbs		606 ps 900 ft-lb	
WOB			3 klbs			4 klbs		5 klbs	
ROP			6.00 m/			6.88 m/h		7.76 m/	
Survey									
MD	Incl.	Corr. Az	TVD) 'V' S	Cost Do	ogleg	N/S	E/W	Tool Type
(m)	(°)	(°)	(m)			g/30m)	(m)	(m)	roor rype
0.0	0.0	0.00	0.0		11) (46	9/00111/	0.0	0.0	
33.0	0.0	0.00	0.0	,			0.0	0.0	тотсо
Formations	0.0	0.00							
Tormations	N	ame					Top (m)		
Winton Formation		unio					100 (111)		10.7
Personnel On Bo									
	Title		Personn	 el	(Company		Pax	
		1			Drillsearch	. ,			4
					ISOS				1
					Geoservice				4
					Rheochem				1
					Scomi (KMC)				1
					ENSIGN				21
					Oil Industry C	atering Service	es		3
							Total		35
Bulk Stocks									
	Name		Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (ltr)			ltr		12,500	17,554	554	,	28,500
Camp Fuel (Itr)			ltr		3,850	0	350	0	3,500
Pot Water (Itr)			ltr		38,000	0	C		38,000
Cementing Water	r (bbl)		bbl		0	360	C	0	360
Transport									
Transport Type	Transport Nam					С	omment		
.,	1		me Tim			f 14" · ·			
Van		16	:00 09:3	30 Pick up	DLS Geologist	trom Windorah	airport. Well	site OCR missed	d flight.

	8	Day Wellsite F	Representative	:	Guy L Holmes	Rig M	lanager:	Scott Cameron
25° 5	52' 17.80"	Night Wellsite	Representative	e:	Kevin Gordon	1 Gordon Drilling Compa		ENSIGN
141° 1	16' 19.41"					Wells	ite Geologist:	Alan Whitestone
Australia	Current F	lole Size:	12.250 in	Casing OD:			AFE Number:	OPS-13-018
l	Measure	d Depth:	331.0 m	Casing MD:			Original AFE:	
Ensign 918	True Ver	tical Depth:	331.0 m	Casing TVE):		Supp AFE No:	
135.0 m	24 Hr Pro	ogress:	297.0 m	TOL MD:			Orig. & Sup.	
5.15 m	Days On	Well:	7.54	TOL TVD:			AFE:	
1,738.0 m	Days Sin	ce Spud:	1.29	Lnr Shoe M	D:		Daily Cost:	
1,738.0 m	Last BOF	P Date:		Lnr Shoe T	VD:		Cum. Cost:	
l	FIT/LOT:		1				Last LTI Date:	05 Feb 2012
							Days Since LTI:	369
	Drilled an	d surveyed to 4	13mRT.				•	•
	Drill ahea	d to section TD	. Prepare for s	surface casing	and cement jo	bs. Co	mpleted offline BO	P pressure
	testing.							
	Australia Ensign 918 135.0 m 5.15 m 1,738.0 m	25° 52' 17.80" 141° 16' 19.41" Australia	Australia Current Hole Size: Measured Depth: True Vertical Depth: 135.0 m 5.15 m Days On Well: 1,738.0 m Days Since Spud: Last BOP Date: FIT/LOT: Drilled and surveyed to 4 Drill ahead to section TD	Australia	Australia	Australia Current Hole Size: 12.250 in Measured Depth: 331.0 m Casing MD: Ensign 918 True Vertical Depth: 331.0 m Casing TVD: 135.0 m 24 Hr Progress: 297.0 m TOL MD: 5.15 m Days On Well: 7.54 TOL TVD: 1,738.0 m Days Since Spud: 1.29 Lnr Shoe MD: 1,738.0 m Last BOP Date: FIT/LOT: / Drilled and surveyed to 413mRT. Drill ahead to section TD. Prepare for surface casing and cement jo	Australia Current Hole Size: 12.250 in Measured Depth: 331.0 m Casing MD: Casing MD: Casing TVD: 135.0 m Days On Well: 7.54 TOL TVD: 1,738.0 m Days Since Spud: 1.29 Lnr Shoe MD: Lnr Shoe TVD: FIT/LOT: / Drilled and surveyed to 413mRT. Drilled and surveyed to 413mRT. Drilled and surveyed to 413mRT. Drilled and surveyed to 413mRT.	Australia Current Hole Size: 12.250 in Measured Depth: 331.0 m Casing MD: Casing TVD: Supp AFE No: 135.0 m 24 Hr Progress: 297.0 m TOL MD: 1,738.0 m Days Since Spud: 1.29 Lnr Shoe MD: Last BOP Date: FIT/LOT: / Drilled and surveyed to 413mRT. Wellsite Representative: Kevin Gordon Drilling Company: Wellsite Geologist: Wellsite Geo

Summary for Period 0000 Hrs to 2400 Hrs on 08 Feb 2013

Drilled 12-1/4" hole from 34mRT to 331mRT. Took Teledrift surveys every 3 joints. Ran single shot wireline survey every 150m.

HSE Summary					
Events	Num. Events	Date of Last	Days Since	Description	Remarks
Pre-Tour Safety Meeting	0	08 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	0	08 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
JSA	2	08 Feb 2013 00:00	0	JSA for slickline survey.	Discussed hazards involved when running slickline surveys.
Hazard Cards	8	08 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.

Operation	s for Perio	d 0000 Hrs	to 2400 H	rs On 08	3 Feb 201	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
SH	Р	HBH	00:00	00:45	0.75	34.0	Ran 8" drill collar in mousehole. Removed elevators. Picked up Kelly.
SH	Р	DA	00:45	11:00	10.25	163.0	Drilled 12-1/4" hole from 34mRT to 163mRT. Took Teledrift survey every 3 singles drilled.
SH	Р	SVY	11:00	11:30	0.50	163.0	Sweeped hole with Hi-Vis pill and circulate clean. Ran single shot wireline survey @ 161mRT. Inclination = 0.5 degrees. Azimith = 203 degrees.
SH	Р	DA	11:30	18:15	6.75	249.0	Drilled 12-1/4" hole from 163mRT to 249mRT. Took Teledrift survey every 3 singles drilled.
SH	Р	RS	18:15	18:45	0.50	249.0	Rig service.
SH	Р	DA	18:45	22:45	4.00	316.0	Drilled 12-1/4" hole from 249mRT to 316mRT. Took Teledrift survey every 3 singles drilled.
SH	Р	CMD	22:45	23:00	0.25	316.0	Circulated and conditioned hole prior to survey.
SH	Р	SVY	23:00	23:15	0.25	316.0	Ran single shot wireline survey @ 302mRT. Inclination = 0.75 degrees. Azimith = 241 degrees.
SH	Р	DA	23:15	24:00	0.75	331.0	Drilled 12-1/4" hole from 316mRT to 331mRT.

311	Г	DA	23.13	24.00	0.75	331.0	Dillied 12-1/4 Hole Holli Stollik'i to 35 Hilk'i.
Operation	s for Period	d 0000 Hrs	to 0600 H	lrs On 09	Feb 20	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description

600

41

SH	Р	DA	00:00	06:00	6.00	471.0	[In Progress] Drilled 12-1/4" hole from 331mRT to 471mRT. Took
							Teledrift survey every 3 singles drilled.

Performance Summary				
	Da	aily	Cumula	tive Well
	Hrs	%	Hrs	%
Р	24.0	100.0	173.0	95.6
TU	0.0	0.0	8.0	4.4
Undefined	0.0	0.0	0.0	0.0
Total	24.0	100.0	181.0	100.0

WBM Data								Cost Today:	\$ 8,256
Mud Desc:	Spud mud	API FL:	9.0 cm³/30min	CI:	22,100 %	Solids:	3.6 %	Glycol:	
Check Depth:	250.0 m	Filter-Cake:	1 /32nd"	KCI:	4.0 %	H2O:	96 %	Viscosity:	42 s/qt
Time:	18:30	HTHP-FL:		Hard/Ca:	360.00 mg/L	Sand:	0.1 %	PV:	12 cP
Weight:	8.80 ppg	HTHP-Cake:		мвт:	13.80 %	pH:	10	YP:	17 lbf/100ft ²
Temp:		HTHP-Temp:		Pm:		PHPA:	1.20 ppb	Gel 10s:	5 lbf/100ft ²
		HTHP-Press:		Pf:	0.16	Mf:	0.80 m³	Gel 10m:	11 lbf/100ft ²
Comment:								RPM	Reading
								3	5
								6	7
								100	16
								200	22
								300	29

Shakers, Volumes	s and Losses Data		Engineer : Roni				
Equipment	Description	Mesh Size	Available	389 bbl	Losses	132 bbl	
Centrifuge	Scomi DE-1000		Active	332 bbl	Downhole		
Shaker	Derrick Shale Shaker	170 x 4	Mixing	27 bbl	Surf. + Equip.	96 bbl	
Shaker	Derrick Shale Shaker	170 x 4	Hole		Dumped		
			Slug		De-Gasser		
			Reserve	30 bbl	De-Sander		
			Kill		De-Silter		
			Other		Centrifuge	36 bbl	
					Other		
Comment: Use	ed 150bbls from Turkey's Nest.		•				

Pumps	S									
			Pump d	ata - Last 24	4 Hrs				Slow Pu	mp Data
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		
1	Continental Emsco F-800	5.500	116	97		486		8.70		
2	Continental Emsco F-800	5.500	116	97		486		9.70		

BHA #1			
BHA Type:	Pendulum	Total Weight Wet:	41 klb
Depth In/Out:	10.7 m/754.0 m	Weight Below Jar Wet:	36 klb
Date In/Out:	#7 (07 Feb 2013)/#10 (10 Feb 2013)		
Total Length:	23.5 m		
BHA Description:	12 1/4" PDC Bit, Bit Sub (with float), Te	ledrift Sub (0.5 - 3.5 degree tool), 8 1/4" NMDC, 12 1/4"	Stab, 3 x 8" DC, X/O,
	8 x 6 1/2" DC, 6 1/2" Drilling Jar, 4 x 4	1/2" HWDP,	
BHA Run Comment:			_

		Well : Tibor-1	Drilling				
BHA Daily Summary							
Pickup Weight:	66 klb	Torque (max):	1,400	0 ft-lbs D	.C. (1) Ann Ve	elocity:	2 ft/
Slack-Off Weight:	66 klb	Torque Avg. Off Bottom:			.C. (2) Ann Ve		2 ft/
String Weight:	66 klb	Torque Avg. On Bottom:	750		l.W.D.P. Ann. '	-	1 ft.
Jars Hours Logged:	15.50 h	que g. e e			.P. Ann. Veloc	•	1 ft.
Summary:						,	
BHA Component							
Equipment		Description	Length	OD (in)	ID (in)	Serial #	Hours
Bit	Do run from Te	ialana 1	(m) 0.38	(III) T	(111)	7032698	
8" Bit Sub	Re-run from Tr		0.36	7.810	2 000	FNS002	
	Ported Float -1	ype.G 5F6R				2431	
Teledrift			2.63	8.500		-	
NMDC (MWD) Stabilizer			9.41	8.310 7.930		Hofco M8-16 12017-0	
8" DC			8.84	7.930		ODE-04	
8" DC 8" DC			8.88	7.810		ODE-2	
			9.43	8.125		16376	
X-Over			0.74	7.810		1850	
6-1/2" DC			8.74	6.187		30-2-21	
6-1/2" DC			9.30	6.187		29013	
6-1/2" DC			8.92	6.187		30-2-2	
6-1/2" DC			9.10	6.125		922-22	
6-1/2" DC			9.09	6.125		592226	
6-1/2" DC			8.97	6.000		29-008	
6 1/2" DC			9.20	6.187		29-018	
6-1/2" DC			9.49	6.437		EDC 03231	
6 1/2" Hydraulic Jar			9.50	6.250	1	650 E2-12-6	
6-1/2" DC			8.46	6.125		GP3922-31	
6-1/2" DC			8.82	6.187		GP5922-9	
HWDP			9.45	6.187		A58715	
HWDP			9.45	6.187		A58730	
HWDP			9.47	6.250		A58716	
HWDP			9.45	6.187	7 2.810	A58720	
Directional Data							
Slide Time:	0.00 h	Rotate Time:		I	irc. Time:		20.00
Slide (%):	0.0 %				irc. (%):		100.0
Total Slide Time:	0.00 h			I	otal Circ. Time) :	23.00
Total Revs:	85 Krevs	HSI:	0.33	hp/in²			
Bit #1RR-1							zzles
Size:	` ' I '	pe:		ADC #:	M32		Size (/32nd"
Manufacturer:	` •	odel:		ΓFA:	1.052 ir	1 ² 7 X	14
	· · ·	: Wear: 1-1-WT-A-X	(-I-ER-TD (Cost:		\$ ' ^	1-7
Carial #	7022600					1	

7032698

Rerun from Triclops-1

1 plugged nozzle when pulled from Tibor-1

Serial #:

Bit Run Comment:

Bit Wear Comment:

				1100		9			
Drilling Parame	eters								
BHA Run #1									
Top Depth:					PWD E	CD:			
Bottom Depth:									
			Min			Avg		Ma	
Flow			250 galUS/m	in		425 galUS/m	nin	600 gal	
Surface RPM			51 rpm			88 rpm		125	
Downhole RPM			51 rpm			88 rpm		125	
Pressure			76 psi			472 psi		868	
Torque			1,600 ft-lbs	i		2,250 ft-lbs	3	2,900	
WOB			5 klbs			7 klbs		10 k	
ROP			6.00 m/h			17.00 m/h		28.00	m/h
Survey									
MD	Incl.	Corr. Az	TVD	'V' S	ect	Dogleg	N/S	E/W	Tool Type
(m)	(°)	(°)	(m)	(r	n)	(deg/30m)	(m)	(m)	- '
60.0	0.0	0.00							тотсо
88.0	1.0	0.00							тотсо
97.0	0.5	0.00							тотсо
124.0	0.5	0.00							тотсо
141.0	0.3	203.00	141.0		-	0.064	-0.3	-0.1	тотсо
				7.138.	506.54(
161.0	0.5	0.00		, ,					тотсо
185.0	0.5	0.00							тотсо
217.0	0.5	0.00							тотсо
246.0	0.5	0.00							тотсо
275.0	0.5	0.00							тотсо
305.0	5.0	0.00							тотсо
305.0	0.8	241.00	305.0		-	0.108	-1.3	-1.3	тотсо
				7,138,	507.490				
Formations									
		Name			_		Тор	(m)	
Winton Formation	on								10.
Personnel On I	Board								
Jo	b Title		Personnel			Company		Pa	ax
					Drillsea	ırch			
					ISOS				
					Geoser				
					Rheoch				
					Scomi				
					ENSIG				2
					Oil Indu	ustry Catering S			
							Total		3
Bulk Stocks									
	Name		Unit	Start	Previo		Us	ed Adjust	Balance
				Amount	Balar	nce			

28,500

3,500

360

38,000

ltr

ltr

ltr

bbl

2,500

15,000

350

0

0

28,000

Rig Fuel (Itr)

Camp Fuel (ltr)

Pot Water (Itr)

Cementing Water (bbl)

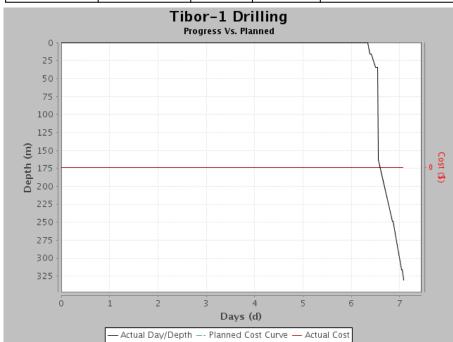
26,000

3,150

36,500

360

0


0

-14,500

Well: Tibor-1 Drilling

Transport							
Transport Type	Transport Name	Arrived	· · · · · · · · · · · · · · · · · · ·				
		Time	Time				
Van		12:30	08:30	Transport Ensign crew member to Ballera.			
Van		13:30	17:30	Transport Ensign crew member to 918.			

Tibor-1 Drilling										
Report Number :		9	Day Wellsite R	epresentative:	Guy L Hol	mes Rig	Manager:	Scott Cameron		
Latitude (South)	25° 5	52' 17.80"	Night Wellsite I	Representative	e: Kevin Go	rdon Dri	lling Company:	ENSIGN		
Longitude (East)	141° 1	6' 19.41"				We	ellsite Geologist:	Alan Whitestone		
Well Data										
Country:	Australia	Current F	łole Size:	12.250 in	Casing OD:		AFE Number:	OPS-13-018		
Field:		Measure	d Depth:	655.0 m	Casing MD:		Original AFE:			
Rig:	Ensign 918	True Ver	tical Depth:	655.0 m	Casing TVD:		Supp AFE No:			
Ground Level:	135.0 m	24 Hr Pro	gress:	324.0 m	TOL MD:		Orig. & Sup.			
RT to GL	5.15 m	Days On	Well:	8.54	TOL TVD:		AFE:			
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	2.29	Lnr Shoe MD:		Daily Cost:			
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:		Lnr Shoe TVD:		Cum. Cost:			
		FIT/LOT:		/			Last LTI Date:	05 Feb 2012		
							Days Since LTI:	370		
Current Op @ 0600:		Drilled 12	-1/4" surface hol	e to 750mRT						
Planned Op:	Planned Op: Drill to section TD 754m. Clean hole and survey. POOH to run casing and lay out BHA. Rig up and run 9-5/8"									
		casing.								

Summary for Period 0000 Hrs to 2400 Hrs on 09 Feb 2013

Drilled 12-1/4" hole from 331mRT to 655mRT. Took Teledrift survey every 3 joints. Ran single shot wireline survey every 150m.

HSE Summary					
Events	Num. Events	Date of Last	Days Since	Description	Remarks
Pre-Tour Safety Meeting	1	09 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	09 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Kick/BOP Drill	1	09 Feb 2013 15:10	0	BOP Drill	Conduct BOP drill. Crew started to install FOSV, then realized there was no BOP installed and immediately made up Kelly to drill string. Good response, as crew realized their mistake and took the correct action without prompting.
Hazard Cards	2	09 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
JSA	2	09 Feb 2013 00:00	0	JSA's	Handling tubulars. Pressure testing BOP's.

Operation	s for Period	d 0000 Hrs 1	to 2400 H	irs On 09	Feb 201	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
SH	Р	DA	00:00	10:45	10.75	471.0	Drilled 12-1/4" hole from 331mRT to 471mRT. Took Teledrift survey every 3 singles drilled.
SH	Р	SVY	10:45	11:15	0.50	471.0	Pumped 10bbl Hi-Vis sweep to clean hole. Ran Single shot survey on wire line at 451mRT.
SH	Р	DA	11:15	12:00	0.75	486.0	Drilled 12-1/4" hole from 471mRT to 486mRT.
SH	Р	DA	12:00	14:45	2.75	529.0	Drilled 12-1/4" hole from 486mRT to 529mRT. Took Teledrift surveys every 3 singles drilled.
SH	Р	RS	14:45	15:15	0.50	529.0	Rig service.
SH	Р	DA	15:15	23:00	7.75	644.0	Drilled 12-1/4" hole from 529mRT to 644mRT. Took Teledrift survey every 3 singles drilled.
SH	Р	SVY	23:00	23:15	0.25	644.0	Ran Single shot survey on wire line at 631mRT.

						Well : Ti	ibor-1 Drilling					
Operation	s for Perio	od 0000	Hrs to 2400 H	irs On 09	Feb 20	13						
PHSE	CLS (RC)	0	P From	То	Hrs	Depth (m)			Ad	ctivity Description	on	
SH	Р	D.	A 23:15	24:00	0.75	655.0	Drilled 12-1/4" h	ole fr	om 644m	nRT to 655mR1	Γ.	
Operation	s for Perio	od 0000	Hrs to 0600 H	irs On 10) Feb 20	13						
PHSE	CLS (RC)	0	P From	То	Hrs	Depth Activity Description (m)			on			
SH	Р	D.	A 00:00	06:00	6.00	754.0	[In Progress] Drilled 12-1/4" hole from 655mRT Teledrift surveys every 3 singles drilled.			RT to 754mRT -	TD. Took	
Performance Summary												
	Daily Cumi						Cumula	ative Well				
			F	Irs			%		ŀ	Hrs		%
Р			2.	4.0			100.0	197.0			96.1	
TU			C	0.0			0.0		8	8.0	3.9	
Undefined			С	0.0			0.0		(0.0	0.0	
Total			2	4.0			100.0		20	05.0	10	0.00
WBM Data	a										Cost Today:	\$ 9,719
Mud Desc:	Sį	pud mud (4KPP)	API FL: Filter-Cake:	9.5	cm³/30mi 1 /32nc	1	23,		Solids: H2O:		Glycol: Viscosity:	41 s/qt
Check Depth			HTHP-FL:			Hard/Ca:	560.0	0 mg/L	Sand:	0.2 %	PV:	10 cP
Time:			HTHP-Cake:			МВТ:	1;	3.80 %	pH:	10	YP:	17 lbf/100ft²
Weight:	8		HTHP-Temp:			Pm:	0		PHPA:	1.00 ppb		5 lbf/100ft ²
Temp:		52.0 °C	HTHP-Press:			Pf:		0.17	Mf:	0.80 m³	Gel 10m:	10 lbf/100ft²
Comment:											RPM 3	Reading
											6	5 6
											100	15
											200	22
											300	27
											600	37

Shakers, Volumes a	and Losses Data				Engin	eer : Roni Tan
Equipment	Description	Mesh Size	Available	756 bbl	Losses	117 bbl
Centrifuge	Scomi DE-1000		Active	336 bbl	Downhole	12 bbl
Shaker	Derrick Shale Shaker	170 x 4	Mixing	127 bbl	Surf. + Equip.	68 bbl
Shaker	Derrick Shale Shaker	200 x 4	Hole	275 bbl	Dumped	
			Slug		De-Gasser	
			Reserve	18 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	37 bbl
					Other	
Comment: Used	150bbls from Turkev's Nest.		•			

Pumps	S									
	Pump data - Last 24 Hrs Slow Pump Data									
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP
1	Continental Emsco F-800	5.500	116	97		1,000		8.90		
2	Continental Emsco F-800	5.500	116	97		1,000		8.90		

BHA #1			
BHA Type:	Pendulum	Total Weight Wet:	41 klb
Depth In/Out:	10.7 m/754.0 m	Weight Below Jar Wet:	36 klb
Date In/Out:	#7 (07 Feb 2013)/#10 (10 Feb 2013)		
Total Length:	23.5 m		
BHA Description:	12 1/4" PDC Bit, Bit Sub (with float), Te	ledrift Sub (0.5 - 3.5 degree tool), 8 1/4" N	IMDC, 12 1/4" Stab, 3 x 8" DC, X/O,
	8 x 6 1/2" DC, 6 1/2" Drilling Jar, 4 x 4 1	1/2" HWDP,	
BHA Run Comment:			
BHA Daily Summary			

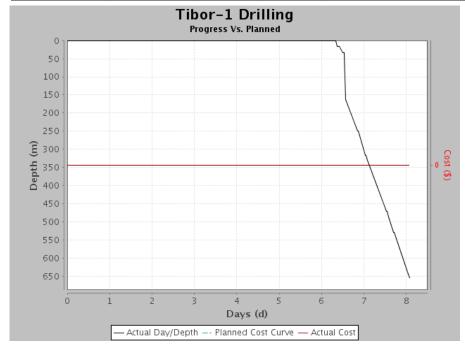
BHA Daily Summary					
Pickup Weight:	84 klb	Torque (max):	3,000 ft-lbs	D.C. (1) Ann Velocity:	3 ft/s
Slack-Off Weight:	81 klb	Torque Avg. Off Bottom:	1,200 ft-lbs	D.C. (2) Ann Velocity:	2 ft/s
String Weight:	83 klb	Torque Avg. On Bottom:	3,000 ft-lbs	H.W.D.P. Ann. Velocity:	2 ft/s
Jars Hours Logged:	20.50 h			D.P. Ann. Velocity:	2 ft/s
Summary:	•	_		_	•

BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit	Re-run from Triclops-1	0.38			7032698	
8" Bit Sub	Ported Float -Type:G 5F6R	0.95	7.810	3.000	ENS002	
Teledrift		2.63	8.500	2.810	2431	
NMDC (MWD)		9.41	8.310	2.750	Hofco M8-16	
Stabilizer		1.32	7.930	2.810	12017-0	
8" DC		8.84	7.750	2.810	ODE-04	
8" DC		8.88	7.810	2.875	ODE-2	
8" DC		9.43	8.125	2.875	16376	
X-Over		0.74	7.810	2.875	1850	
6-1/2" DC		8.74	6.187	3.062	30-2-21	
6-1/2" DC		9.30	6.187	2.937	29013	
6-1/2" DC		8.92	6.187	3.000	30-2-2	
6-1/2" DC		9.10	6.125	2.937	922-22	
6-1/2" DC		9.09	6.125	2.937	592226	
6-1/2" DC		8.97	6.000	2.500	29-008	
6 1/2" DC		9.20	6.187	2.937	29-018	
6-1/2" DC		9.49	6.437	2.375	EDC 03231	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
6-1/2" DC		8.46	6.125	3.062	GP3922-31	
6-1/2" DC		8.82	6.187	3.062	GP5922-9	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.810	A58730	
HWDP		9.47	6.250	2.810	A58716	
HWDP		9.45	6.187	2.810	A58720	

Directional Data					
Slide Time:	0.00 h	Rotate Time:	17.10 h	Circ. Time:	21.30 h
Slide (%):	0.0 %	Rotate (%):	100.0 %	Circ. (%):	100.0 %
Total Slide Time:	0.00 h	Total Rotate Time:	33.00 h	Total Circ. Time:	44.30 h
Total Revs:	95 Krevs	HSI:	0.95 hp/in ²		

			<u></u>	veii: Hbc	r-1 Drilling					
Bit #1RR-1										Nozzles
Size:		nm (12 1/4")	Type:		PD	I		M323	#	Size (/32nd")
Manufacturer:	E	BHI (Hughes	Model:		FC51	19 TFA:	1.05	52 in²	7 >	· 14
	(Christensen)	Bit Wear:	1-1-WT	-A-X-I-ER-T	D Cost:		\$, ,	\ 17
Serial #:		7032698								
Bit Run Comm		terun from Tri								
	1	plugged noz	zle when pulled fron	n Tibor-1						
Bit Wear Com	ment:									
Drilling Param	eters									
BHA Run #1										
Top Depth:					PWD ECE) :				
Bottom Depth:										
			Min			Avg			М	ax
Flow			580 galUS/min			600 galUS/mi	in		620 ga	IUS/min
Surface RPM			87 rpm			112 rpm			_	rpm
Downhole RPM	1		87 rpm			112 rpm				rpm
Pressure			700 psi			850 psi				0 psi
Torque			2,000 ft-lbs			2,500 ft-lbs) ft-lbs
WOB			3 klbs			4 klbs				dbs
ROP			17.70 m/h			26.28 m/h				6 m/h
Survey					<u> </u>					
MD	Incl.	Corr. Az	: TVD	'V' S	`aat	Doglog	N/S		E/W	Tool Type
						Dogleg				Tool Type
(m)	(°)	(°)	(m)	- (1	m)	(deg/30m)	(m)		(m)	
343.0	0.5	0.00								тотсо
373.0	0.5	0.00								тотсо
402.0	1.0	0.00								тотсо
431.0	0.5	0.00								тотсо
451.0	0.5	0.00								тотсо
451.0	0.3	270.00	451.0	7 138	- 507.98 ²	0.114	-1.8		-2.6	TOTCO
487.0	0.5	0.00		1,100,	007.00					тотсо
516.0	0.5	0.00								тотсо
545.0	0.5	0.00								тотсо
574.0	0.5	0.00								тотсо
603.0	0.5	0.00								тотсо
631.0	0.5	0.00								тотсо
631.0	0.5	154.00	631.0		_	0.114	-2.5		-2.7	тотсо
001.0	0.0	134.00	031.0		- 508.69(0.117	-2.5		- L .1	10100
Formations										
		Name					Тор	(m)		
Winton Formati	on									10.7
Mackunda Forn										633.0
Personnel On	Board									
Jo	b Title		Personnel			Company			P	ax
					Drillsearch	1				4
					ISOS					1
					Geoservic	e				4
					Rheochen	n				1
					Scomi (KN	ИC)				1
					ENSIGN					22
						a. Catarina Ca				

Oil Industry Catering Services


3

Personnel On Board			
Job Title	Personnel	Company	Pax
		Total	36

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	ltr		26,000	0	4,000	0	22,000
Camp Fuel (ltr)	ltr		3,150	0	350	0	2,800
Pot Water (Itr)	ltr		36,500	0	0	0	36,500
Rigsite Potable Water (Itr)	ltr	15,000		0	500	0	14,500
Cementing Water (bbl)	bbl		360	0	0	0	360

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Truck		14:30	07:00	Ensign driver from Moomba yard delivered repaired crew change truck to 918.

Tibor-1 Drilling									
Report Number :		10	Day Wellsit	e Representative:		Guy L Holmes	Rig	Manager:	Scott Cameron
Latitude (South)	25° 5	52' 17.80" Night Wellsite Represent			e:	Kevin Gordon	Drilli	ng Company:	ENSIGN
Longitude (East)	141° 1	16' 19.41"			Wells			site Geologist:	Alan Whitestone
Well Data									
Country:	Australia	Current F	łole Size:	12.250 in	Casing OD	:		AFE Number:	OPS-13-018
Field:		Measure	d Depth:	754.0 m	Casing MD):		Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	754.0 m	Casing TVI	D:		Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	99.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	9.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	3.29	Lnr Shoe N	/ID:		Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	Date:	10 Feb 2013	Lnr Shoe T	VD:		Cum. Cost:	
		FIT/LOT:		1				Last LTI Date:	05 Feb 2012
								Days Since LTI:	371
Current Op @ 0600:		Casing ra	ın to 751m. (Circulated and cor	nditioned mu	d. Replaced cel	llar pu	mp.	
Planned Op:		Cement of	asing. Land	out and nipple up	BOP. Press	sure test stack a	nd acc	umulator. Make up	tools and RIH to
		drill out s	noe track.						

Summary for Period 0000 Hrs to 2400 Hrs on 10 Feb 2013

Drilled 12-1/4" surface hole from 655m to 754mRT. Circulated hole clean pumped Hi-Vis sweep and circulate to surface. Survey; Teledrift and single shot. Pumped Hi-Vis sweep and circulated hole clean.

POOH to run casing. Laid down 8" collars and tools. Rigged up to run casing. Cut conductor and rigged up pumps to run riserless. Ran 9-5/8" casing. Checked shoe and float and threadlocked first 3 joints. Ran casing to 597m.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	10 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	10 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Weekly Safety Meeting	2	10 Feb 2013 15:10	0	Weekly Safety meetings	Conduct 2 meetings with all crew members.
Hazard Cards	0	10 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
JSA	2	10 Feb 2013 00:00	0	JSA's	Running 9 5/8" casing

Operation	s for Perio	d 0000 Hrs	to 2400 F	irs On 10	Feb 20'	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
SH	Р	DA	00:00	06:30	6.50	754.0	Drilled 12-1/4" hole from 655mRT to 754mRT - TD. Took Teledrift surveys every 3 singles drilled.
SH	Р	CMD	06:30	07:45	1.25	754.0	Cleaned hole, Circulated bottoms up. Sweeped hole with 20bbl Hi-Vis pil. Circulated 2 x bottoms up.
SH	Р	SVY	07:45	08:00	0.25	754.0	Ran Magnetic Single Shot survey at 741mRT.
SH	Р	CMD	08:00	09:00	1.00	754.0	Circulated hole clean, pumped 200bbl Hi-Vis sweep and spotted 20bbl Hi-Vis pill on bottom.
SH	Р	TO	09:00	09:15	0.25	754.0	Racked back Kelly. Rigged up elevators and laid out 1 joint of drill pipe.
SH	Р	ТО	09:15	11:00	1.75	754.0	Flow checked well - Static. POOH from 750mRT to 180mRT. No excess drag reported.
SH	Р	HBH	11:00	14:45	3.75	754.0	Held PJSM. POOH handling BHA from 180mRT to surface. Laid out 6-1/2 " jars, X/O, 3 x 8" DC, 12-1/4" stab (in gauge), 8" NMDC, Teledrift sub, Bit sub and bit.
SH	Р	HBH	14:45	15:00	0.25	754.0	Cleared equipment from rig floor. Laid out pipe spinner. Removed elevators.

							Well : Ti	bor-1 Drilling					
Operation	s for Perio	d 0000	Hrs to 2	400 H	lrs On 10	Feb 20	13						
PHSE	CLS (RC)	O	P Fi	rom	То	Hrs	Depth (m)			Ac	tivity Description	on	
SH	Р	RF	RC 15	5:00	18:00	3.00	754.0	Nippled down flo Cleared cellar and base. Rigged up	ea. C	Cut cond	uctor at floor of		
SH	Р	RC	G 18	8:00	18:30	0.50	754.0	Held PJSM with				running casing	procedures.
SH	Р	RC	CG 18	8:30	24:00	5.50	754.0	Made up 9-5/8" shoe track to 23mRT with thread lock. Function tested shoe track - OK. Ran 9-5/8" casing from 23mRT to 597mRT. Installed stop rings and centralizers as per running sheet.					
Operation	s for Perio	d 0000	Hrs to 0	600 H	lrs On 11	Feb 20	13	1 0			<u> </u>		
PHSE	CLS (RC)	01		rom	То	Hrs	Depth (m)			Ac	tivity Description	on	
SH	P	RC	G 00	0:00	02:30	2.50	754.0	Ran 9-5/8" casir	a fror	n 597m 1	to 746m (5m fil	1)	
SH	Р	RC		2:30	04:00	1.50	754.0	Washed casing	Vashed casing to bottom. Circulating rate limited (3.9bpm) as cellar numps not capable of keeping cellar clear.				
SH	TP (RE)	RE	PR 04	4:00	06:00	2.00	754.0		owly (202gpm) and conditioned mud while mechanic and orked on cellar pump.				nanic and
Performa	nce Summa	ary											
						Daily	/				Cumul	ative Well	
				Н	Irs			%		H	Hrs		%
Р				24	4.0			100.0		22	21.0	9	6.5
TU				0	.0		0.0			8	3.0	;	3.5
Undefined				0	.0			0.0		(0.0	(0.0
Total				24	4.0			100.0		22	29.0	10	0.00
General C	omments	for Per	iod 0000	Hrs to	o 2400 H	rs on 10	Feb 2013	;					
С	ategory							Comn	nents				
Lessons L	earned				-	_		g cellar pump capa ired is 100% or the			-	max circulating	/displacement
WBM Dat	a											Cost Today:	\$ 5,259
Mud Desc:	Sp	ud mud	API FL:		9.5	cm³/30miı	n CI:	22,	300 %	Solids:	4.4 %	Glycol:	
		(4KPP)	Filter-Cake	e:		1 /32nd	"KCI:		4.0 %	H2O:		Viscosity:	42 s/qt
Check Depth	: 7		HTHP-FL:				Hard/Ca:	400.00	•	ı	0.2 %		11 cP
Time:	0	17:00	HTHP-Cal	ke:			MBT:		.80 %	l		YP:	17 lbf/100ft ²
Weight: Temp:	0	.90 ppg	HTHP-Ter	mp:			Pm:	0		PHPA:	1.00 ppb		6 lbf/100ft ²
Comment:		30.0 0	HTHP-Pre	ess:			Pf:		0.16	INIT:	1.00 m ³	Gel 10m:	10 lbf/100ft ² Reading
Johnnent.												3	5 Keauling
												6	6
												100	16
												200	21
I													

28

39

300

600

Shakers, Volumes a	and Losses Data			Enç	jineer : Roni Tan	
Equipment	Description	Mesh Size	Available	728 bbl	Losses	118 bbl
Centrifuge	Scomi DE-1000		Active	320 bbl	Downhole	7 bbl
Shaker	Derrick Shale Shaker	170 x 4	Mixing	31 bbl	Surf. + Equip.	74 bbl
Shaker	Derrick Shale Shaker	200 x 4	Hole	362 bbl	Dumped	
			Slug		De-Gasser	
			Reserve	15 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	37 bbl
					Other	
Comments Hood	1 150bble from Turkey's Neet		ı			

Pumps	3											
	Pump data - Last 24 Hrs											
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP		
1	Continental Emsco F-800	5.500	116	97		1,000		8.90				
2	Continental Emsco F-800	5.500	116	97		1,000		8.90				

				L	l			
BHA #1								
ВНА Туре:		Pendulum	Total Weight Wet:					41 klb
Depth In/Out:	1	0.7 m/754.0 m	Weight Below Jar	Wet:				36 klb
Date In/Out:	#7 (07 Feb 2013)/#10	(10 Feb 2013)						
Total Length:		23.5 m						
BHA Description:	12 1/4" PDC Bit, Bit Su	b (with float), Te	ledrift Sub (0.5 - 3.5	degree tool), 8 1/4" NM	DC, 12 1/4"	Stab, 3 x 8" l	DC, X/O,
	8 x 6 1/2" DC, 6 1/2" D	rilling Jar, 4 x 4 1	1/2" HWDP,					
BHA Run Comment:								

BHA Daily Summary					
Pickup Weight:	92 klb	Torque (max):	3,500 ft-lbs	D.C. (1) Ann Velocity:	3 ft/s
Slack-Off Weight:	89 klb	Torque Avg. Off Bottom:	1,200 ft-lbs	D.C. (2) Ann Velocity:	2 ft/s
String Weight:	90 klb	Torque Avg. On Bottom:	3,500 ft-lbs	H.W.D.P. Ann. Velocity:	2 ft/s
Jars Hours Logged:	8.40 h			D.P. Ann. Velocity:	2 ft/s
Summary:					

BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit	Re-run from Triclops-1	0.38			7032698	
8" Bit Sub	Ported Float -Type:G 5F6R	0.95	7.810	3.000	ENS002	
Teledrift		2.63	8.500	2.810	2431	
NMDC (MWD)		9.41	8.310	2.750	Hofco M8-16	
Stabilizer		1.32	7.930	2.810	12017-0	
8" DC		8.84	7.750	2.810	ODE-04	
8" DC		8.88	7.810	2.875	ODE-2	
8" DC		9.43	8.125	2.875	16376	
X-Over		0.74	7.810	2.875	1850	
6-1/2" DC		8.74	6.187	3.062	30-2-21	
6-1/2" DC		9.30	6.187	2.937	29013	
6-1/2" DC		8.92	6.187	3.000	30-2-2	
6-1/2" DC		9.10	6.125	2.937	922-22	
6-1/2" DC		9.09	6.125	2.937	592226	
6-1/2" DC		8.97	6.000	2.500	29-008	
6 1/2" DC		9.20	6.187	2.937	29-018	
6-1/2" DC		9.49	6.437	2.375	EDC 03231	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
6-1/2" DC		8.46	6.125	3.062	GP3922-31	
6-1/2" DC		8.82	6.187	3.062	GP5922-9	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.810	A58730	
HWDP		9.47	6.250	2.810	A58716	
HWDP		9.45	6.187	2.810	A58720	

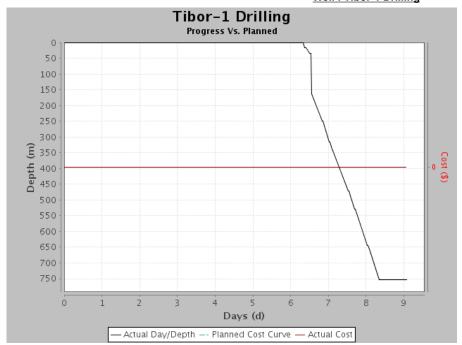
Directional Data					
Slide Time:		Rotate Time:	6.40 h	Circ. Time:	8.40 h
Slide (%):		Rotate (%):	100.0 %	Circ. (%):	100.0 %
Total Slide Time:	0.00 h	Total Rotate Time:	39.40 h	Total Circ. Time:	52.70 h
Total Revs:	28 Krevs	HSI:	1.02 hp/in ²		

Bit #1RR-1							N	ozzles
Size:	311 mm (12 1/4")	Type:	PDC	IADC #:	M323	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	FC519	TFA:	1.052 in ²	7		14
	Christensen)	Bit Wear:	1-1-WT-A-X-I-ER-TD	Cost:	\$	′	Х	14
Serial #:	7032698							
Bit Run Comment:	Rerun from Tri	clops-1						
	1 plugged noz	zle when pulled	from Tibor-1					
Bit Wear Comment:								

Drilling Parameters								
BHA Run #1								
Top Depth:	10.7 m	PWD ECD:						
Bottom Depth:	754.0 m							
	Min	Avg	Max					
Flow	607 galUS/min	615 galUS/min	622 galUS/min					
Surface RPM	94 rpm	110 rpm	126 rpm					
Downhole RPM	94 rpm	110 rpm	126 rpm					
Pressure	982 psi	1,049 psi	1,115 psi					
Torque	2,000 ft-lbs	3,350 ft-lbs	4,700 ft-lbs					
WOB	1 klbs	3 klbs	4 klbs					
ROP	17.00 m/h	114.35 m/h	34.22 m/h					

Survey								
MD	Incl.	Corr. Az	TVD	'V' Sect	Dogleg	N/S	E/W	Tool Type
(m)	(°)	(°)	(m)	(m)	(deg/30m)	(m)	(m)	
662.0	0.5	0.00						тотсо
691.0	0.5	0.00						TOTCO
720.0	0.5	0.00						TOTCO
741.0	1.3	90.00	741.0	-	0.307	-2.9	-1.3	тотсо
				7,138,509.122				
751.0	0.5	0.00						TOTCO

Formations	
Name	Top (m)
Winton Formation	10.7
Mackunda Formation	633.0


Personnel On Board	Personnel On Board								
Job Title	Personnel	Company	Pax						
		Drillsearch	4						
		ISOS	1						
		Geoservice	4						
		Rheochem	1						
		Scomi (KMC)	1						
		ENSIGN	19						
		Oil Industry Catering Services	3						
		Halliburton	3						
		Total	36						

Bulk Stocks									
Name	Unit	Start Amount	Previous Balance	ln	Used	Adjust	Balance		
Rig Fuel (Itr)	ltr		22,000	0	3,000	0	19,000		
Camp Fuel (ltr)	ltr		2,800	0	350	0	2,450		
Pot Water (ltr)	ltr		36,500	0	3,500	0	33,000		
Rigsite Potable Water (Itr)	ltr		14,500	0	500	0	14,000		
Cementing Water (bbl)	bbl		360	0	0	0	360		

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		05:30	14:00	Ensign Truck pusher took Ensign rental vehicle for repair.
Van		14:30	18:30	Day tour pusher to to Rig 65. Lease hand not fit for work returned to home
Van		12:00	06:00	Ensign Field Superintendent. Transport 2 X 8 1/2" Drill bits from Toll Moomba

Tibor-1 Drilling									
Report Number :		11	Day Wellsite	Representative: G		Guy L Holmes	Rig	Manager:	Scott Cameron
Latitude (South)	25° 5	52' 17.80"	Night Wellsi	te Representative	e:	Kevin Gordon	Drilli	ng Company:	ENSIGN
Longitude (East)	141° 1	6' 19.41"					Well	site Geologist:	Alan Whitestone
Well Data									
Country:	Australia	Current F	lole Size:	12.250 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	754.0 m	Casing MD:	750).9 m	Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	754.0 m	Casing TVD	: 750).9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:		TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	10.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	4.29	Lnr Shoe M	D:		Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	Date:	10 Feb 2013	Lnr Shoe T\	/D:		Cum. Cost:	
		FIT/LOT:		1				Last LTI Date:	05 Feb 2012
								Days Since LTI:	372
Current Op @ 0600:		Continue	pressure test	ing casing wellhe	ad conection				
Planned Op:		Complete	pressure tes	ting. Make up Bl	HA No:2 and r	un in hole. Dri	ll shoe	track and conduct	LOT. Drill 8 1/2"
		productio	n hole.						

Summary for Period 0000 Hrs to 2400 Hrs on 11 Feb 2013

Ran and cemented 9 5/8" casing (shoe set at 750.9m). Installed landing ring slips. Installed "A" section wellhead. Nippled up BOP, bellnipple and flowline.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	12 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	12 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Hazard Cards	12	12 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
JSA	2	12 Feb 2013 00:00	0	JSA's	For making up BHA and for tripping.

Operations for Period 0000 Hrs to 2400 Hrs On 11 Feb 2013							
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
SH	Р	RCG	00:00	02:30	2.50	754.0	Run 9 5/8" casing from 597m to 746m (5m fill)
SH	Р	RCG	02:30	04:00	1.50	754.0	Wash casing to bottom. Circulating rate limited (3.9bpm) as cellar pumps not capable of keeping cellar clear.
SH	TP (RE)	REPR	04:00	06:00	2.00	754.0	Circulate slowly (202gpm) and condition mud while mechanic and electrician working on cellar pump.
SH	Р	CMT	06:00	07:30	1.50	754.0	Circulate and condition mud.
SH	Р	MTG	07:30	07:45	0.25	754.0	Held PJSM with Halliburton and drill crew.
SH	Р	RDC	07:45	08:15	0.50	754.0	Rig down circulating swage. Rig up cement head and surface lines.
SH	Р	CMT	08:15	11:15	3.00	754.0	Halliburton pump 5bbl water. Pressure test surface lines to 3000psi for 5mins. Halliburton pump 35bbl water. Drop bottom plug. Mix and pump 239bbl lead slurry at 11.8ppg. Mix and pump 33bbl tail slurry at 15.8ppg. Drop top plug. Displace cement with 191bbl water. Bump plug, 500psi. Cement in place at 11:00hrs. Pressure test casing to 2800psi for 10mins, good test. Bleed pressure 2.5bbl returns. NRV holding OK.
SH	Р	CMT	11:15	13:30	2.25	754.0	Confirm cement slump in annulus had stabilized. Clean cement from cellar and flush cellar trash pump with water.
SH	Р	CMT	13:30	14:00	0.50	754.0	Clean landing base and install slips. Slack off casing.
SH	Р	CMT	14:00	14:15	0.25	754.0	Rig down cement head and surface lines.

						Well : Ti	bor-1 Drilling				
Operation	s for Perio	d 0000 H	Irs to 2400 H	irs On 11	Feb 20)13					
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)		Activ	ity Descriptio	n	
SH	Р	CMT	14:15	14:45	0.50	754.0	Back out landing	g joint. Break co rved.	llar from botto	om of landing jo	oint and lay
SH	Р	WHR	14:45	15:30	0.75	754.0	PJSM. Install "A" section wellhead and torque to 3000 ft/ lbs. OCR observed.				
SH	Р	RRC	15:30	16:00	0.50	754.0	Rig down stabb equipment.	ing board. Lay o	ut casing ton	g and casing ha	andling
SH	Р	NUB	16:00	24:00	8.00	754.0	trolley to well ce test stump. Nip	pool and trolley be intre and install li ple up spool, mu low line. Install t	ft slings. Rer d cross and E	move tie down l BOP. Nipple up	oolts from choke line,
Operation	s for Perio	d 0000 H	Irs to 0600 H	irs On 12	2 Feb 20	13					
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)		Activ	ity Description	n	
SH	Р	NUB	00:00	02:00	2.00	754.0	Continue nipple	up bell nipple ar line.	d flow line. F	Rig up flare line	and
SH	Р	BOP	02:00	04:30	2.50	754.0	Make up test plug assembly. RIH and set plug in wellhead. Attempt to test, leaking on #2 choke manifold valve. Grease valve and retest. Pressure test choke line, wellhead, drilling spool and BOP connections against 4 1/2" DP rams to 300psi for 5mins and 5000psi for 10mins - OK. Test annular to 300psi for 5mins and 3500psi for 10mins - OK.				
SH	Р	ВОРГ	04:30	06:00	1.50	754.0	[In Progress] La Attempt to test v	y out test plug as vellhead casing of d redress cup tes	ssembly. Ma connection. I	ke up Cup test Fluid leaking pa	assembly. st cup test
Performar	nce Summa	ary									
					Dail	y			Cumula	tive Well	
			F	Irs			%	Hrs	3		%
Р			2	2.0			91.7	243.	0	9	6.0
TP			2	2.0			8.3	2.0			0.8
TU			С	0.0			0.0	8.0		3	3.2
Undefined			C	0.0			0.0	0.0		(0.0
Total			2	4.0			100.0	253.	0	10	00.0
WBM Data	a								(Cost Today:	\$ 276
Mud Desc:		ud mud A	PI FL:	10.0	cm ³ /30m	in CI:	19,	900 % Solids:	4.4 %	Glycol:	
		(4KPP) Fi	ilter-Cake:			d" KCI:		4.0 % H2O:		Viscosity:	41 s/qt
Check Depth:		754.0 m H	THP-FL:			Hard/Ca:	440.0	0 mg/L Sand:	0.1 %	PV:	9 cP
Time:			THP-Cake:			МВТ:		2.50 % pH:		YP:	15 lbf/100ft ²
Weight:			THP-Temp:			Pm:	0	.10 m³ PHPA:	1.00 ppb		6 lbf/100ft ²
Temp:		56.0 °C H	THP-Press:			Pf:		0.12 Mf:	0.80 m³	Gel 10m:	10 lbf/100ft²
Comment:										RPM	Reading
									ŀ	6	5
									ŀ	100	14
										100	17

19

24

33

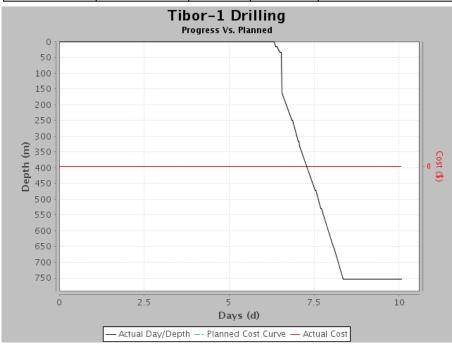
200

300

600

				Well : Tib	or-1 Drilling					
Shakers, Volumes a	nd Losses Da	ta							Engineer	: Roni Tan
Equipment	Desci	ription	Me	esh Size	Available		789 bbl	Losses		128 bbl
Centrifuge	Scomi DE-	1000			Active		427 bbl	Downhole		
Shaker	Derrick Sha	ale Shaker		170 x 4	Mixing		110 bbl	Surf. + Equi	p.	54 bbl
Shaker	Derrick Sha	ale Shaker		200 x 4	Hole		192 bbl	Dumped		55 bbl
					Slug			De-Gasser		
					Reserve		60 bbl	De-Sander		
					Kill			De-Silter		
					Other			Centrifuge		19 bbl
	.=							Other		
	150bbls from T	l urkey's Nest	i.							
Pumps										
				ta - Last 24 H						mp Data
No Ty	/pe	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		
1 Continental I	Emsco F-800	5.500	85	97		300		8.90		
2 Continental I	Emsco F-800	5.500		97				8.90		
Casing										
OD		LOT		F	:IT	Casin	g Shoe (MI	D) (Casing Shoe	(TVD)
244 mm (9	9 5/8")	1	6.70 ppg					50.9 m		750.9 m
Drilling Parameters										
BHA Run #1										
Top Depth:				10.7 m	PWD ECD:					
Bottom Depth:				754.0 m						
,			Min			Avg			Max	
Flow		6	07 galUS	/min	615	5 galUS/min		62	22 galUS/mi	n
Surface RPM		_	94 rpm			110 rpm			126 rpm	
Downhole RPM			94 rpm			110 rpm			126 rpm	
Pressure			982 ps			1,049 psi			1,115 psi	
Torque			2,000 ft-l			,350 ft-lbs			4,700 ft-lbs	
WOB			1 klbs			3 klbs			4 klbs	
ROP			17.00 m	/h	1	14.35 m/h			34.22 m/h	
Formations										
	Na	ime					Тор	(m)		
Winton Formation										10.7
Mackunda Formation										633.0
Personnel On Board	1									
Job Title	!		Personn	el	(Company			Pax	
					Drillsearch					5
					ISOS					1
					Geoservice					4
					Rheochem					1
					Scomi (KMC)				1
					ENSIGN					22
					Oil Industry (Catering Serv	rices			3
					Halliburton					2
					Santos					2
										

Total


41

Well: Tibor-1 Drilling

Bulk Stocks										
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance			
Rig Fuel (ltr)	ltr		19,000	0	2,000	0	17,000			
Camp Fuel (Itr)	ltr		2,450	0	350	0	2,100			
Pot Water (Itr)	ltr		33,000	0	5,500	0	27,500			
Rigsite Potable Water (Itr)	ltr		14,000	0	1,000	0	13,000			
Cementing Water (bbl)	bbl		360	0	0	0	360			

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		16:45	09:15	Pick up DLS OCR from Windorah.
Van		19:00	11:00	2 x Santos inspectors (Modu Spec) arrived from Moomba.
Van		19:45	11:00	Ensign Rig 918 driver had overnighted at Rig 65. Travelled from Rig 65 to
				Ballera, dropped 1 outgoing passenger and picked up driller and lease hand for
				918.
Truck		21:00	08:00	1 x Halliburton driver took bulk tanker back to Moomba base.

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)	12 25° 52' 17.80" 141° 16' 19.41"		Day Wellsite Representative: Night Wellsite Representative:		•	Ray C. Miller : Kevin Gordon		Manager: ng Company: site Geologist:	Scott Cameron ENSIGN Alan Whitestone
Well Data									
Country:	Australia	Current F	łole Size:	8.500 in	Casing OD:	9.62	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	754.0 m	Casing MD:	750.9 n		Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	754.0 m	Casing TVD: 75		.9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	0.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	11.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	5.29	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:	10 Feb 2013	Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	373
Current Op @ 0600	:	Drilling 8	rilling 8 1/2" hole at 769mRT.						
Planned Op:		Drill 8 1/2	" hole.						

Summary for Period 0000 Hrs to 2400 Hrs on 12 Feb 2013

Complete nipple up BOP. Pressure test BOP rams, annular and connections. Run cup tester and test casing/ wellhead connection. Perform Koomey drawdown test. Install wear bushing. Make up BHA #2 and RIH. Tag cement at 737.6mRT. Drill plugs, Float collar, shoe track and Cement shoe. Clean rat hole to 754mRT.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	0	11 Feb 2013 00:00	1	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	0	11 Feb 2013 11:45	1	PTSM	Discuss hazards of upcoming operations.
Pre-Job Meetings	0	11 Feb 2013 00:00	1	Cement Job	Pre-job safety meeting with Cementers
Hazard Cards	0	11 Feb 2013 00:00	1	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
JSA	0	11 Feb 2013 00:00	1	JSA's	Running 9 5/8" casing

Operation	s for Perio	d 0000 Hrs	to 2400 F	irs On 12	2 Feb 20	13	
PHSE	CLS	OP	From	To	Hrs	Depth	Activity Description
	(RC)					(m)	
SH	Р	NUB	00:00	02:00	2.00	754.0	Continue nipple up bell nipple and flow line. Rig up flare line and "Poorboy" vent line.
SH	Р	BOPD	02:00	04:30	2.50	754.0	Make up test plug assembly. RIH and set plug in wellhead. Attempt to test, leaking on #2 choke manifold valve. Grease valve and retest. Pressure test choke line, wellhead, drilling spool and BOP connections against 4 1/2" DP rams to 300psi for 5mins and 5000psi for 10mins - OK. Test annular to 300psi for 5mins and 3500psi for 10mins - OK.
SH	Р	BOPD	04:30	07:15	2.75	754.0	Lay out test plug assembly. Make up Cup test assembly. Attempt to test wellhead casing connection. Fluid leaking past cup test rubber. Pull and redress cup test tool. Tested the GE Wellhead to 2800Psi. for 10mins.
SH	Р	BOPD	07:15	07:45	0.50	754.0	Laid out the Cup Test tool.
SH	Р	BOPD	07:45	08:45	1.00	754.0	Pressure tested the Stabbing Valve and Inside BOP to 300 Psi low and 5000 Psi high for 10 minutes.
SH	Р	BOPD	08:45	09:45	1.00	754.0	Ran the wear bushing.
SH	Р	SCL	09:45	11:15	1.50	754.0	Slipped 30 feet of drilling line and cut off 95 feet.
SH	Р	BOPD	11:15	12:30	1.25	754.0	Performed Koomey Unit drawdown test.

							Well : Ti	bor-1 Drilling				
Operations	s for Perio	d 0000	Hrs to 2	400 H	irs On 12	Peb 201	13					
PHSE	CLS (RC)	0	P Fr	rom	То	Hrs	Depth (m)		Activi	ty Description	on	
SH	Р	HE	3H 12	2:30	17:00	4.50	754.0	Prepared to pic BHA #2 to 198r	k up the 8 1/2" BH nRT.	IA. Made up	the new Bit a	and picked up
SH	Р	Т	1 17	7:00	19:00	2.00	754.0	RIH with BHA #2 from 198mRT to 718mRT. Lay out 4 x drill pipe from derrick.				
SH	Р	R	W 19	9:00	19:45	0.75	754.0	Remove elevate cement at 737.6	ors. Pick up Kelly. SmRT.	. Wash dow	vn from 718m	RT and tag
SH	Р	R	W 19	9:45	24:00	4.25	754.0		from 737.6m, Flo . Clean out rathole	_		
Operation	s for Perio	d 0000	Hrs to 0	600 F	irs On 13	3 Feb 201	13					
PHSE	CLS (RC)	0	P Fr	rom	То	Hrs	Depth (m)		Activi	ty Description	on	
SH	Р	D	A 00	0:00	00:45	0.75	757.0		ion from 754mRT d while drilling nev			ater from casing
SH	Р	CN	/ID 00	0:45	02:30	1.75	757.0	Circulate and co	ondition mud till ba	alanced at 8	.9ppg for L.O	.Т.
SH	Р	LC	OT 02	2:30	04:00	1.50	757.0	Perform leak off test. Maximum pressure pumped = 1000psi with 9.8ppg at 757mRT. E.M.W = 16.6ppg.				psi with 9.8ppg
SH	Р	D	A 04	4:00	06:00	2.00	769.0	.,,				survey every 3
Performan	nce Summa	ary										
		-				Daily	,			Cumula	ative Well	
				H	Irs			%	Hrs			%
Р				2	4.0			100.0	267.0)		96.4
TP				C	0.0			0.0	2.0			0.7
TU				C	0.0			0.0	8.0			2.9
Undefined				C	0.0			0.0	0.0			0.0
Total				2	4.0			100.0	277.0)		100.0
WBM Data	3										Cost Today:	\$ 3,583
Mud Desc:			API FL:		10.0	cm³/30min	CI:	21	,000 % Solids:	4.4 %	Glycol:	
		(4KPP)	Filter-Cake	e:		1 /32nd'	KCI:		4.0 % H2O:		Viscosity:	42 s/q
Check Depth:	7	754.0 m	HTHP-FL:	:			Hard/Ca:	480.0	0 mg/L Sand:	0.1 %		9 cF
Time:		23:00	HTHP-Cal	ke:			MBT:		2.50 % pH:		YP:	16 lbf/100ft
Weight:	8	.90 ppg	HTHP-Ter	mp:			Pm:	().11 m³ PHPA:	0.60 ppb		6 lbf/100ft
Temp:			HTHP-Pre	ess:			Pf:		0.16 Mf:	1.00 m³	Gel 10m:	10 lbf/100ft
Comment:											RPM	Reading
											3	4
											6	6
											100	15
											200	19

25

34

300

600

Shakers, Volumes ar	d Losses Data					Engineer : Roni Tan
Equipment	Description	Mesh Size	Available	764 bbl	Losses	233 bbl
Centrifuge	Scomi DE-1000		Active	427 bbl	Downhole	
Shaker	Derrick Shale Shaker	270	x 4 Mixing	117 bbl	Surf. + Equi	p.
Shaker	Derrick Shale Shaker	270	x 4 Hole	160 bbl	Dumped	212 bbl
			Slug		De-Gasser	
			Reserve	60 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	21 bbl
					Other	
Comment: Used	150bbls from Turkey's Nest	-				
Casing						
OD	LOT		FIT	Casing Shoe (MI	D) (Casing Shoe (TVD)
244 mm (9	5/8") 10	6.70 ppg		75	50.9 m	750.9 m
BHA #2						
BHA Type:		Pendulum	Total Weight Wet:	:		41 klb
Depth In/Out:		754.0 m/	Weight Below Jar	Wet:		31 klb
Date In/Out:	#	#12 (12 Feb 2013)/				
Total Length:		198.1 m				
BHA Description:	8 1/2" PDC bit, Bit :	Sub, X/O, 6 1/2" Tel	edrift, X/O, 6 1/2" N	MDC, 8 1/2" stab, 13 x 6	6 1/2" Drill Col	llars, Jars, 2 x 6 1/2"
	Drill collars, 4 x 4 1	/2" HWDP.				
BHA Run Comment:						

BHA Daily Summary					
Pickup Weight:	88 klb	Torque (max):	2,000 ft-lbs	D.C. (1) Ann Velocity:	5 ft/s
Slack-Off Weight:	87 klb	Torque Avg. Off Bottom:	600 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	88 klb	Torque Avg. On Bottom:	2,000 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	4.00 h			D.P. Ann. Velocity:	3 ft/s
Summary:					

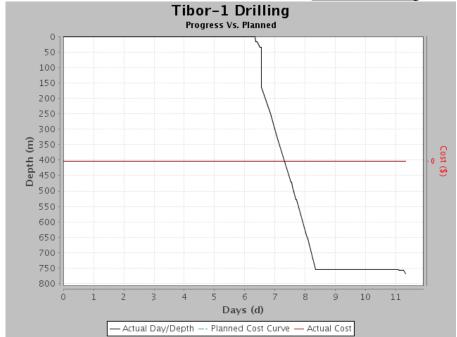
BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit		0.35	8.500	2.000	743496	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 1/2" FULL GAUGE.	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
Drill Collar		8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data											
Slide Time:		Rotate Time:		Circ. Time:	4.50 h						
Slide (%):		Rotate (%):		Circ. (%):							
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	4.50 h						
Total Revs:		HSI:	1.75 hp/in ²								

Bit #2							N	ozzles
Size:	216 mm (8 1/2")	Type:	PDC	IADC #:	M223	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	Q505F	TFA:	0.552 in ²	5		12
	Christensen)	Bit Wear:		Cost:	\$		^	12
Serial #:	743496							
Bit Run Comment:								
Bit Wear Comment:								

Drilling Parameters			
BHA Run #2			
Top Depth:		PWD ECD:	
Bottom Depth:			
	Min	Avg	Max
Flow	350 galUS/min	375 galUS/min	400 galUS/min
Surface RPM	40 rpm	50 rpm	60 rpm
Downhole RPM	40 rpm	50 rpm	60 rpm
Pressure	380 psi	410 psi	440 psi
Torque	1,200 ft-lbs	1,500 ft-lbs	1,800 ft-lbs
WOB	3 klbs	4 klbs	5 klbs
ROP			
Formations			
	Name	Тор	(m)

Formations	
Name	Top (m)
Winton Formation	10.7
Mackunda Formation	633.0
Personnel On Board	


Personnel On Board			
Job Title	Personnel	Company	Pax
		Drillsearch	4
		ISOS	1
		Geoservice	4
		Rheochem	1
		Scomi (KMC)	1
		ENSIGN	20
		Oil Industry Catering Services	3
		Halliburton	0
		Santos	2
		Total	36

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	Itr		17,000	0	1,000	0	16,000
Camp Fuel (ltr)	Itr		2,100	0	350	0	1,750
Pot Water (ltr)	ltr		27,500	12,000	5,500	0	34,000
Rigsite Potable Water (ltr)	ltr		13,000	1,000	1,000	0	13,000
Cementing Water (bbl)	bbl		360	0	0	0	360

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		14:00	09:00	Ensign Suprintendant travelled from Rig 918 to Rig 65.
Truck			09:00	2 Halliburton departed for Moomba with pump truck and bulk tank as road train.
Van		15:45	09:00	Driver delivered outgoing OCR to Windorah airport then returned to Rig 918.

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		13 52' 17.80" 16' 19.41"	,	e Representative: te Representative		y C. Miller in Gordon	Drilli	Manager: ng Company: site Geologist:	Scott Cameron ENSIGN Alan Whitestone
Well Data									
Country:	Australia	Current F	lole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	933.0 m	Casing MD:	750	.9 m	Original AFE:	
Rig:	Ensign 918	True Ver	ical Depth:	933.0 m	Casing TVD:	750	.9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	179.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	12.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	6.29	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	Date:	12 Feb 2013	Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	374
Current Op @ 0600	:	Drill 8 1/2	" hole at 963	meters.					
Planned Op:		Drill 8 1/2	" hole to 1400	m. Circulate hol	e clean. Check ti	rip to shoe.	RIH.	Drill ahead.	

Summary for Period 0000 Hrs to 2400 Hrs on 13 Feb 2013

Displace well with 8.9ppg mud while drill 3m new formation. Circulate and condition mud. Conduct L.O.T. Drill ahead 8 1/2" hole from 757mRT to 933mRT.

HSE Summary					
Events	Num. Events	Date of Last	Days Since	Description	Remarks
Pre-Tour Safety Meeting	1	13 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	13 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Hazard Cards	7	11 Feb 2013 00:00	2	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
JSA	2	11 Feb 2013 00:00	2	JSA's	Mouse hole connections. Racking Kelly.

Operation	Operations for Period 0000 Hrs to 2400 Hrs On 13 Feb 2013									
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description			
	(RC)					(m)				
SH	Р	DA	00:00	00:45	0.75	757.0	Drill new formation from 754mRT to 757mRT. Displace water from casing with 8.9ppg mud while drilling new formation.			
SH	Р	CMD	00:45	02:30	1.75	757.0	Circulate and condition mud till balanced at 8.9ppg for L.O.T.			
SH	Р	LOT	02:30	04:00	1.50	757.0	Perform leak off test. Maximum pressure pumped = 1000psi with 9.8ppg at 757mRT. E.M.W = 16.6ppg.			
SH	Р	DA	04:00	12:00	8.00	828.0	Drill 8 1/2" hole from 757mRT to 828mRT. Ream each single twice. Take Teledrift survey every 3 singles drilled. (Took SCR's prior to drilling ahead)			
SH	Р	DA	12:00	19:30	7.50	904.0	Drill 8 1/2" hole from 828mRT to 904mRT.			
SH	Р	SCR	19:30	19:45	0.25	904.0	Circulate and take SCR's on both pumps.			
SH	Р	SVY	19:45	20:15	0.50	904.0	Run wire line single shot survey at 890m. Survey = 1.75 degrees S70E.			
SH	Р	DA	20:15	24:00	3.75	933.0	Drill 8 1/2" hole from 904mRT to 933mRT. Due to higher deviation, took Teledrift surveys at 924mRT = 2 degrees and 932m = 2degrees.			

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 14 Feb 2013									
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description			
	(RC)					(m)				

SH	Р	DA	00:00	01:45	1.75	942.0	Drill 8 1/2" hole from 933mRT to 942mRT with reduced weight attempting
							to drop angle. WOB = 2.5 to 3Kips. Teledrift survey at 940m = 1 degree.
SH	Р	DA	01:45	06:00	4.25	942.0	Drill 8 1/2" hole from 942mRT to 963mRT. Increased WOB to 5 to 6 Kips.
							Teledrift survey at 960mRT = 2 degrees.

Performance Summary										
	Daily Cumulative Well									
	Hrs	%	Hrs	%						
Р	24.0	100.0	291.0	96.7						
TP	0.0	0.0	2.0	0.7						
TU	0.0	0.0	8.0	2.7						
Undefined	0.0	0.0	0.0	0.0						
Total	24.0	100.0	301.0	100.0						

WBM Data								Cost Today:	\$ 5,161
Mud Desc:	4PHB	API FL:	9.0 cm ³ /30min	CI:	23,800 %	Solids:	4.4 %	Glycol:	
Check Depth:	888.0 m	Filter-Cake:	1 /32nd"	KCI:	4.5 %	H2O:	96 %	Viscosity:	42 s/qt
Time:	18:00	HTHP-FL:		Hard/Ca:	440.00 mg/L	Sand:	0.1 %	PV:	9 cP
Weight:	8.90 ppg	HTHP-Cake:		мвт:	11.30 %	рН:	10	YP:	17 lbf/100ft²
Temp:		HTHP-Temp:		Pm:	0.10	PHPA:	0.56 ppb	Gel 10s:	6 lbf/100ft ²
		HTHP-Press:		Pf:	0.16	Mf:	0.80	Gel 10m:	11 lbf/100ft²
Comment:								RPM	Reading

Comment:	RPM	Reading
	3	5
	6	6
	100	17
	200	22
	300	26
	600	35

Shakers, Volumes a	and Losses Data				Engi	neer : Roni Tan
Equipment	Description	Mesh Size	Available	688 bbl	Losses	312 bbl
Centrifuge	Scomi DE-1000		Active	358 bbl	Downhole	13 bbl
Shaker	Derrick Shale Shaker	270 x 4	Mixing	89 bbl	Surf. + Equip.	81 bbl
Shaker	Derrick Shale Shaker	270 x 4	Hole	186 bbl	Dumped	156 bbl
			Slug		De-Gasser	
			Reserve	55 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	62 bbl
					Other	

Comment: Used 70bbls from Turkey's Nest.

Pumps	;									
	Pump data - Last 24 Hrs								Slow Pu	mp Data
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)
1	Continental Emsco F-800	5.500	87	97		1,200	904.0	8.90	60	200
									40	100
2	Continental Emsco F-800	5.500	87	97		1,200	904.0	8.90	60	200
									40	100

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

BHA #2			
BHA Type:	Pendulum	Total Weight Wet:	41 klb
Depth In/Out:	754.0 m/	Weight Below Jar Wet:	31 klb
Date In/Out:	#12 (12 Feb 2013)/		
Total Length:	198.1 m		
BHA Description:	8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Tele	edrift, X/O, 6 1/2" NMDC, 8 1/2" stab, 13 x 6 1/2	" Drill Collars, Jars, 2 x 6 1/2"
	Drill collars, 4 x 4 1/2" HWDP.		
BHA Run Comment:			
BHA Daily Summary			

BHA Daily Summary					
Pickup Weight:	95 klb	Torque (max):	4,000 ft-lbs	D.C. (1) Ann Velocity:	6 ft/s
Slack-Off Weight:	92 klb	Torque Avg. Off Bottom:	1,500 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	93 klb	Torque Avg. On Bottom:	4,000 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	19.71 h			D.P. Ann. Velocity:	3 ft/s
Summary:					

BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit		0.35	8.500	2.000	743496	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 1/2" FULL GAUGE.	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
Drill Collar		8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data					
Slide Time:		Rotate Time:		Circ. Time:	
Slide (%):		Rotate (%):		Circ. (%):	
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	0.00 h
Total Revs:	71 Krevs	HSI:	2.20 hp/in ²		

				Well : Tibo	<u>r-1 Drilli</u>	ng						
Bit #2											No	zzles
Size:		mm (8 1/2")	Type:					M223	#		Size (/32nd")	
Manufacturer:		HI (Hughes	Model:		Q!	505F	TFA:	0.5	52 in²	5	х	12
	C	hristensen)	Bit Wear:				Cost:		\$			
Serial #:		743496										
Bit Run Comm												
Bit Wear Comn	ment:											
Drilling Parame	eters											
BHA Run #2												
Top Depth:				754.0 m	PWD E	CD:						
Bottom Depth:				933.0 m								
			Min				Avg				Max	
Flow			380 galUS/min				galUS/mii	n		430	galUS	S/min
Surface RPM			60 rpm				97 rpm				133 rp	
Downhole RPM			60 rpm				97 rpm				133 rp	
Pressure			470 psi				990 psi				,510 p	
Torque			1,500 ft-lbs			2,	,750 ft-lbs			4,	000 ft-	
WOB			2 klbs				5 klbs				8 klbs	
ROP			7.00 m/h				7.46 m/h			3	4.85 n	ո/h
Survey												
MD	Incl.	Corr. Az	: TVD	'V' S	ect	Do	ogleg	N/S		E/W		Tool Type
(m)	(°)	(°)	(m)	(n	n)		g/30m)	(m)		(m)		•
776.0	1.0	0.00										Teledrift
806.0	1.5	0.00										Teledrift
835.0	1.0	0.00										Teledrift
865.0	1.0	0.00										Teledrift
890.0	0.5	0.00										Teledrift
890.0	1.8	110.00	889.9	-	-	C).139	-3.7		2.6		MagneticSS
				7,138,5	509.900							
924.0	2.0	0.00										Teledrift
932.0	2.0	0.00										Teledrift
Formations												
		Name						Тор	(m)			
Winton Formation	on											10.7
Mackunda Form	nation											633.0
Personnel On I	Board											
	b Title		Personnel			C	Company				Pax	
					Drillsea		1 - 7					4
					ISOS							1
					Geosei	vice						4
					Rheoch	nem						1
					Scomi							1
					ENSIG							21
					Oil Industry Catering Services						3	
					Hallibu				0			
					Santos							2
								Total				37


Well: Tibor-1 Drilling

Bulk Stocks								
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance	
Rig Fuel (Itr)	ltr		16,000	19,950	3,000	0	32,950	
Camp Fuel (Itr)	ltr		1,750	3,000	250	0	4,500	
Pot Water (Itr)	ltr		34,000	0	7,000	0	27,000	
Rigsite Potable Water (Itr)	ltr		13,000	0	2,500	0	10,500	
Cementing Water (bbl)	bbl		360	0	0	0	360	
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16	
Barite Sacks (Sacks)	Sacks		1,514	0	0	0	1,514	
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42	
Caustic Soda (25 kg sx)	25 kg sx		36	0	2	0	34	
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70	
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38	
Defoam - A (Itr)	ltr		11	0	0	0	11	
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40	
Fracseal Fine (sx)	sx		210	0	0	0	210	
Idcide-20 (20ltr) (Pails)	Pails		64	0	2	0	62	
JK 161 LV (25kg) (Sacks)	Sacks		60	0	1	0	59	
Potassium Chloride (25 kg bag)	25 kg bag		652	0	96	0	556	
Lime (sx)	sx		54	0	0	0	54	
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	25	
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20	
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32	
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	2	
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50	
Quikseal Med (18.2kg) (Sacks)	Sacks		99	0	0	0	99	
Rheopac LV (25kg) (Sacks)	Sacks		76	0	10	0	66	
Salt-25KG (Sacks)	Sacks		732	0	0	0	732	
Sandseal (sx)	sx		50	0	0	0	50	
SAPP (sx)	sx		38	0	0	0	38	
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2	
Soda Ash (sx)	sx		41	0	2	0	39	
Sodium Bicarbonate (bag)	bag		44	0	0	0	4	
Sodium Sulphite (sx)	sx		80	0	2	0	78	
Xanthan Gum (25kg sx)	25kg sx		60	0	4	0	56	
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	-	

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		08:00	04:00	Ensign crew travelling to Brisbane.
Van		12:30	09:30	3 vehicles to take Ensign crew and service hands to Windorah for crew change.
Van		16:30	13:30	3 vehicles to bring Ensign crew and service hands to Rig 918 for crew change.
Van		13:00	09:00	Ensign crew coming from Brisbane.

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		14 25° 52' 17.80" 141° 16' 19.41"		Day Wellsite Representative: Night Wellsite Representative:		Ray C. Miller E: Kevin Gordon		Manager: ng Company: site Geologist:	Scott Cameron ENSIGN Alan Whitestone
Well Data									
Country: Field: Rig: Ground Level: RT to GL Plan TD (MD): Plan TD (TVD):	Australia Ensign 918 135.0 m 5.15 m 1,738.0 m 1,738.0 m	Current H Measured True Vert 24 Hr Pro Days On Days Sin Last BOF FIT/LOT:	d Depth: ical Depth: igress: Well: ce Spud:	8.500 in 1,100.0 m 1,100.0 m 167.0 m 13.54 7.29 12 Feb 2013 /16.64 ppg	Casing OD: Casing MD: Casing TVD: TOL MD: TOL TVD: Lnr Shoe MD: Lnr Shoe TVD:	750	25 in 1.9 m 1.9 m	AFE Number: Original AFE: Supp AFE No: Orig. & Sup. AFE: Daily Cost: Cum. Cost: Last LTI Date: Days Since LTI:	OPS-13-018 05 Feb 2012 375
Current Op @ 0600 Planned Op:	:	•	nead from 113 d to 1400 me	35 meters. ters and make ch	neck trip before d	rilling ahead	to tota	al depth.	

Summary for Period 0000 Hrs to 2400 Hrs on 14 Feb 2013

Drilled from 933 meters to 1100 meters. Serviced Rig and took deviation surveys as required.

HSE Summary	HSE Summary								
Events	Num.	Date of Last	Days	Description	Remarks				
	Events		Since						
Pre-Tour Safety Meeting	1	14 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.				
Pre-Tour Safety Meeting	1	14 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.				
Number of Observe Cards	0	14 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.				
BOP Test/Drill	1	14 Feb 2013 00:00	0	BOP Drill	Sound horn and stab F.O.S.V during connection to check crew awareness.				
Function tested TBA/TDS Upper & Lower Stop Limits	2	14 Feb 2013 00:00	0	Function test Crown-O- Matic.	Manually tripped Crown-o-Matic to ensure operational.				

Operation	s for Perio	d 0000 Hrs t	to 2400 H	lrs On 14	Feb 20	13	
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description
	(RC)					(m)	
SH	Р	DA	00:00	01:45	1.75	942.0	Drill 8 1/2" hole from 933mRT to 942mRT with reduced weight attempting
							to drop angle. WOB = 2.5 to 3Kips. Teledrift survey at 940m = 1 degree.
SH	Р	DA	01:45	12:00	10.25	1,000.0	Drilled 8 1/2" hole from 942mRT to 1000mRT. Increased WOB to 5 to 10
							Kips. Teledrift survey at 960mRT = 2 degrees. Teledrift survey at 990m
							= 0.5 degrees. Single shot survey at 985m = 1.75 degrees. Continue
							drilling to correct (or control) deviation.
SH	Р	SCR	12:00	12:30	0.50	1,000.0	Circulate hole clean. Take SCR's at 1000mRT with 9.1ppg mud.
SH	Р	SVY	12:30	13:00	0.50	1,000.0	Take wireline single shot survey at 985m. Inclination = 1.75 degrees E62S.
SH	Р	DA	13:00	18:45	5.75	1,049.0	Drill 8 1/2" hole from 1000mRT to 1049mRT.
SH	Р	RS	18:45	19:15	0.50	1,049.0	Service rig.
SH	Р	RS	19:15	21:00	1.75	1,078.0	Drill 8 1/2" hole from 1049mRT to 1078mRT.
SH	Р	CMD	21:00	21:15	0.25	1,078.0	Circulate bottoms up.
SH	Р	SVY	21:15	21:45	0.50	1,078.0	Take wireline single shot survey at 1062m. Inclination = 1.0 degrees S80E.
SH	Р	DA	21:45	24:00	2.25	1,100.0	Drill 8 1/2" hole from 1078mRT to 1100mRT.

Operations for Period 0000 Hrs to 0600 Hrs On 15 Feb 2013

PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description	
	(RC)					(m)		
SH	Р	DA	00:00	03:00	3.00	1,135.0	0 Drill 8 1/2" hole from 1100mRT to 1135 meters at 06:00 hrs.	

Performance Summary									
	Da	aily	Cumulative Well						
	Hrs	%	Hrs	%					
Р	24.0	100.0	315.0	96.9					
TP	0.0	0.0	2.0	0.6					
TU	0.0	0.0	8.0	2.5					
Undefined	0.0	0.0	0.0	0.0					
Total	24.0	100.0	325.0	100.0					

WBM Data								Cost Today:	\$ 1,843
Mud Desc:	4PHB	API FL:	9.0 cm ³ /30min	CI:	22,900 %	Solids:	5.9 %	Glycol:	
Check Depth:	1,050.0 m	Filter-Cake:	1 /32nd"	KCI:	4.5 %	H2O:	94 %	Viscosity:	43 s/qt
Time:	19:10	HTHP-FL:		Hard/Ca:	400.00 mg/L	Sand:	0.2 %	PV:	11 cP
Weight:	9.10 ppg	HTHP-Cake:		MBT:	11.50 %	pH:	10	YP:	18 lbf/100ft ²
Temp:	57.0 °C	HTHP-Temp:		Pm:	0.10	PHPA:	0.39 ppb	Gel 10s:	6 lbf/100ft ²
		HTHP-Press:		Pf:	0.16	Mf:	1.00	Gel 10m:	14 lbf/100ft ²

Comment:	RPM	Reading
	3	5
	6	7
	100	17
	200	22
	300	29
	600	40

Shakers, Volumes a	nd Losses Data		Engineer : Roni Tan			
Equipment	Description	Mesh Size	Available	690 bbl	Losses	111 bbl
Centrifuge	Scomi DE-1000		Active	358 bbl	Downhole	16 bbl
Shaker	Derrick Shale Shaker	325 x 4	Mixing	77 bbl	Surf. + Equip.	46 bbl
Shaker	Derrick Shale Shaker	325x 4	Hole	220 bbl	Dumped	10 bbl
			Slug		De-Gasser	
			Reserve	35 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	39 bbl
					Other	

Comment: Used 70bbls from Turkey's Nest.

Pumps	s										
	Pump data - Last 24 Hrs								Slow Pu	Slow Pump Data	
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP	
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)	
1	Continental Emsco F-800	5.500	87	97		1,300	1,000.0	9.10	60	200	
									40	100	
2	Continental Emsco F-800	5.500	87	97		1,300	1,000.0	9.10	60	200	
									40	100	

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

BHA #2				
BHA Type:	Pendulum	Total Weight Wet:		41 klb
Depth In/Out:	754.0 m/	Weight Below Jar Wet:		31 klb
Date In/Out:	#12 (12 Feb 2013)/			
Total Length:	198.1 m			
BHA Description:	8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Tel	edrift, X/O, 6 1/2" NMDC, 8 1/2	" stab, 13 x 6 1/2" Drill Collars, Ja	rs, 2 x 6 1/2"
	Drill collars, 4 x 4 1/2" HWDP.			
BHA Run Comment:				
BHA Daily Summary				
Pickup Weight:	102 klb Torque (may):	4 500 ft-lbs	D.C. (1) Ann Velocity:	6 ft/s

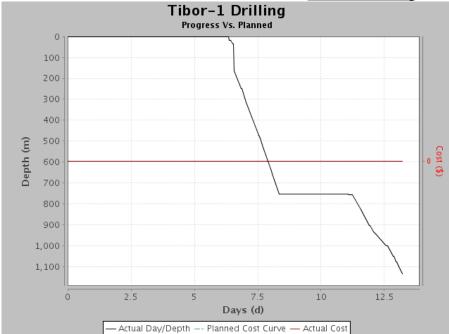
BHA Daily Summary					
Pickup Weight:	102 klb	Torque (max):	4,500 ft-lbs	D.C. (1) Ann Velocity:	6 ft/s
Slack-Off Weight:	101 klb	Torque Avg. Off Bottom:	1,500 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	102 klb	Torque Avg. On Bottom:	4,500 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	22.11 h			D.P. Ann. Velocity:	3 ft/s
Summary:					

BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit		0.35	8.500	2.000	743496	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 1/2" FULL GAUGE.	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
Drill Collar		8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data					
Slide Time:		Rotate Time:		Circ. Time:	
Slide (%):		Rotate (%):		Circ. (%):	
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	0.00 h
Total Revs:	117 Krevs	HSI:	2.88 hp/in ²		

				Well : Tibo	r-1 Drillir	ng					
Bit #2											Nozzles
Size:		mm (8 1/2")	Type:			PDC	IADC #:		M223	#	Size (/32nd")
Manufacturer:		3HI (Hughes	Model:			505F	TFA:	0.5	52 in²	5	x 12
0 : 1 "	(Christensen)	· 1				Cost:		\$		
Serial #:	4.	743496									
Bit Run Comme											
Drilling Parame	ters										
Top Depth:				754.0 m	PWD E	CD:					
Bottom Depth:				1,100.0 m	PWDE	CD.					
Dottom Deptin.			Min	1,100.0111			Avg				Max
Flow			427 galUS/min			440) galUS/mi	n			alUS/min
Surface RPM			84 rpm				115 rpm	'			5 rpm
Downhole RPM			84 rpm				115 rpm				5 rpm
Pressure			1,071 psi				1,223 psi				74 psi
Torque			1,500 ft-lbs				,000 ft-lbs				00 ft-lbs
WOB			2 klbs				7 klbs				8 klbs
ROP			1.47 m/h			1	4.42 m/h			35.0	39 m/h
Survey											
MD	Incl.	Corr. Az	TVD	'V' S	ect	Do	ogleg	N/S		E/W	Tool Type
(m)	(°)	(°)	(m)		n)		g/30m)	(m)		(m)	77
940.0	1.0	0.00			<u> </u>		,	` ,			Teledrift
960.0	2.0	0.00									Teledrift
985.0	1.8	118.00	984.9		_	(0.079	-4.9		5.4	MagneticSS
				7.138.	511.13					• • • • • • • • • • • • • • • • • • • •	inag.ioa.oo
990.0	0.5	0.00		,							Teledrift
1,019.0	0.5	0.00									Teledrift
1,047.0	0.5	0.00									Teledrift
1,062.0	1.0	100.00	1,061.8		-	C).352	-5.6		7.1	MagneticSS
				7,138,	511.817						
Formations											
		Name						Тор	(m)		
Winton Formation	n										10.
Mackunda Form	ation										633.
Allaru Mudstone											750.
Toolebuc Forma											970.
Wallumbilla Forr	nation										1,040.
Personnel On E	Board										
	Job Title Personnel						Company			F	Pax
Day OCR		Ray M			Drillsea						
Night OCR			Gordon	Drillsea							
Geologist			lighthouse		Drillsearch						
HSE Madia			Norvill		Drillsearch						
Medic Pig Manager		Fiona Soutt (Comoros		ISOS						
Rig Manager			Cameron	ENSIGN							
Day Toolpusher Night Toolpushe	r	Pat Py	ne w Hoey		ENSIGN ENSIGN						
Driller	ı		w ноеу Bromwich								
וווכו					ENSIGN						
Derrickman		Dater	-i-cronymakie		ENSIGN						
Derrickman Motorman			Geronymakis II Rosewarne		ENSIG						

Personnel On Board			
Job Title	Personnel	Company	Pax
Floorman	Ben Shipway	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1
Mechanic	James Stewart	ENSIGN	1
Mechanic	Nick Colbbet	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Electrician	A. Secker	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1
Driller	Paul Hall	ENSIGN	1
Derrickman	Danny Pijovic	ENSIGN	1
Motorman	Aymon Allen	ENSIGN	1
Floorman	Steven Stabile	ENSIGN	1
Floorman	Jair Hadley	ENSIGN	1
Lease Hand	Tim Moreton	ENSIGN	1
Summer Lease Hand	Nelson Hofling	ENSIGN	1
Driver	Healy Lyrtzis	ENSIGN	1
Camp Boss	Hans Dathe	Oil Industry Catering Services	1
Night Cook	John Reisir	Oil Industry Catering Services	1
Campie	P Lynch	Oil Industry Catering Services	1
Campie	J Lindgren	Oil Industry Catering Services	1
Mud Logger	Pramod Gadhe	Geoservice	1
Mud Logger	Sam Corey	Geoservice	1
Trainee	S. Cheoni	Geoservice	1
Trainee	D matthews	Geoservice	1
Mud Engineer	Roni Tang	Rheochem	1
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1
Santos Surveyor	J. Cairns	Santos Surveyor	1
Santos Surveyor	A. Dixon	Santos Surveyor	1
Geogoligist Trainee	Craig Bunting	Drillsearch	1


Personnel On Board			
Job Title	Personnel	Company	Pax
Wireline Witness	Rohti	Drillsearch	1
		Tota	41

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	ltr		32,950	0	3,950	0	29,000
Camp Fuel (ltr)	ltr		4,500	0	350	0	4,150
Pot Water (Itr)	ltr		27,000	0	0	0	27,000
Rigsite Potable Water (ltr)	ltr		10,500	0	0	0	10,500
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,514	0	0	0	1,514
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		34	0	1	0	33
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (ltr)	ltr		11	0	0	0	11
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		62	0	2	0	60
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		556	0	30	0	526
Lime (sx)	SX		54	0	0	0	54
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	4
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		99	0	0	0	99
Rheopac LV (25kg) (Sacks)	Sacks		66	0	2	0	64
Salt-25KG (Sacks)	Sacks		732	0	0	0	732
Sandseal (sx)	sx		50	0	0	0	50
SAPP (sx)	sx		38	0	0	0	38
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	sx		39	0	2	0	37
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		78	0	2	0	76
Xanthan Gum (25kg sx)	25kg sx		56	0	2	0	54
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		17:30	09:00	Travel to Windorah to pick up Ensign Mechanic, DLS Geologist and Wireline
				Witness. Trip took extra 1.5 hours due to wet & muddy road conditions.

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		15 52' 17.80" 16' 19.41"	Night Wellsite Representative:		Ray C. Miller : Kevin Gordon		Rig Manager: Drilling Company: Wellsite Geologist:		Scott Cameron ENSIGN Alan Rightstone
Well Data									
Country:	Australia	Current F	lole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	1,338.0 m	Casing MD:	750	.9 m	Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	1,338.0 m	Casing TVD:	750	.9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	ogress:	238.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	14.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	8.29	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:	12 Feb 2013	Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	376
Current Op @ 0600:		RIH on w	iper trip at 83	0mRT.		•			
Planned Op:		Wiper trip	to shoe. RIH	I. Drill 8 1/2" hole	to section TD at 1	738m.			

Summary for Period 0000 Hrs to 2400 Hrs on 15 Feb 2013

Drill 8 1/2" hole from 1100mRT to 1338mRT. Run single shot surveys every 150m.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	15 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	15 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	8	15 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	2	15 Feb 2013 00:00	0	Function test Crown-O-Matic.	Manually tripped Crown-o-Matic to ensure operational.

Operation	Operations for Period 0000 Hrs to 2400 Hrs On 15 Feb 2013												
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description						
	(RC)					(m)							
PH0	Р	DA	00:00	11:00	11.00	1,174.0	Drill 8 1/2" hole from 1100mRT to 1174mRT.						
PH0	Р	CMD	11:00	11:15	0.25	1,174.0	Circulate bottoms up.						
PH0	Р	SVY	11:15	11:45	0.50	1,174.0	Take single shot survey on wire line at 1158mRT. Inclination = 0.25						
							degrees E82S. Monitor well on trip tank while run survey.						
PH0	Р	DA	11:45	12:00	0.25	1,176.0	Drill 8 1/2" hole from 1174mRT to 1176mRT.						
PH0	Р	DA	12:00	18:45	6.75	1,280.0	Drill 8 1/2" hole from 1176mRT to 1280mRT.						
PH0	Р	RS	18:45	19:15	0.50	1,280.0	Service rig.						
PH0	Р	DA	19:15	21:45	2.50	1,318.0	Drill 8 1/2" hole from 1280mRT to 1318mRT.						
PH0	Р	CMD	21:45	22:00	0.25	1,318.0	Circulate bottoms up prior to survey						
PH0	Р	SVY	22:00	22:30	0.50	1,318.0	Take single shot survey on wire line at 1300mRT. Inclination = 0.5						
							degrees N25E. Monitor well on trip tank while run survey.						
PH0	Р	DA	22:30	24:00	1.50	1,338.0	Drill 8 1/2" hole from 1318mRT to 1338mRT.						

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 16 Feb 2013											
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description					
	(RC)					(m)						
PH0	Р	DA	00:00	01:45	1.75	1,357.0	Drill 8 1/2" hole from 1338mRT to 1357mRT. (Decision made to wiper trip					
							early due to leak in hydromatic supply line requiring repairs).					
PH0	Р	CMD	01:45	02:30	0.75	1,357.0	Sweep hole with 30bbl Hi-Vis pill and circulate hole clean.					

200

600

21

37

			1			1	
PH0	P	WT	02:30	03:30	1.00	1,357.0	Flow check - Static. POOH from 1357m to 1210m. Brakes over heating
							due to no water circulation. Block will not free fall.
PH0	TP	CMD	03:30	04:00	0.50	1,357.0	Rig up circulating swage and circulate while repairs completed on
	(RE)						hydromatic.
PH0	Р	WT	04:00	05:15	1.25	1,357.0	Continue POOH for wiper trip from 1210mRT to 735m. Flow check -
							Static.
PH0	Р	SCL	05:15	05:45	0.50	1,357.0	Slip 30ft drilling line.
PH0	Р	WT	05:45	06:00	0.25	1,357.0	RIH from 735mRT to 830mRT.

Performance Summary				
	D	aily	Cumula	tive Well
	Hrs	%	Hrs	%
Р	24.0	100.0	339.0	97.1
TP	0.0	0.0	2.0	0.6
TU	0.0	0.0	8.0	2.3
Undefined	0.0	0.0	0.0	0.0
Total	24.0	100.0	349.0	100.0

WBM Data								Cost Today:	\$ 5,045
Mud Desc:	4PHB	API FL:	8.5 cm ³ /30min	CI:	23,100 %	Solids:	5.2 %	Glycol:	
Check Depth:	1,273.0 m	Filter-Cake:	1 /32nd"	KCI:	4.0 %	H2O:	95 %	Viscosity:	40 s/qt
Time:	18:30	HTHP-FL:		Hard/Ca:	400.00 mg/L	Sand:	0.2 %	PV:	11 cP
Weight:	9.00 ppg	HTHP-Cake:		мвт:	10.00 %	рН:	10	YP:	15 lbf/100ft²
Temp:	58.0 °C	HTHP-Temp:		Pm:	0.10	PHPA:	0.21 ppb	Gel 10s:	5 lbf/100ft²
		HTHP-Press:		Pf:	0.16	Mf:	1.00	Gel 10m:	10 lbf/100ft ²
Comment:								RPM	Reading
								3	5
								6	6
								100	15

Shakers, Volumes	and Losses Data				Engin	eer : Roni Tan
Equipment	Description	Mesh Size	Available	743 bbl	Losses	200 bbl
Centrifuge	Scomi DE-1000		Active	359 bbl	Downhole	18 bbl
Shaker	Derrick Shale Shaker	325 x 2 - 400 x 2	Mixing	83 bbl	Surf. + Equip.	84 bbl
Shaker	Derrick Shale Shaker	325x 4	Hole	266 bbl	Dumped	60 bbl
			Slug		De-Gasser	
			Reserve	35 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	38 bbl
					Other	
Comment: Used	d 70bbls from Turkey's Nest.				Otilei	

Pump	s									
			Pump d	ata - Last 2	4 Hrs				Slow Pu	mp Data
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)
1	Continental Emsco F-800	5.500	78	97		1,400	1,250.0	9.10	60	200
									40	100
2	Continental Emsco F-800	5.500	78	97		1,400	1,250.0	9.10	60	200
									40	100

		<u>vveii :</u>	Tibor-1 Dr	ılling				
Casing								
OD	LOT		FIT		Casing S	hoe (MD)	Casing Sho	e (TVD)
244 mm (9 5/8")	1	6.70 ppg				750.9	m	750.9 n
BHA #2								
ВНА Туре:		Pendulum	Total We	ght Wet:				41 kl
Depth In/Out:		754.0 m/	Weight B	elow Jar Wet	t:			31 kl
Date In/Out:	;	#12 (12 Feb 2013)/						
Total Length:		198.1 m						
BHA Description:	8 1/2" PDC bit, Bit	Sub, X/O, 6 1/2" Tel	edrift, X/O,	6 1/2" NMDC	C, 8 1/2" stal	b, 13 x 6 1/2	" Drill Collars, Jars,	2 x 6 1/2"
•	Drill collars, 4 x 4 1	/2" HWDP.						
BHA Run Comment:								
BHA Daily Summary								
Pickup Weight:	121 klb	Torque (max):		5,000	ft-lbs D.C	. (1) Ann Ve	elocity:	6 ft/s
Slack-Off Weight:	120 klb	Torque Avg. Off Bo	ottom:	1,900	ft-lbs D.C	c. (2) Ann Ve	elocity:	0 ft/s
String Weight:	120 klb	Torque Avg. On Bo	ottom:	4,500	ft-lbs H.V	V.D.P. Ann.	Velocity:	3 ft/s
Jars Hours Logged:	21.43 h				D.P	. Ann. Veloc	city:	3 ft/s
Summary:								
BHA Component								
Equipment		Description		Length	OD	ID	Serial #	Hours
				(m)	(in)	(in)		
Bit				0.35	8.500	2.000	743496	0.00
Bit Sub				0.91	6.187	3.500	GUWU 2427	
X/O				0.19	6.375	2.500	12565	
Teledrift				2.82	6.250	2.875	Y1926A	
X/O				0.45	6.375	2.875	R3 010-02	
NMDC				9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 1/2" FULL GA	NUGE.		1.55	6.500	2.875	T 3310-0	
Drill Collar				8.74	6.187	2.875	30-2-21	
Drill Collar				9.30	6.187	2.937	29013	
Drill Collar				8.92	6.187	3.000	30-2-2	
Drill Collar				9.10	6.125	2.937	922-22	
Drill Collar				9.09	6.125	2.937	592226	
Drill Collar				8.97	6.000	2.500	29-008	
Drill Collar				9.20	6.187	2.312	29-018	
Drill Collar				9.49	6.437	2.375	EDC 03231	
Drill Collar				8.46	6.125	3.062	GP 3922-31	
Drill Collar				8.82	6.187	3.062	GP 5922-9	
Drill Collar				8.72	6.250	3.000	30-2-15	
Drill Collar				9.11	6.250	2.875	GP 5922-24	
Drill Collar				9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar				9.50	6.250	2.375	650 E2-12-6	
Drill Collar				8.92	6.125	3.000	30-2-11	
Drill Collar				9.42	6.250	2.880	S26132-13	
HWDP				9.45	6.187	2.875	A58715	
HWDP				9.45	6.187	2.812	A58730	
HWDP				9.47	6.250	2.812		
HWDP				9.45	6.312	2.812		
Directional Data								
Slide Time:		Rotate Time:			Circ	c. Time:		
J 11110.		1			1 5			

Rotate (%):

HSI:

Total Rotate Time:

0.00 h

88 Krevs

Slide (%): Total Slide Time:

Total Revs:

Circ. (%):

Total Circ. Time:

0.00 h

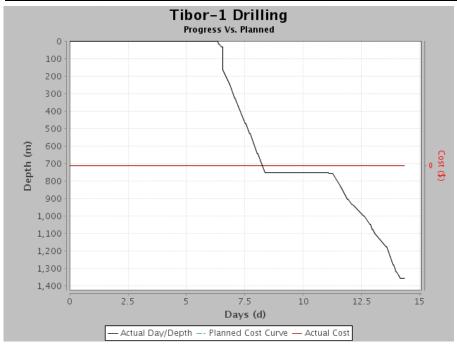
2.43 hp/in²

0.00 h

Bit #2			-		r-1 Drilling				Nozzles
Size:	216	mm (8 1/2")	Type:		PD	C IADC#:	M22		
Manufacturer:		BHI (Hughes	Model:		Q505		0.552 ii	n² "	Size (/32nd")
Manuacturer.		Christensen)	Bit Wear:				0.002 11	" 5 >	(12
Serial #:	`	743496	Dit vvcai.			0031.		*	
Bit Run Comm	ent:	7 10 100							
Bit Wear Comn									
Drilling Parame									
BHA Run #2	eters								
Top Depth:				754.0 m	PWD ECC	٠.			
Bottom Depth:				338.0 m	PWDEGL).			
вошотт рерит.			Min	,336.0 111		Δνα		N/	ax
Flow						Avg	<u> </u>		IUS/min
Surface RPM			377 galUS/min			417 galUS/mi	II	_	
Downhole RPM			75 rpm 75 rpm			96 rpm 96 rpm			rpm rpm
Pressure			960 psi			1,182 psi			3 psi
Torque			3,500 ft-lbs			5,250 ft-lbs) ft-lbs
WOB			3,500 it-ibs			10 klbs			klbs
ROP			6.00 m/h			24.33 m/h			5 m/h
			0.00 111/11			24.00 111/11		04.0	3 11811
Survey		_							
MD	Incl.	Corr. Az	TVD	'V' S		Dogleg	N/S	E/W	Tool Type
(m)	(°)	(°)	(m)	(n	n)	(deg/30m)	(m)	(m)	
1,104.0	0.5	0.00							Teledrift
1,133.0	0.5	0.00							Teledrift
1,158.0	0.3	98.00	1,157.8	7,138,5	- 511.998	0.219	-5.8	8.2	MagneticSS
1,162.0	0.5	0.00							Teledrift
1,192.0	0.5	0.00							Teledrift
1,230.0	0.5	0.00							Teledrift
1,250.0	0.5	0.00							Teledrift
1,280.0	0.5	0.00							Teledrift
1,297.0	0.5	0.00							Teledrift
1,300.0	0.5	25.00	1,299.8	7,138,5	- 511.488	0.106	-5.3	8.8	MagneticSS
Formations				1					
		Name					Top (m)		
Winton Formation	on								10.7
Mackunda Form									633.0
Allaru Mudstone									750.0
Toolebuc Forma									912.0
Wallumbilla For									970.0
Cadna-Owie Fo									1,215.0
Murta Formation									1,281.0
Namur Sandsto	ne								1,314.0
Personnel On I	Board								
Jo	b Title		Personnel			Company	<u>, </u>	Р	ax
Day OCR		Ray M	iller		Drillsearch	1			1
Night OCR			Gordon		Drillsearch				1
Geologist			ighthouse		Drillsearch				1
HSE			Norvill		Drillsearch				1
Geogoligist Trai			Bunting		Drillsearch				1
Wireline Witnes		Rohti			Drillsearch	1			1

Well: Tibor-1 Drilling

Personnel On Board			
Job Title	Personnel	Company	Pax
Medic	Fiona Harrington	ISOS	1
Rig Manager	Scott Cameron	ENSIGN	1
Night Toolpusher	Andrew Hoey	ENSIGN	1
Day Toolpusher	Pat Pyne	ENSIGN	1
Driller	Adrian Bromwich	ENSIGN	1
Derrickman	Peter Geronymakis	ENSIGN	1
Motorman	Mitchell Rosewarne	ENSIGN	1
Floorman	Robert Birse	ENSIGN	1
Floorman	Ben Shipway	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1
Lease Hand	Mike Urmersbach	ENSIGN	1
Mechanic	Nick Colbbet	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1
Driller	Paul Hall	ENSIGN	1
Derrickman	Danny Pijovic	ENSIGN	1
Motorman	Aymon Allen	ENSIGN	1
Floorman	Steven Stabile	ENSIGN	1
Floorman	Jair Hadley	ENSIGN	1
Lease Hand	Tim Moreton	ENSIGN	1
Summer Lease Hand	Nelson Hofling	ENSIGN	1
Driver	Healy Lyrtzis	ENSIGN	1
Camp Boss	Hans Dathe	Oil Industry Catering Services	1
Night Cook	John Reisir	Oil Industry Catering Services	1
Campie	P Lynch	Oil Industry Catering Services	1
Campie	J Lindgren	Oil Industry Catering Services	1
Mud Logger	Pramod Gadhe	Geoservice	1
Mud Logger	Sam Corey	Geoservice	1
Trainee	S. Cheoni	Geoservice	1
Trainee	D matthews	Geoservice	1
Mud Engineer	Roni Tang	Rheochem	1
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1


Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	ltr		29,000	0	0	0	29,000
Camp Fuel (ltr)	ltr		4,150	0	350	0	3,800
Pot Water (Itr)	ltr		20,500	22,000	6,500	0	36,000
Rigsite Potable Water (Itr)	ltr		9,500	0	1,300	0	8,200
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,514	0	0	0	1,514
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		33	0	2	0	31
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (Itr)	ltr		11	0	0	0	11
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		60	0	2	0	58
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59

Well: Tibor-1 Drilling

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Potassium Chloride (25 kg bag)	25 kg bag		526	0	96	0	430
Lime (sx)	sx		54	0	0	0	5
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	25
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	2
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	3
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	5
Quikseal Med (18.2kg) (Sacks)	Sacks		99	0	0	0	9
Rheopac LV (25kg) (Sacks)	Sacks		64	0	10	0	5
Salt-25KG (Sacks)	Sacks		732	0	0	0	73
Sandseal (sx)	sx		50	0	0	0	5
SAPP (sx)	sx		38	0	0	0	3
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	
Soda Ash (sx)	sx		37	0	2	0	3
Sodium Bicarbonate (bag)	bag		44	0	0	0	4
Sodium Sulphite (sx)	sx		76	0	0	0	7
Xanthan Gum (25kg sx)	25kg sx		54	0	4	0	5
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Van		17:00	09:00	Travel to Windorah to drop off Ensign Mechanic and electrician to connect with
				flight to Brisbane.
Van		15:00	06:00	Pick up new lease hand from Ballera airport.

Tibor-1 Drilling									
Report Number :		16	-	Representative				Manager:	Scott Cameron
Latitude (South)		52' 17.80"	Night Wellsi	te Representativ	e: K	Kevin Gordon	l	ng Company:	ENSIGN
Longitude (East)	141° 1	16' 19.41"					Well	site Geologist:	Alan Rightstone
Well Data									
Country:	Australia	Current F	lole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	1,473.0 m	Casing MD:	750).9 m	Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	1,473.0 m	Casing TVD:	750).9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	135.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	15.54	TOL TVD:	TOL TVD:		AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	9.29	Lnr Shoe MD):		Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	Date:	12 Feb 2013	Lnr Shoe TVI	D:		Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	377
Current Op @ 0600		Work stri	ng from 1454i	mRT to 1460mR	while building	mud weight to	9.3p	pg.	
Planned Op:		Continue	drill 8 1/2" ho	le to section TD	at 1738mRT.				

Summary for Period 0000 Hrs to 2400 Hrs on 16 Feb 2013

Drill 8 1/2" hole from 1338mRT to 1357mRT. Circulate bottoms up. Wiper trip to shoe while repair Hydromatic. RIH. Drill 8 1/2" hole from 1357mRT to 1473mRT. Work tight connections at 1463mRT and 1473mRT.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	16 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	16 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	0	16 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	2	16 Feb 2013 00:00	0	Function test Crown-O- Matic.	Manually tripped Crown-o-Matic to ensure operational.
Kick/BOP Drill	1	16 Feb 2013 00:00	0	Kick Drill.	Sound horn, crew stabbed F.O.S.V on connection.

Operation	s for Period	d 0000 Hrs	to 2400 H	irs On 16	Feb 20°	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
PH0	Р	DA	00:00	01:45	1.75	1,357.0	Drill 8 1/2" hole from 1338mRT to 1357mRT. (Decision made to wiper trip early due to leak in hydromatic supply line requiring repairs).
PH0	Р	CMD	01:45	02:30	0.75	1,357.0	Sweep hole with 30bbl Hi-Vis pill and circulate hole clean.
PH0	Р	WT	02:30	03:30	1.00	1,357.0	Flow check - Static. POOH from 1357m to 1210m. Brakes over heating due to no water circulation. Block will not free fall.
PH0	TP (RE)	CMD	03:30	04:00	0.50	1,357.0	Rig up circulating swage and circulate while repairs completed on hydromatic.
PH0	Р	WT	04:00	05:15	1.25	1,357.0	Continue POOH for wiper trip from 1210mRT to 735m. Flow check - Static.
PH0	Р	SCL	05:15	05:45	0.50	1,357.0	Slip 30ft drilling line.
PH0	Р	WT	05:45	08:00	2.25	1,357.0	RIH from 735mRT to 1326m. Fill string every 20stds.
PH0	Р	RW	08:00	08:30	0.50	1,357.0	Wash to bottom, no fill encountered.
PH0	Р	DA	08:30	12:00	3.50	1,396.0	Drill 8 1/2" hole from 1357mRT to 1396mRT. Pump Rate=400 Gpm. WOB=15K. Pump Pressure = 1081Psi. Mud Weight = 9.1ppg. RPM = 90. ROP average = 10 to 20 M/Hr. MSS survey @ 1388m = 0.75 degrees. Performing flow checks prior to each connection.

						Well : Til	oor-1 Drilling				
Operation	ns for Perio	d 0000 F	irs to 2400 F	irs On 16	Feb 20	113					
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)		Activity Description	า		
PH0	Р	DA	12:00	19:45	7.75	1,463.0	WOB=15K. Pur	from 1396mRT to 1463mRT. mp Pressure = 1081Psi. Mud ge = 10 to 20 M/Hr. ROP from 10M/hr.	Weight = 9.1ppg. RPM =		
PH0	U	RW	19:45	21:45	2.00	1,463.0	Attempt to make connection. Overpull 10 to 15Kips from 1457mRT to 1451mRT. Work string till free from 1463 to 1441mRT. Unable to RIH to bottom. Found 7m fill. Wash and ream from 1456mRT to 1463mRT. Sweep hole with 30bbl Hi-Vis pill. Reciprocate and rotate string till hole clean and able to run to bottom without rotation.				
PH0	Р	DA	21:45	23:30	1.75	1,473.0	WOB=15K. Pur	from 1463mRT to 1473mRT. mp Pressure = 1600Psi. Mud ge = 6 to 9 M/Hr.	•		
PH0	U	RW	23:30	24:00	0.50	1,473.0	· · · · · · · · · · · · · · · · · · ·				
Operation	s for Perio	d 0000 H	Irs to 0600 H	irs On 17	7 Feb 20	13					
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)		Activity Description	١		
PH0	U	RW	00:00	02:30	2.50	1,473.0		fill from 1460mRT to 1473mR cate and rotate string till hole otation.	•		
PH0	U	DA	02:30	05:00	2.50	1,473.0		1473mRT to 1482mRT. Pum ssure = 1600Psi. Mud Weight 5 to 7 M/Hr.	•		
PH0	U	CME	05:00	06:00	1.00	1,473.0	Kelly and single Continue back re	e connection. Overpull 10 to 1 free from 1482mRT to 1461m eam from 1461mRT to 1454m while increase mud weight to	RT. Lay out single. RT. Circulate, reciprocate		
Performa	nce Summa	ary	<u> </u>								
					Dail	у		Cumula	tive Well		
				Irs			%	Hrs	%		
-				1.0			87.5 360.0 96.5				
ГР				0.5			2.1 2.5 0.7				
ΓU				0.0			0.0 8.0 2.1				
J				2.5			10.4 2.5 0.7				
Jndefined				0.0			0.0 0.0 0.0				
Total			24	4.0		•	100.0 373.0 100.0				

WBM Data								Cost Today:	\$ 3,821
Mud Desc:	3РНВ	API FL:	7.5 cm³/30min	CI:	22,700 %	Solids:	5.0 %	Glycol:	
Check Depth:	1,456.0 m	Filter-Cake:	1 /32nd"	KCI:	4.0 %	H2O:	95 %	Viscosity:	42 s/qt
Time:	19:00	HTHP-FL:		Hard/Ca:	320.00 mg/L	Sand:	0.3 %	PV:	11 cP
Weight:	9.00 ppg	HTHP-Cake:		мвт:	10.00 %	pH:	10	YP:	17 lbf/100ft ²
Temp:	60.0 °C	HTHP-Temp:		Pm:	0.10	PHPA:		Gel 10s:	5 lbf/100ft ²
		HTHP-Press:		Pf:	0.16	Mf:	0.80	Gel 10m:	10 lbf/100ft ²
Comment:								RPM	Reading
								3	5
								6	6
								100	16
								200	21
								300	28
								600	39

Shakers, Volume	s and Losses Data			ineer : Roni Tan		
Equipment	Description	Mesh Size	Available	734 bbl	Losses	142 bbl
Centrifuge	Scomi DE-1000		Active	331 bbl	Downhole	17 bbl
Shaker	Derrick Shale Shaker	325 x 2 - 400 x 2	Mixing	70 bbl	Surf. + Equip.	57 bbl
Shaker	Derrick Shale Shaker	325x 4	Hole	308 bbl	Dumped	30 bbl
			Slug		De-Gasser	
			Reserve	25 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	38 bbl
					Other	
Comment: Us	sed 70bbls from Turkey's Nest.					

Pumps	3									
	Pump data - Last 24 Hrs									
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP (psi)
1	Continental Emsco F-800	5.500	78	97		1,400	1,405.0	9.10	60 40	200 100
2	Continental Emsco F-800	5.500	78	97		1,400	1,405.0	9.10	60	200

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

BHA #2			
BHA Type:	Pendulum	Total Weight Wet:	41 klb
Depth In/Out:	754.0 m/	Weight Below Jar Wet:	31 klb
Date In/Out:	#12 (12 Feb 2013)/		
Total Length:	198.1 m		
BHA Description:	8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Tele	edrift, X/O, 6 1/2" NMDC, 8 1/2" stab, 13 x 6 1/2" Drill Collars, Jars, 2	2 x 6 1/2"
	Drill collars, 4 x 4 1/2" HWDP.		
BHA Run Comment:			

40

100

BHA Daily Summary					
Pickup Weight:	126 klb	Torque (max):	8,000 ft-lbs	D.C. (1) Ann Velocity:	5 ft/s
Slack-Off Weight:	120 klb	Torque Avg. Off Bottom:	2,500 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	123 klb	Torque Avg. On Bottom:	6,000 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	17.17 h			D.P. Ann. Velocity:	3 ft/s
Summary:					

BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
	·	(m)	(in)	(in)		
Bit		0.35	8.500	2.000	743496	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 1/2" FULL GAUGE.	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
Drill Collar		8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data					
Slide Time:		Rotate Time:		Circ. Time:	
Slide (%):		Rotate (%):		Circ. (%):	
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	0.00 h
Total Revs:	57 Krevs	HSI:	2.15 hp/in ²		

Bit #2							No	ozzles
Size:	216 mm (8 1/2")	Type:	PDC	IADC #:	M223	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	Q505F	TFA:	0.552 in²	5	х	12
	Christensen)	Bit Wear:		Cost:	\$	5	^	12
Serial #:	743496							
Bit Run Comment:								
Bit Wear Comment:								

1,388.0

0.8

17.00

1,387.8

Well: Tibor-1 Drilling

			<u>vv</u>	en . Hbo	r-1 Drilling						
Drilling Param	neters										
BHA Run #2											
Top Depth:			7	754.0 m	PWD ECD:						
Bottom Depth:			1,4	173.0 m							
			Min			Avg		Ma	ax		
Flow			385 galUS/min		4	00 galUS/min		415 gal	US/min		
Surface RPM			66 rpm			88 rpm			110 rpm		
Downhole RPN	M		66 rpm			88 rpm			rpm		
Pressure			1,066 psi			1,133 psi		1,200 psi			
Torque			2,500 ft-lbs			5,250 ft-lbs		8,000 ft-lbs			
WOB			3 klbs		13 klbs			22 k	dbs		
ROP			7.00 m/h			29.96 m/h		28.82	2 m/h		
Survey											
MD	Incl.	Corr. Az	TVD	'V' S	ect I	Dogleg	N/S	E/W	Tool Type		
(m)	(°)	(°)	(m)	(m	n) (d	deg/30m)	(m)	(m)			

			7,138,510.552					
Formations								
		Name			Top (m)	1		
Winton Formati	ion						10.7	
Mackunda Forr	mation						633.0	
Allaru Mudston	е						750.0	
Toolebuc Form	ation			912.0				
Wallumbilla For	rmation			970.				
Cadna-Owie Fo	ormation						1,215.0	
Murta Formatio	on						1,281.0	
Namur Sandsto	one						1,314.0	
Westbourne Fo	ormation			1,415.0				
Adori Sandston	ne			1 460 0				

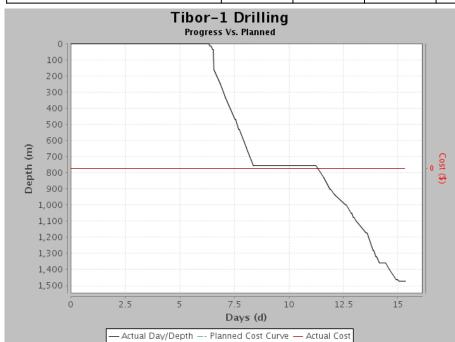
0.107

-4.4

9.1

Personnel On Board			
Job Title	Personnel	Company	Pax
Day OCR	Ray Miller	Drillsearch	1
Night OCR	Kevin Gordon	Drillsearch	1
Geologist	Alan Righthouse	Drillsearch	1
HSE	Darren Norvill	Drillsearch	1
Geogoligist Trainee	Craig Bunting	Drillsearch	1
Wireline Witness	Rohti Hamzah	Drillsearch	1
Medic	Fiona Harrington	ISOS	1
Rig Manager	Scott Cameron	ENSIGN	1
Night Toolpusher	Andrew Hoey	ENSIGN	1
Day Toolpusher	Pat Pyne	ENSIGN	1
Driller	Adrian Bromwich	ENSIGN	1
Derrickman	Peter Geronymakis	ENSIGN	1
Motorman	Mitchell Rosewarne	ENSIGN	1
Floorman	Robert Birse	ENSIGN	1
Floorman	Ben Shipway	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1
Lease Hand	Mike Urmersbach	ENSIGN	1
Mechanic	Nick Colbbet	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1
Driller	Paul Hall	ENSIGN	1

Well: Tibor-1 Drilling


Personnel On Board Job Title	Personnel	Company	Pax
Derrickman	Danny Pijovic	ENSIGN	1
Motorman	Aymon Allen	ENSIGN	1
Floorman	Steven Stabile	ENSIGN	1
Floorman	Jair Hadley	ENSIGN	1
Lease Hand	Tim Moreton	ENSIGN	1
Summer Lease Hand	Nelson Hofling	ENSIGN	1
Driver	Healy Lyrtzis	ENSIGN	1
Camp Boss	Hans Dathe	Oil Industry Catering Services	1
Night Cook	John Reisir	Oil Industry Catering Services	1
Campie	P Lynch	Oil Industry Catering Services	1
Campie	J Lindgren	Oil Industry Catering Services	1
Mud Logger	Pramod Gadhe	Geoservice	1
Mud Logger	Sam Corey	Geoservice	1
Trainee	S. Cheoni	Geoservice	1
Trainee	D matthews	Geoservice	1
Mud Engineer	Roni Tang	Rheochem	1
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1
		Total	38

Bulk Stocks								
Name	Unit	Start Amount	Previous Balance	ln	Used	Adjust	Balance	
Rig Fuel (ltr)	ltr		27,000	0	1,950	0	25,050	
Camp Fuel (Itr)	ltr		3,800	0	350	350	3,800	
Pot Water (Itr)	ltr		36,000	0	5,000	0	31,000	
Rigsite Potable Water (ltr)	ltr		8,200	0	1,200	0	7,000	
Cementing Water (bbl)	bbl		360	0	0	0	360	
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16	
Barite Sacks (Sacks)	Sacks		1,514	0	0	0	1,514	
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42	
Caustic Soda (25 kg sx)	25 kg sx		31	0	1	0	30	
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70	
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38	
Defoam - A (ltr)	ltr		11	0	0	0	11	
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40	
Fracseal Fine (sx)	sx		210	0	0	0	210	
Idcide-20 (20ltr) (Pails)	Pails		58	0	0	0	58	
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59	
Potassium Chloride (25 kg bag)	25 kg bag		430	0	46	0	384	
Lime (sx)	sx		54	0	4	0	50	
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255	
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20	
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32	
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	4	
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50	
Quikseal Med (18.2kg) (Sacks)	Sacks		99	0	0	0	99	
Rheopac LV (25kg) (Sacks)	Sacks		54	0	15	0	39	
Salt-25KG (Sacks)	Sacks		732	0	0	0	732	
Sandseal (sx)	sx		50	0	0	0	50	
SAPP (sx)	sx		38	0	0	0	38	
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2	
Soda Ash (sx)	sx		35	0	4	0	31	

Well: Tibor-1 Drilling

Bulk Stocks									
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance		
Sodium Bicarbonate (bag)	bag		44	0	0	0	44		
Sodium Sulphite (sx)	sx		76	0	5	0	71		
Xanthan Gum (25kg sx)	25kg sx		50	0	2	0	48		
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7		

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		17 52' 17.80" 6' 19.41"	Day Wellsite Representative: Night Wellsite Representative		, ,		Rig Manager: Drilling Company: Wellsite Geologist:		Scott Cameron ENSIGN Alan Rightstone
Well Data									
Country:	Australia	Current H	lole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	1,486.0 m	Casing MD:	750	.9 m	Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	1,485.9 m	Casing TVD:	750	.9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	ogress:	13.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	16.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	10.29	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:	12 Feb 2013	Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	378
Current Op @ 0600	:	Drill 8 1/2" hole at 1509 meters.						_	
Planned Op:		Drill 8 1/2	" hole to sect	ion TD at 1735m	RT.				

Summary for Period 0000 Hrs to 2400 Hrs on 17 Feb 2013

Drill 8 1/2" hole to 1486mRT. Encountered problems on connections from 1460mRT to 1486mRT (Adori formation). Excess backreaming required to make connections. Increased mud weight to 9.3ppg and reduced water loss to 4. No improvement. POOH and inspect BHA. Make up new bit and RIH. Wash and ream from 1412mRT to 1453mRT.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	17 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	17 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	7	17 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	1	17 Feb 2013 00:00	0	Function test Crown-O- Matic.	Tripped Crown-o-Matic to ensure operational.
Weekly Safety Meeting	2	17 Feb 2013 00:00	0	Weekly safety meetings.	Held weekly safety meetings with each crew prior to starting their shift.

Operation	s for Perio	d 0000 Hrs 1	to 2400 H	irs On 17	7 Feb 20	13	
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description
	(RC)					(m)	
PH0	U	RW	00:00	02:30	2.50	1,473.0	Wash and ream fill from 1460mRT to 1473mRT. Sweep hole with 30bbl Hi -Vis pill. Reciprocate and rotate string till hole clean and able to run to bottom without rotation.
PH0	Р	DA	02:30	05:00	2.50	1,482.0	Drill ahead from 1473mRT to 1482mRT. Pump Rate=420 Gpm. WOB= 15K. Pump Pressure = 1600Psi. Mud Weight = 9.1ppg. RPM = 90. ROP average = 5 to 7 M/Hr.
PH0	U	RW	05:00	05:30	0.50	1,482.0	Attempt to make connection. Overpull 10 to 15Kips. Back ream and work Kelly and single free from 1482mRT to 1461mRT. Lay out single. Continue back ream from 1461mRT to 1452mRT and laid out another single.
PH0	U	CMD	05:30	07:00	1.50	1,482.0	Circulate and weight up mud to 9.3ppg. Raise viscosity to 43. Lower water loss to 4.
PH0	U	RW	07:00	09:00	2.00	1,482.0	Ream back down to bottom at 1482mRT. Difficult reaming due to intermittent torque if any weight placed on the bit.

Operation	s for Perio	d 0000 Hrs	to 2400 H	irs On 17	7 Feb 20	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
PH0	U	RW	09:00	11:00	2.00	1,486.0	(Took new SCR's) Drill 8 1/2" hole from 1482mRT to 1486mRT. Pull off bottom to check the hole condition behind. Overpull to 25k. Back ream up to 1482mRT
PH0	U	CMD	11:00	11:30	0.50	1,486.0	Sweep hole with 10bbl Hi-Vis pill and circulate out prior to POOH to check bit, stabilizer and BHA.
PH0	U	ТО	11:30	12:00	0.50	1,486.0	Flow check - Static. POOH from 1482mRT to 1384mRT. Flow check - Static.
PH0	U	CMD	12:00	12:15	0.25	1,486.0	Pump 10bbl slug (weighted pill) for tripping.
PH0	U	TO	12:15	16:15	4.00	1,486.0	POOH from 1384mRT to 198mRT. Flow check - Static.
PH0	U	ТО	16:15	17:15	1.00	1,486.0	Continue POOH handle BHA from 198mRT to surface. Checked Jar, lay out stabilizer. Stabilizer 1/16" under gauge.
PH0	U	ТО	17:15	18:00	0.75	1,486.0	Break off bit. Bit gauge cutters were 1/16" under gauge, but top 2/3 of gauge blocks on shanks were full gauge. Make up new 8 1/2" Baker Hughes DP505X bit.
PH0	U	TI	18:00	20:00	2.00	1,486.0	Install new Teledrift sensor (1degree - 3 degrees - Serial #288). Re-run stabilizer (8 7/16"). RIH handling BHA to 198mRT.
PH0	U	TI	20:00	23:30	3.50	1,486.0	Lay out 6 joint of drill pipe (for reaming). RIH with #3 BHA from 198MRT to 1412mRT. Pick up Kelly.
PH0	U	RW	23:30	24:00	0.50	1,486.0	Wash and ream from 1412mRT to 1453mRT. RPM = 95. SPM = 75x75 (390gpm) @ 1000psi.

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 18 Feb 2013										
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description				
	(RC)					(m)					
PH0	U	RW	00:00	01:30	1.50	1,486.0	Wash and ream from 1453mRT to 1486mRT. RPM = 95. SPM = 75x75				
							(390gpm) @ 1100psi.				
PH0	Р	DA	01:30	06:00	4.50	1,509.0	Take SCR's at 1486m. Drill 8 1/2" hole from 1486m to 1509 meters.				

Performance Summary							
	Da	aily	Cumulative Well				
	Hrs	%	Hrs	%			
Р	2.5	10.4	362.5	91.3			
TP	0.0	0.0	2.5	0.6			
TU	0.0	0.0	8.0	2.0			
U	21.5	89.6	24.0	6.0			
Undefined	0.0	0.0	0.0	0.0			
Total	24.0	100.0	397.0	100.0			

Category	Comments
Lessons Learned	Making a connection at 1463.0 mMDRT there was considerable overpull and the drillstring nearly became stuck. When reaming back to bottom 7m of fill was seen. This was washed out and a HiVis pill swept around the hole. Drilling then continued but at the next connection (1473.0 mMDRT) the same thing happened but worse. The drillstring could not pass 1457.0 MDRT. A joint was racked back and the hole washed and reamed back to connection depth. Another HiVis pill was swept around and drilling continued to 1482.0 mMDRT. The drillstring was very close to being stuck while pulling back. Two singles were racked back while backreaming to 1454.0 mMDRT. The drillstring was recriprocated while circulating to increase the MW from 9.1 to 9.3 ppg. As well WL (water loss) was being reduced from 7.5 to 3.0. When the new mud had been circulated around the Bit was washed back to bottom with no further problem and drilling continued.
Lessons Learned	bottom with no farther problem and animing continued.

WBM Data								Cost Today:	\$ 5,388
Mud Desc:	3KPO	API FL:	5.0 cm ³ /30min	CI:	22,500 %	Solids:	6.3 %	Glycol:	
Check Depth:	1,482.0 m	Filter-Cake:	1 /32nd"	KCI:	4.0 %	H2O:	94 %	Viscosity:	45 s/qt
Time:	18:00	HTHP-FL:		Hard/Ca:	320.00 mg/L	Sand:	0.2 %	PV:	14 cP
Weight:	9.30 ppg	HTHP-Cake:		MBT:	10.50 %	pH:	10	YP:	19 lbf/100ft²
Temp:	61.0 °C	HTHP-Temp:		Pm:	0.16	PHPA:		Gel 10s:	6 lbf/100ft²
		HTHP-Press:		Pf:	0.16	Mf:	0.80	Gel 10m:	12 lbf/100ft ²
Comment:								RPM	Reading
								3	6
								6	7
								100	18
								200	24
								300	33
								600	47

Shakers, Volumes	s and Losses Data				Engir	neer : Roni Tan
Equipment	Description	Mesh Size	Available	730 bbl	Losses	65 bbl
Centrifuge	Scomi DE-1000		Active	328 bbl	Downhole	11 bbl
Shaker	Derrick Shale Shaker	325 x 4	Mixing	63 bbl	Surf. + Equip.	44 bbl
Shaker	Derrick Shale Shaker	325x 4	Hole	314 bbl	Dumped	
	L		Slug		De-Gasser	
			Reserve	25 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	10 bbl
					Other	
Comment: Us	ed 70bbls from Turkey's Nest.					

Pumps	s									
Pump data - Last 24 Hrs									Slow Pump Data	
No	Туре	Liner (in)	SPM	Eff. (%)	Flow (galUS/min)	SPP (psi)	Depth (m)	MW (ppg)	SPM	SPP (psi)
1	Continental Emsco F-800	5.500	78	97		1,400	1,482.0	9.30	53 81	200 400
2	Continental Emsco F-800	5.500	78	97		1,400	1,482.0	9.30	56	200

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

BHA #2			
BHA Type:	Pendulum	Total Weight Wet:	41 klb
Depth In/Out:	754.0 m/1,486.0 m	Weight Below Jar Wet:	31 klb
Date In/Out:	#12 (12 Feb 2013)/#17 (17 Feb 2013)		
Total Length:	198.1 m		
BHA Description:	8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Tele	edrift, X/O, 6 1/2" NMDC, 8 1/2" stab, 13 x 6 1/2" Drill Co	ollars, Jars, 2 x 6 1/2"
	Drill collars, 4 x 4 1/2" HWDP.		
BHA Run Comment:			

85

400

BHA Daily Summary					
Pickup Weight:	127 klb	Torque (max):	6,000 ft-lbs	D.C. (1) Ann Velocity:	5 ft/s
Slack-Off Weight:	123 klb	Torque Avg. Off Bottom:	1,000 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	125 klb	Torque Avg. On Bottom:	5,000 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	10.75 h			D.P. Ann. Velocity:	3 ft/s
Summary:					

BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit		0.35	8.500	2.000	743496	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 1/2" (1/16" under gauge)	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar		9.50	6.250	2.375	650 E2-12-6	
Drill Collar		8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data									
Slide Time:		Rotate Time:		Circ. Time:					
Slide (%):		Rotate (%):		Circ. (%):					
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	0.00 h				
Total Revs:	11 Krevs	HSI:	2.22 hp/in ²						

Bit #2							N	ozzles
Size:	216 mm (8 1/2")	Type:	PDC	IADC #:	M223	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	Q505F	TFA:	0.552 in ²	5		12
	Christensen)	Bit Wear:	3-4-BT-A-X-I-NR-HP	Cost:	\$	3	Х	12
Serial #:	743496							
Bit Run Comment:				•				
Bit Wear Comment:	The gauge cut	ters on the botto	m two thirds of the bit are 1/1	6 under gauge	e the top 1/3 of th	ne gaug	e butt	ons are in
	gauge.							

		<u>weii:</u>	Tibor-1 Dr	ıııng							
BHA #3											
BHA Type:		Pendulum	Total Wei	ght Wet:				41 klt			
Depth In/Out:		1,486.0 m/	Weight B	elow Jar Wet	t:			31 kl			
Date In/Out:	;	#17 (17 Feb 2013)/									
Total Length:		198.1 m									
BHA Description:	8 1/2" PDC bit, Bit	8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Teledrift, X/O, 6 1/2" NMDC, 8 1/2" stab, 13 x 6 1/2" Drill Collars, Jars, 2 x 6 1/2"									
	Drill collars, 4 x 4 1	/2" HWDP.									
BHA Run Comment:											
BHA Daily Summary											
Pickup Weight:	123 klb	Torque (max):		2,100	ft-lbs D.C	. (1) Ann Ve	elocity:	0 ft/s			
Slack-Off Weight:	123 klb	Torque Avg. Off Bo	ottom:	2,100	ft-lbs D.C	. (2) Ann Ve	elocity:	0 ft/s			
String Weight:	123 klb	Torque Avg. On Bo	ottom:		H.W	.D.P. Ann.	Velocity:	0 ft/s			
Jars Hours Logged:	96.67 h				D.P.	. Ann. Velo	city:	0 ft/s			
Summary:					'		•				
BHA Component											
Equipment		Description		Length	OD	ID	Serial #	Hours			
				(m)	(in)	(in)					
Bit				0.35	8.500	2.000	7143509	0.00			
Bit Sub				0.91	6.187	3.500	GUWU 2427				
X/O				0.19	6.375	2.500	12565				
Teledrift				2.82	6.250	2.875	Y1926A				
X/O				0.45	6.375	2.875	R3 010-02				
NMDC				9.18	6.500	2.875	ENS 127200-1				
8 1/2" String Stab	8 7/16" (1/16" u	nder gauge).		1.55	6.500	2.875	T 3310-0				
Drill Collar	·			8.74	6.187	2.875	30-2-21				
Drill Collar				9.30	6.187	2.937	29013				
Drill Collar				8.92	6.187	3.000	30-2-2				
Drill Collar				9.10	6.125	2.937	922-22				
Drill Collar				9.09	6.125	2.937	592226				
Drill Collar				8.97	6.000	2.500	29-008				
Drill Collar				9.20	6.187	2.312	29-018				
Drill Collar				9.49	6.437	2.375	EDC 03231				
Drill Collar				8.46	6.125	3.062	GP 3922-31				
Drill Collar				8.82	6.187	3.062	GP 5922-9				
Drill Collar				8.72	6.250	3.000	30-2-15				
Drill Collar				9.11	6.250	2.875	GP 5922-24				
Drill Collar				9.05	6.125	3.000	30-2-25				
6 1/2" Hydraulic Jar		dra-mechanical jars. 5.17 circulating hours		9.50	6.250	2.375	650 E2-12-6				
Drill Collar	1 10 110 00 1 011 00	on odiating notice		8.92	6.125	3.000	30-2-11				
Drill Collar				9.42	6.250	2.880	S26132-13				
HWDP				9.45	6.187	2.875	A58715				
HWDP				9.45	6.187	2.812	A58730				
HWDP				9.47	6.250	2.812	A58716				
HWDP				9.45	6.312	2.812	A58720				
Directional Data							<u> </u>				
Slide Time:		Rotate Time:			Circ	. Time:					
Slide (%):		Rotate (%):			I .	. (%):					
(,,,,		1 .0.0.0			1 5,10	. (, 0).					

0.00 h Total Rotate Time:

HSI:

Total Slide Time:

Total Revs:

0.00 h Total Circ. Time:

0.00 hp/in²

0.00 h

Bit #3								Nozzles		
Size:	216 mm (8 1/2")	Type:	PDC	IADC #:	M223	#		Size (/32nd")		
Manufacturer:	BHI (Hughes	Model:	DP505X	TFA:	0.650 in ²	7	· ·	11		
	Christensen)	Bit Wear:	3-4-BT-A-X-I-NR-HP	Cost:	\$	′	Х	1.1		
Serial #:	7143509									
Bit Run Comment:				•						
Bit Wear Comment:										
Drilling Parameters										

Drilling Parameters			
BHA Run #2			
Top Depth:	754.0 m	PWD ECD:	
Bottom Depth:	1,486.0 m		
	Min	Avg	Max
Flow	380 galUS/min	400 galUS/min	420 galUS/min
Surface RPM	65 rpm	81 rpm	96 rpm
Downhole RPM	65 rpm	81 rpm	96 rpm
Pressure	1,166 psi	1,337 psi	1,507 psi
Torque	3,900 ft-lbs	4,700 ft-lbs	5,500 ft-lbs
WOB	6 klbs	10 klbs	14 klbs
ROP	3.40 m/h	66.55 m/h	8.57 m/h

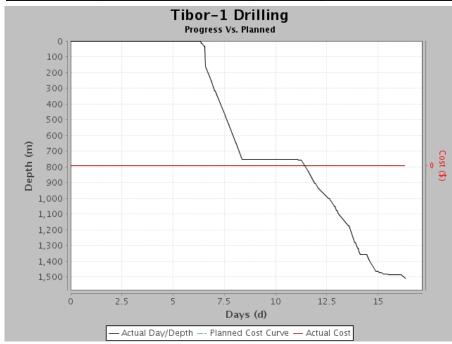
Formations							
Name	Top (m)						
Winton Formation	10.7						
Mackunda Formation	633.0						
Allaru Mudstone	750.0						
Toolebuc Formation	912.0						
Wallumbilla Formation	970.0						
Cadna-Owie Formation	1,215.0						
Murta Formation	1,281.0						
Namur Sandstone	1,314.0						
Westbourne Formation	1,415.0						
Adori Sandstone	1,460.0						

Personnel On Board			
Job Title	Personnel	Company	Pax
Day OCR	Ray Miller	Drillsearch	1
Night OCR	Kevin Gordon	Drillsearch	1
Geologist	Alan Righthouse	Drillsearch	1
HSE	Darren Norvill	Drillsearch	1
Geogoligist Trainee	Craig Bunting	Drillsearch	1
Wireline Witness	Rohti Hamzah	Drillsearch	1
Medic	Fiona Harrington	ISOS	1
Rig Manager	Scott Cameron	ENSIGN	1
Night Toolpusher	Andrew Hoey	ENSIGN	1
Day Toolpusher	Pat Pyne	ENSIGN	1
Driller	Adrian Bromwich	ENSIGN	1
Derrickman	Peter Geronymakis	ENSIGN	1
Motorman	Mitchell Rosewarne	ENSIGN	1
Floorman	Robert Birse	ENSIGN	1
Floorman	Ben Shipway	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1
Lease Hand	Mike Urmersbach	ENSIGN	1
Mechanic	Nick Colbbet	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1

^{&#}x27;Copyright IDS 2011', AT 20110518, IDS_drllg_onshore

Well: Tibor-1 Drilling

Personnel On Board								
Job Title	Personnel	Company	Pax					
Driller	Paul Hall	ENSIGN	1					
Derrickman	Danny Pijovic	ENSIGN	1					
Motorman	Aymon Allen	ENSIGN	1					
Floorman	Steven Stabile	ENSIGN	1					
Floorman	Jair Hadley	ENSIGN	1					
Lease Hand	Tim Moreton	ENSIGN	1					
Summer Lease Hand	Nelson Hofling	ENSIGN	1					
Driver	Healy Lyrtzis	ENSIGN	1					
Camp Boss	Hans Dathe	Oil Industry Catering Services	1					
Night Cook	John Reisir	Oil Industry Catering Services	1					
Campie	P Lynch	Oil Industry Catering Services	1					
Campie	J Lindgren	Oil Industry Catering Services	1					
Mud Logger	Pramod Gadhe	Geoservice	1					
Mud Logger	Sam Corey	Geoservice	1					
Trainee	S. Cheoni	Geoservice	1					
Trainee	D matthews	Geoservice	1					
Mud Engineer	Roni Tang	Rheochem	1					
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1					
Truck Driver	D Robinson	Mansell Transport	1					
	_	Total	39					


Bulk Stocks							
Name	Unit	Start	Previous	ln	Used	Adjust	Balance
		Amount	Balance				
Rig Fuel (Itr)	ltr		25,050	0	6,455	0	18,595
Camp Fuel (ltr)	ltr		3,800	0	300	0	3,500
Pot Water (Itr)	ltr		31,000	0	7,000	0	24,000
Rigsite Potable Water (ltr)	ltr		7,000	12,200	1,200	0	18,000
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,514	0	240	0	1,274
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		30	0	0	0	30
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (ltr)	ltr		11	0	0	0	11
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		58	0	1	0	57
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		384	0	0	0	384
Lime (sx)	sx		50	0	0	0	50
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32
Pipe Freeing Compound (Tessodril BS	drums		4	0	0	0	4
2001) (drums)							
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		99	0	0	0	99
Rheopac LV (25kg) (Sacks)	Sacks		39	0	10	0	29
Salt-25KG (Sacks)	Sacks		732	0	0	0	732
Sandseal (sx)	sx		50	0	0	0	50
SAPP (sx)	SX		38	0	0	0	38

Well: Tibor-1 Drilling

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	sx		31	0	0	0	31
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		71	0	1	0	70
Xanthan Gum (25kg sx)	25kg sx		48	0	6	0	42
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Truck		15:00		Truck arrived to change out rubbish skips.

Tibor-1 Drilling									
Report Number :		18	Day Wellsite	e Representative:	Representative: R		Rig	Manager:	Scott Cameron
Latitude (South)	25° 5	52' 17.80"	Night Wells	te Representative	e:	Kevin Gordon	Drilli	ing Company:	ENSIGN
Longitude (East)	141° 1	16' 19.41"					Well	site Geologist:	Alan Rightstone
Well Data									
Country:	Australia	Current F	łole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	1,723.0 m	Casing MD:	750).9 m	Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	1,723.0 m	Casing TVD	: 750).9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	237.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	17.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	11.29	Lnr Shoe M	D:		Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	Date:	12 Feb 2013	Lnr Shoe T\	/D:		Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	379
Current Op @ 0600:		POOH to	run logs.						
Planned Op:		POOH to	surface. Lay	out NMDC, Tele	drift sub, stab	ilizer and bit. F	Run wi	reline logs with Schl	umberger as per
		programn	ne.						

Summary for Period 0000 Hrs to 2400 Hrs on 18 Feb 2013

Wash and ream from 1453mRT to 1486mRT. Drill 8 1/2" hole from 1486mRT to 1723mRT. Revised TD as per Geologist. Circulate hole clean.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	18 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	18 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	0	18 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	2	18 Feb 2013 00:00	0	Function test Crown-O- Matic.	Tripped Crown-o-Matic to ensure operational.
JSA	2	18 Feb 2013 00:00	0	JSA's	JSA's for tripping and Kelly connections.

Operation	s for Perio	d 0000 Hrs 1	to 2400 H	irs On 18	3 Feb 20	13	
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description
	(RC)					(m)	
PH0	U	RW	00:00	01:30	1.50	1,486.0	Wash and ream from 1453mRT to 1486mRT. RPM = 95. SPM = 75x75 (390gpm) @ 1100psi.
PH0	Р	DA	01:30	12:00	10.50	1,556.0	Take SCR's at 1486mRT. Drill 8 1/2" hole from 1486mRT to 1556mRT. Average WOB = 20K. RPM = 90. Flow = 390gpm. Mud = 9.3ppg. Vis = 43.
PH0	Р	DA	12:00	17:15	5.25	1,637.0	Drill 8 1/2" hole from 1556mRT to 1637mRT. Average WOB = 20K. RPM = 90. Flow = 390gpm. Mud = 9.3ppg. Vis = 43.
PH0	Р	SCR	17:15	17:30	0.25	1,637.0	Circulate and take SCR's at 1637mRT.
PH0	Р	DA	17:30	18:45	1.25	1,656.0	Drill 8 1/2" hole from 1637mRT to 1656mRT. Average WOB = 20K. RPM = 90. Flow = 390gpm. Mud = 9.3ppg. Vis = 43.
PH0	Р	RS	18:45	19:15	0.50	1,656.0	Rig service.
PH0	Р	DA	19:15	23:30	4.25	1,723.0	Drilled 8 1/2" hole from 1656mRT to 1723mRT. Section TD. Average WOB = 20K. RPM = 90. Flow = 390gpm. Mud = 9.3ppg. Vis = 43.
PH0	Р	CMD	23:30	24:00	0.50	1,723.0	Sweep hole with 20bbl Hi-Vis pill and circulate.

Operations for Period 0000 Hrs to 0600 Hrs On 19 Feb 2013

PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description			
	(RC)					(m)				
PH0	Р	CMD	00:00	01:00	1.00	1,723.0	Continue circulate till shakers clean and geologist confirm 1723mRT as final TD.			
PH0	Р	WT	01:00	02:15	1.25	1,723.0	Flow check - Static. POOH on wiper trip from 1723mRT to 1365m. V through tight spot from 1423mRT to 1421mRT (15 - 20Kips overpull). Worked through several times till clear.			
PH0	Р	WT	02:15	03:30	1.25	1,723.0	Flow check - Static. RIH to 1713m (no obstructions).			
PH0	Р	CMD	03:30	04:30	1.00	1,723.0	Pick up Kelly and wash to 1723mRT. No fill. Sweep hole with 20bbl Hi- Vis pill and circulate till shakers clean.			
PH0	Р	SVY	04:30	05:00	0.50	1,723.0	Rnn magnetic single shot survey on wireline at 1712mRT. Inclination = 1.5 degrees S30W. Flow check - Static. Pumped slug. Racked Kelly.			
PH0	Р	TO	05:00	06:00	1.00	1,723.0	POOH from 1723mRT to log with Shclumberger.			

Performance Summary								
	D	aily	Cumulative Well					
	Hrs	%	Hrs	%				
Р	22.5	93.8	385.0	91.4				
TP	0.0	0.0	2.5	0.6				
TU	0.0	0.0	8.0	1.9				
U	1.5	6.2	25.5	6.1				
Undefined	0.0	0.0	0.0	0.0				
Total	24.0	100.0	421.0	100.0				

General Comments for Period 0000 Hrs to 2400 Hrs on 18 Feb 2013 Category

Lessons Learned

Lessons Learned

Comments

Making a connection at 1463.0 mMDRT there was considerable overpull and the drillstring nearly became stuck. When reaming back to bottom 7m of fill was seen. This was washed out and a HiVis pill swept around the hole. Drilling then continued but at the next connection (1473.0 mMDRT) the same thing happened but worse. The drillstring could not pass 1457.0 MDRT. A joint was racked back and the hole washed and reamed back to connection depth. Another HiVis pill was swept around and drilling continued to 1482.0 mMDRT. The drillstring was very close to being stuck while pulling back. Two singles were racked back while backreaming to 1454.0 mMDRT. The drillstring was recriprocated while circulating to increase the MW from 9.1 to 9.3 ppg. As well WL (water loss) was being reduced from 7.5 to 3.0. When the new mud had been circulated around the Bit was washed back to bottom with no further problem and drilling continued.

WBM Data								Cost Today:	\$ 4,629
Mud Desc:	3KPO	API FL:	4.0 cm ³ /30min	CI:	25,600 %	Solids:	6.5 %	Glycol:	
Check Depth:	1,656.0 m	Filter-Cake:	1 /32nd"	KCI:	4.0 %	H2O:	94 %	Viscosity:	45 s/qt
Time:	18:30	HTHP-FL:		Hard/Ca:	320.00 mg/L	Sand:	0.3 %	PV:	13 cP
Weight:	9.30 ppg	HTHP-Cake:		MBT:	10.70 %	pH:	10	YP:	19 lbf/100ft²
Temp:	63.0 °C	HTHP-Temp:		Pm:	0.10	PHPA:		Gel 10s:	6 lbf/100ft ²
		HTHP-Press:		Pf:	0.17	Mf:	0.80	Gel 10m:	14 lbf/100ft²

Commence	IXI IVI	rtcaamg
	3	6
	6	7
	100	18
	200	26
	300	32
	600	45

2

Continental Emsco F-800

5.500

81

Well: Tibor-1 Drilling

					ibor i brilling					
Shakei	rs, Volumes and Losses	Data							Engineer :	Roni Tan
E	quipment De	scription	N	lesh Size	Available		741 bbl	Losses		101 bbl
Centrifu	uge Scomi I	E-1000			Active		303 bbl	Downhole		12 bbl
Shaker	Derrick	Shale Shaker		325	4 Mixing		51 bbl	Surf. + Equi	ρ.	56 bbl
Shaker	Derrick	Shale Shaker		325	4 Hole		346 bbl	Dumped		20 bbl
				Slug			De-Gasser			
				Reserve		41 bbl	De-Sander			
					Kill	Kill De-Silter				
					Other	Other Centrifuge				13 bbl
								Other		
Comme	ent: Used 70bbls from	Turkey's Nest.								
Pumps	5									
			Pump d	ata - Last 24	Hrs				Slow Pu	mp Data
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)
1	Continental Emsco F-80	0 5.500	81	97		1,100	1,637.0	9.30	41	150
									60	250

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

1,100

1,637.0

9.30

43

60

175

250

97

	,			
BHA #3				
BHA Type:	Pendulum	Total Weight Wet:		41 klb
Depth In/Out:	1,486.0 m/1,723.0 m	Weight Below Jar	Wet:	31 klb
Date In/Out:	#17 (17 Feb 2013)/			
Total Length:	198.1 m			
BHA Description:	8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Te	eledrift, X/O, 6 1/2" NN	MDC, 8 1/2" stab, 13 x 6 1/2" D	rill Collars, Jars, 2 x 6 1/2"
	Drill collars, 4 x 4 1/2" HWDP.			
BHA Run Comment:				

BHA Daily Summary					
Pickup Weight:	136 klb	Torque (max):	14,000 ft-lbs	D.C. (1) Ann Velocity:	5 ft/s
Slack-Off Weight:	134 klb	Torque Avg. Off Bottom:	2,200 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	135 klb	Torque Avg. On Bottom:	12,000 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	22.50 h			D.P. Ann. Velocity:	3 ft/s
Summary:					

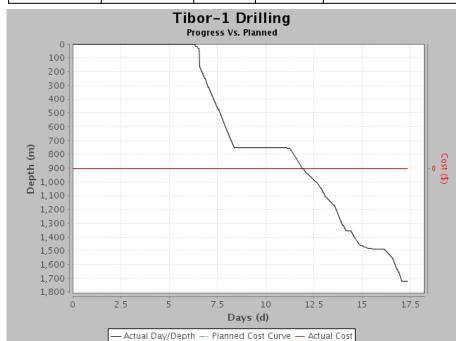
BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit		0.35	8.500	2.000	7143509	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 7/16" (1/16" under gauge).	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar	Re-run Bico Hydra-mechanical jars.	9.50	6.250	2.375	650 E2-12-6	
	Previous run 96.17 circulating hours.					
Drill Collar		8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data					
Slide Time:		Rotate Time:		Circ. Time:	
Slide (%):		Rotate (%):		Circ. (%):	
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	0.00 h
Total Revs:	69 Krevs	HSI:	1.41 hp/in ²		

Bit #3							No	ozzles
Size:	216 mm (8 1/2")	Type:	PDC	IADC #:	M223	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	DP505X	TFA:	0.650 in ²	7	v	11
	Christensen)	Bit Wear:		Cost:	\$	'	Х	11
Serial #:	7143509							
Bit Run Comment:								
Bit Wear Comment:	-	-	-					

			vve	II : Tibor-1	Drillin	9				
Drilling Parame	ters									
BHA Run #2										
Top Depth:			7:	54.0 m P	PWD EC	CD:				
Bottom Depth:			1,48	86.0 m						
			Min		Avg			Max		
Flow		3	880 galUS/min			400 galUS/mii	ı	420 galUS/min		
Surface RPM			65 rpm			81 rpm		96 r		
Downhole RPM			65 rpm			81 rpm		96 r		
Pressure			1,166 psi			1,337 psi		1,507	7 psi	
Torque			3,900 ft-lbs			4,700 ft-lbs		5,500	ft-lbs	
WOB			6 klbs			10 klbs		14 k	lbs	
ROP			3.40 m/h			66.55 m/h		8.57	m/h	
BHA Run #3				·			•			
Top Depth:			1,48	86.0 m P	PWD EC	CD:				
Bottom Depth:			1,72	23.0 m						
			Min			Avg		Ma	ax	
Flow		3	349 galUS/min			383 galUS/mii	ո	417 gall	JS/min	
Surface RPM			67 rpm			79 rpm		90 r		
Downhole RPM			67 rpm			79 rpm		90 r		
Pressure			945 psi			1,056 psi		1,166		
Torque			3,500 ft-lbs			7,250 ft-lbs		11,000		
WOB			5 klbs			19 klbs		32 klbs		
ROP			3.01 m/h		10.77 m/h			34.30 m/h		
Survey										
-	lo el	0	T. (D.	N // O = =4	4	Da ele e	N/O	E04/	T1 T	
MD	Incl.	Corr. Az	TVD	'V' Sect	τ	Dogleg	N/S	E/W	Tool Type	
(m)	(°)	(°)	(m)	(m)		(deg/30m)	(m)	(m)	1	
1,712.0	1.5	210.00	1,711.8	-		0.212	-5.9	7.7	MagneticSS	
				7,138,512	2.062					
Formations										
		Name					Top (m	1)		
Winton Formatio	on .								10.7	
Mackunda Forma									633.0	
Allaru Mudstone									750.0	
Toolebuc Forma	tion								912.0	
Wallumbilla Forn	nation								970.0	
Cadna-Owie For	mation								1,215.0	
Murta Formation	l								1,281.0	
Namur Sandston									1,314.0	
Westbourne Formation									1,415.0	
Westbourne For	mation								1,460.0	
Westbourne Form Adori Sandstone										
	•									
Adori Sandstone	e tion								1,526.0	
Adori Sandstone Birkhead Format	e tion ne								1,526.0	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B	e tion ne		Personnel			Company		Pa	1,526.0 1,623.0	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B	e tion ne 3oard	Ray Miller	Personnel)rillsear	Company		Pa	1,526.0 1,623.0	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B Job Day OCR	e tion ne 3oard	Ray Miller Keyin Gord			Orillsear Orillsear	ch		Pa	1,526.0 1,623.0 IX	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B Job Day OCR Night OCR	e tion ne 3oard	Kevin Gord	lon	D	Drillsear	rch rch		Pa	1,526.0 1,623.0 x 1	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B Job Day OCR Night OCR Geologist	e tion ne 3oard	Kevin Gord Alan Rightl	lon	D D	Orillsear Orillsear	ch ch ch		Pa	1,526.0 1,623.0 x 1	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B Job Day OCR Night OCR Geologist HSE	e tion ne Board	Kevin Gord Alan Rightl Tony	lon nouse	D D	Orillsear Orillsear Orillsear	ch ch ch		Pa	1,526.0 1,623.0 1x 1 1 1 1	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B Job Day OCR Night OCR Geologist HSE Geogoligist Train	etion ne Board D Title	Kevin Gord Alan Rightl Tony Craig Bunt	lon nouse ing	D D D	Orillsear Orillsear Orillsear Orillsear	ch ch ch ch		Pa	1,526.0 1,623.0 1x 1 1 1 1	
Adori Sandstone Birkhead Format Hutton Sandston Personnel On B Job Day OCR Night OCR Geologist HSE	etion ne Board D Title	Kevin Gord Alan Rightl Tony	lon nouse ing zah	D D D D D	Orillsear Orillsear Orillsear	ch ch ch ch		Pa	1,526.0 1,623.0	

Personnel On Board	Personnel On Board									
Job Title	Personnel	Company	Pax							
Night Toolpusher	Andrew Hoey	ENSIGN	1							
Day Toolpusher	Pat Pyne	ENSIGN	1							
Driller	Adrian Bromwich	ENSIGN	1							
Derrickman	Peter Geronymakis	ENSIGN	1							
Motorman	Mitchell Rosewarne	ENSIGN	1							
Floorman	Robert Birse	ENSIGN	1							
Floorman	Ben Shipway	ENSIGN	1							
Lease Hand	Nathan Ownsworth	ENSIGN	1							
Lease Hand	Mike Urmersbach	ENSIGN	1							
Mechanic	Nick Colbbet	ENSIGN	1							
Electrician	Mick Milligan	ENSIGN	1							
Welder	Gary Jarrad	ENSIGN	1							
Driller	Paul Hall	ENSIGN	1							
Derrickman	Danny Pijovic	ENSIGN	1							
Motorman	Aymon Allen	ENSIGN	1							
Floorman	Steven Stabile	ENSIGN	1							
Floorman	Jair Hadley	ENSIGN	1							
Lease Hand	Tim Moreton	ENSIGN	1							
Summer Lease Hand	Nelson Hofling	ENSIGN	1							
Driver	Healy Lyrtzis	ENSIGN	1							
Camp Boss	Hans Dathe	Oil Industry Catering Services	1							
Night Cook	John Reisir	Oil Industry Catering Services	1							
Campie	P Lynch	Oil Industry Catering Services	1							
Campie	J Lindgren	Oil Industry Catering Services	1							
Mud Logger	Pramod Gadhe	Geoservice	1							
Mud Logger	Sam Corey	Geoservice	1							
Trainee	S. Cheoni	Geoservice	1							
Trainee	D matthews	Geoservice	1							
Mud Engineer	Roni Tang	Rheochem	1							
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1							
MDT/ MSCT Specialist	Marcus Hammersley-Cave	Schlumberger (Wireline)	1							
Engineer	Mary-Kate Henrikson	Schlumberger (Wireline)	1							


Personnel On Board			
Job Title	Personnel	Company	Pax
Engineer	Tamara Svetlichnaya	Schlumberger (Wireline)	1
Crew Chief	Jason Rayner	Schlumberger (Wireline)	1
	Bambang Sulistomo	Schlumberger (Wireline)	1
Operator	David Gordon	Schlumberger (Wireline)	1
Medic	Simon Chamberlain	ISOS	1
	·	Total	45

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	ln	Used	Adjust	Balance
Rig Fuel (Itr)	ltr		18,595	0	0	0	18,595
Camp Fuel (ltr)	ltr		3,500	0	0	0	3,500
Pot Water (Itr)	ltr		24,000	0	0	0	24,000
Rigsite Potable Water (ltr)	ltr		18,000	0	0	0	18,000
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,274	0	0	0	1,274
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		30	0	2	0	28
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (Itr)	ltr		11	0	1	0	10
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		57	0	0	0	57
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		384	0	0	0	384
Lime (sx)	sx		50	0	0	0	50
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32
Pipe Freeing Compound (Tessodril BS	drums		4	0	0	0	4
2001) (drums)			_	_		-	_
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		99	0	10	0	89
Rheopac LV (25kg) (Sacks)	Sacks		29	0	14	0	15
Salt-25KG (Sacks)	Sacks		732	0	60	0	672
Sandseal (sx)	SX		50	0	10	0	40
SAPP (sx)	SX		38	0	0	0	38
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	SX		31	0	1	0	30
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		70	0	2	0	68
Xanthan Gum (25kg sx)	25kg sx		42	0	2	0	40
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

Transport				
Transport Type	Transport Name	Arrived Time	Departed Time	Comment
Truck		16:00	06:00	Truck departed with full rubbish skips.
Van		12:00	09:00	DLS HSE going on leave.
Truck		16:00	06:00	1 x Schlumberger wireline truck, 1 x Schlumberger service truck and 1 x 4wheel drive with total 6 personnel.

Transport									
Transport Type	Transport Name	Arrived	Departed	Comment					
		Time	Time						
Van		16:30	13:30	Incoming DLS HSE + 1 ISOS medic.					

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		19 52' 17.80" 16' 19.41"	Day Wellsite Representative: Night Wellsite Representative:		Ray C. Miller : Kevin Gordon		Rig Manager: Drilling Company: Wellsite Geologist:		Scott Cameron ENSIGN Alan Rightstone
Well Data									
Country:	Australia	Current F	łole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	1,723.0 m	Casing MD:	750	.9 m	Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	1,723.0 m	Casing TVD:	750	.9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	0.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	18.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	12.29	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:	12 Feb 2013	Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	380
Current Op @ 0600:		Schlumbe	erger laid out	SSSCAN tool str	ing and prepared	for run #3.			
Planned Op:		Logging v	vith Shclumbe	erger.					

Summary for Period 0000 Hrs to 2400 Hrs on 19 Feb 2013

Circulated hole clean at 1723mRT (TD). Wiper trip to 1365mRT. RIH to 1723mRT. No Fill. Ran magnetic single shot survey. POOH. Schlumberger riged up and ran PEX-ADT-HRLA-HNGS. POOH. Schlumberger RIH with SSSCAN-PPC.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	19 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	19 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	0	19 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	1	19 Feb 2013 00:00	0	Function test Crown-O- Matic.	Tripped Crown-o-Matic to ensure operational.
JSA	3	19 Feb 2013 00:00	0	JSA's	JSA's for tripping, working on mud pumps and Schlumberger wireline logging

Operation	s for Perio	d 0000 Hrs	to 2400 H	lrs On 19	Feb 20	13	
PHSE	CLS	OP	From	To	Hrs	Depth	Activity Description
	(RC)					(m)	
PH0	Р	CMD	00:00	01:00	1.00	1,723.0	Continue circulate till shakers clean and geologist confirm 1723mRT as final TD.
PH0	Р	WT	01:00	02:15	1.25	1,723.0	Flow check - Static. POOH on wiper trip from 1723mRT to 1365m. Work through tight spot from 1423mRT to 1421mRT (15 - 20Kips overpull). Worked through several times till clear.
PH0	Р	WT	02:15	03:30	1.25	1,723.0	Flow check - Static. RIH to 1713m (no obstructions).
PH0	Р	CMD	03:30	04:30	1.00	1,723.0	Pick up Kelly and wash to 1723mRT. No fill. Sweep hole with 20bbl Hi- Vis pill and circulate till shakers clean.
PH0	Р	SVY	04:30	05:00	0.50	1,723.0	Run magnetic single shot survey on wireline at 1712mRT. Inclination = 1.5 degrees S30W. Flow check - Static. Pumped slug. Racked Kelly.
PH0	Р	TO	05:00	10:30	5.50	1,723.0	POOH from 1723mRT to surface. Break off and grade bit.
PH0	Р	CDF	10:30	11:00	0.50	1,723.0	Clear equipment from rig floor and clean floor for logging.
PH0	Р	LOG	11:00	12:00	1.00	1,723.0	Held PJSM with Schlumberger wire line crew. Rig up sheaves.
							Schlumberger make up and function test PEX-ADT-HRLA-HNGS tool
							string.

Operation	Operations for Period 0000 Hrs to 2400 Hrs On 19 Feb 2013									
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description			
PH0	Р	LOG	12:00	18:30	6.50	1,723.0	Schlumberger RIH with Log #1 (PEX-ADT-HRLA-HNGS) and log as per programme. POOH.			
PH0	Р	LOG	18:30	20:15	1.75	1,723.0	Schlumberger lay out PEX-ADT-HRLA-HNGS tool string.			
PH0	P	LOG	20:15	21:45	1.50	1,723.0	Schlumberger make up SSSCAN-PPC tool string.			
PH0	TP (EQ)	LOG	21:45	22:15	0.50	1,723.0	Schlumberger RIH with Log #2 (SSSCAN-PPC) to +/- 100m. Wireline Witness requested tool be function tested and found SSScan Tool not working. (No function test done at surface). POOH to repair tools.			
PH0	TP (EQ)	LOG	22:15	23:00	0.75	1,723.0	Repaired and function test SSSCAN tool - OK.			
PH0	Р	LOG	23:00	24:00	1.00	1,723.0	Schlumberger RIH with Log #2 (SSSCAN-PPC) and log as per programme.			
Operation	ns for Perio	d 0000 Hrs	to 0600 H	Irs On 20	Feb 20	13				
PHSE	CLS	OP	From	Τn	Hrs	Denth	Activity Description			

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 20 Feb 2013										
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description				
	(RC)					(m)					
PH0	Р	LOG	00:00	05:15	5.25	1,723.0	Schlumberger continue run Log #2 (SSSCAN-PPC) and log as per				
							programme.				
PH0	Р	LOG	05:15	06:00	0.75	1,723.0	Schlumberger lay out SSSCAN tool string.				

Performance Summary									
	D	aily	Cumula	tive Well					
	Hrs	%	Hrs	%					
Р	22.8	94.8	407.8	91.6					
TP	1.2	5.2	3.8	0.8					
TU	0.0	0.0	8.0	1.8					
U	0.0	0.0	25.5	5.7					
Undefined	0.0	0.0	0.0	0.0					
Total	24.0	100.0	445.0	100.0					

General Comments for	r Period 0000 Hrs to 2400 Hrs on 19 Feb 2013
Category	Comments
Lessons Learned	Making a connection at 1463.0 mMDRT there was considerable overpull and the drillstring nearly became stuck. When reaming back to bottom 7m of fill was seen. This was washed out and a HiVis pill swept around the hole. Drilling then continued but at the next connection (1473.0 mMDRT) the same thing happened but worse. The drillstring could not pass 1457.0 MDRT. A joint was racked back and the hole washed and reamed back to connection depth. Another HiVis pill was swept around and drilling continued to 1482.0 mMDRT. The drillstring was very close to being stuck while pulling back. Two singles were racked back while backreaming to 1454.0 mMDRT. The drillstring was recriprocated while circulating to increase the MW from 9.1 to 9.3 ppg. As well WL (water loss) was being reduced from 7.5 to 3.0. When the new mud had been circulated around the Bit was washed back to bottom with no further problem and drilling continued.
Lessons Learned	

WBM Data								Cost Today:	\$ 2,424
Mud Desc:	3KPO	API FL:	4.0 cm ³ /30min	CI:	25,400 %	Solids:	6.1 %	Glycol:	
Check Depth:	1,723.0 m	Filter-Cake:	1 /32nd"	KCI:	4.0 %	H2O:	94 %	Viscosity:	46 s/qt
Time:	16:00	HTHP-FL:		Hard/Ca:	320.00 mg/L	Sand:	0.3 %	PV:	13 cP
Weight:	9.30 ppg	HTHP-Cake:		мвт:	10.80 %	pH:	10	YP:	19 lbf/100ft ²
Temp:		HTHP-Temp:		Pm:	0.10	PHPA:		Gel 10s:	7 lbf/100ft²
		HTHP-Press:		Pf:	0.16	Mf:	1.00	Gel 10m:	13 lbf/100ft ²
Comment:								RPM	Reading
								3	6
								6	7
								100	19
								200	22
								300	32
								600	45

Shakers, Volum	nes and Losses Data				Engir	neer : Roni Tan
Equipmen	t Description	Mesh Size	Available	730 bbl	Losses	41 bbl
Centrifuge	Scomi DE-1000		Active	230 bbl	Downhole	6 bbl
Shaker	Derrick Shale Shaker	325 x 4	Mixing	68 bbl	Surf. + Equip.	26 bbl
Shaker	Derrick Shale Shaker	325x 4	Hole	414 bbl	Dumped	
			Slug		De-Gasser	
			Reserve	18 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	9 bbl
					Other	
Comment:	Used 25bbls from Turkey's Nest.					

Pumps	\$									
Pump data - Last 24 Hrs									Slow Pu	mp Data
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)
1	Continental Emsco F-800	5.500	81	97		1,100	1,637.0	9.30	41	150
									60	250

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
0.4.4 (0.5.(011)	10.70		750.0	750.0

1,637.0

9.30

43

175 250

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

BHA #3			
BHA Type:	Pendulum	Total Weight Wet:	41 klb
Depth In/Out:	1,486.0 m/1,723.0 m	Weight Below Jar Wet:	31 klb
Date In/Out:	#17 (17 Feb 2013)/#19 (19 Feb 2013)		
Total Length:	198.1 m		

8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Teledrift, X/O, 6 1/2" NMDC, 8 1/2" stab, 13 x 6 1/2" Drill Collars, Jars, 2 x 6 1/2" **BHA Description:**

Drill collars, 4 x 4 1/2" HWDP.

5.500

BHA Run Comment:

2

Continental Emsco F-800

3

BHA Daily Summary					
Pickup Weight:	136 klb	Torque (max):	14,000 ft-lbs	D.C. (1) Ann Velocity:	5 ft/s
Slack-Off Weight:	134 klb	Torque Avg. Off Bottom:	2,200 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	135 klb	Torque Avg. On Bottom:	12,000 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	2.00 h			D.P. Ann. Velocity:	3 ft/s
Summary:		-			

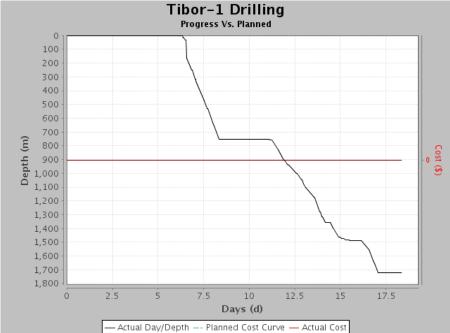
BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit		0.35	8.500	2.000	7143509	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 7/16" (1/16" under gauge).	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar	Re-run Bico Hydra-mechanical jars. Previous run 96.17 circulating hours.	9.50	6.250	2.375	650 E2-12-6	
Drill Collar	Frevious full 90.17 circulating flours.	8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data					
Slide Time:		Rotate Time:		Circ. Time:	
Slide (%):		Rotate (%):		Circ. (%):	
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	0.00 h
Total Revs:	0 Krevs	HSI:	1.41 hp/in ²		

Bit #3							No	ozzles
Size:	216 mm (8 1/2")	Type:	PDC	IADC #:	M223	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	DP505X	TFA:	0.650 in ²	7	· ·	11
	Christensen)	Bit Wear:	1-1-CT-A-X-I-RR-TD	Cost:	\$	′	^	''
Serial #:	7143509							
Bit Run Comment:								
Bit Wear Comment:			-			_		

			We	ell : Tibor-	<u>-1 Drilliı</u>	ng			
Drilling Parame	eters								
BHA Run #2									
Top Depth:			7	754.0 m					
Bottom Depth:			1,4	186.0 m					
			Min			Avg		M	ax
Flow		;	380 galUS/min		400 galUS/min		n	420 ga	IUS/min
Surface RPM			65 rpm		81 rpm			96 rpm	
Downhole RPM			65 rpm		81 rpm			96	rpm
Pressure			1,166 psi		1,337 psi			1,50	7 psi
Torque			3,900 ft-lbs		4,700 ft-lbs) ft-lbs
WOB			6 klbs		10 klbs			klbs	
ROP			3.40 m/h			66.55 m/h		8.57	m/h
BHA Run #3									
Top Depth:					PWD E	CD:			
Bottom Depth:				'23.0 m					
			Min			Avg			ax
Flow			349 galUS/min			383 galUS/mi	n	_	IUS/min
Surface RPM			67 rpm			79 rpm			rpm
Downhole RPM			67 rpm			79 rpm			rpm
Pressure			945 psi			1,056 psi			66 psi
Torque			3,500 ft-lbs		7,250 ft-lbs				0 ft-lbs
WOB		5 klbs			19 klbs			32 klbs 34.30 m/h	
ROP			3.01 m/h			10.77 m/h		34.3	U m/n
Survey									
MD	Incl.	Corr. Az	TVD	'V' Sed	ct	Dogleg	N/S	E/W	Tool Type
(m)	(°)	(°)	(m)	(m))	(deg/30m)	(m)	(m)	
1,712.0	1.5	210.00	1,711.8	- 7,138,51	12.061	0.212	-5.9	7.7	MagneticSS
Farmatiana				7,100,01	12.002				
Formations									
		Name					Top (n	n)	
Winton Formation									10.7
Mackunda Form									633.0
Allaru Mudstone									750.0
Toolebuc Forma									912.0
Wallumbilla For									970.0
Cadna-Owie Fo Murta Formation									1,215.0 1,281.0
Namur Sandsto									1,314.0
Westbourne For									1,415.0
Adori Sandstone									1,460.0
Birkhead Forma									1,526.0
Hutton Sandsto									1,623.0
Personnel On I	Board			Į.					,
	b Title		Personnel			Company		P	ax
Day OCR		Ray Miller			Drillsea			•	1
Night OCR		Kevin Gord	don		Drillsea				1
Geologist		Alan Right			Drillsea				1
HSE		Tony Burn			Drillsea				1
Geogoligist Trai	nee	Craig Bunt			Drillsea				1
								1	
Wireline Witnes	S	Ronti Ham	zah		Drillsea	rcn	l l		
Wireline Witnes Medic	S	Simon Cha			ISOS	rcn			1

Personnel On Board			
Job Title	Personnel	Company	Pax
Night Toolpusher	Andrew Hoey	ENSIGN	1
Day Toolpusher	Pat Pyne	ENSIGN	1
Driller	Adrian Bromwich	ENSIGN	1
Derrickman	Peter Geronymakis	ENSIGN	1
Motorman	Mitchell Rosewarne	ENSIGN	1
Floorman	Robert Birse	ENSIGN	1
Floorman	Ben Shipway	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1
Lease Hand	Mike Urmersbach	ENSIGN	1
Mechanic	Nick Colbbet	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1
Driller	Paul Hall	ENSIGN	1
Derrickman	Danny Pijovic	ENSIGN	1
Motorman	Aymon Allen	ENSIGN	1
Floorman	Steven Stabile	ENSIGN	1
Floorman	Jair Hadley	ENSIGN	1
Lease Hand	Tim Moreton	ENSIGN	1
Summer Lease Hand	Nelson Hofling	ENSIGN	1
Driver	Healy Lyrtzis	ENSIGN	1
Camp Boss	Hans Dathe	Oil Industry Catering Services	1
Night Cook	John Reisir	Oil Industry Catering Services	1
Campie	P Lynch	Oil Industry Catering Services	1
Campie	J Lindgren	Oil Industry Catering Services	1
Mud Logger	Anil Jaisuara	Geoservice	1
Mud Logger	Sam Corey	Geoservice	1
Trainee	S. Cheoni	Geoservice	1
Trainee	D matthews	Geoservice	1
Mud Engineer	Roni Tang	Rheochem	1
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1
MDT/ MSCT Specialist	Marcus Hammersley-Cave	Schlumberger (Wireline)	1
Engineer	Mary-Kate Henrikson	Schlumberger (Wireline)	1


Personnel On Board			
Job Title	Personnel	Company	Pax
Engineer	Tamara Svetlichnaya	Schlumberger (Wireline)	1
Crew Chief	Jason Rayner	Schlumberger (Wireline)	1
Operator	Bambang Sulistomo	Schlumberger (Wireline)	1
Operator	David Gordon	Schlumberger (Wireline)	1
		Total	44

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	Itr		16,095	0	2,195	0	13,900
Camp Fuel (Itr)	ltr		3,150	0	350	0	2,800
Pot Water (Itr)	ltr		16,500	23,000	7,500	0	32,000
Rigsite Potable Water (ltr)	ltr		15,100	0	2,900	0	12,200
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,274	0	80	0	1,194
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		28	0	0	0	28
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (ltr)	ltr		10	0	0	0	10
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		57	0	0	0	57
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		384	0	0	0	384
Lime (sx)	sx		50	0	0	0	50
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	4
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		89	0	0	0	89
Rheopac LV (25kg) (Sacks)	Sacks		15	0	10	0	5
Salt-25KG (Sacks)	Sacks		672	0	0	0	672
Sandseal (sx)	sx		40	0	0	0	40
SAPP (sx)	sx		38	0	0	0	38
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	sx		30	0	8	0	22
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		68	0	2	0	66
Xanthan Gum (25kg sx)	25kg sx		40	0	0	0	40
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Truck		16:30	06:00	Ensign supply truck arrived with cargo from Moomba.
Van		12:00	09:00	1 x ISOS and 1 x Geoservices going on leave via Brisbane.
Van		16:30	13:30	Incoming 1 x Geoservices mud logger.

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		19 52' 17.80" 16' 19.41"	•	e Representative te Representative		, ,		Manager: ng Company: site Geologist:	Scott Cameron ENSIGN Alan Rightstone
Well Data									
Country:	Australia	Current F	łole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measured Depth:		1,723.0 m	Casing MD:	750	.9 m	Original AFE:	
Rig:	Ensign 918	True Vertical Depth:		1,723.0 m	Casing TVD:	sing TVD: 750.9		Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	0.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	18.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	12.29	Lnr Shoe MD:			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:	12 Feb 2013	Lnr Shoe TVD:			Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	380
Current Op @ 0600:		Schlumbe	erger laid out	SSSCAN tool str	ing and prepared	for run #3.			
Planned Op:		Logging v	vith Shclumbe	erger.					

Summary for Period 0000 Hrs to 2400 Hrs on 19 Feb 2013

Circulated hole clean at 1723mRT (TD). Wiper trip to 1365mRT. RIH to 1723mRT. No Fill. Ran magnetic single shot survey. POOH. Schlumberger riged up and ran PEX-ADT-HRLA-HNGS. POOH. Schlumberger RIH with SSSCAN-PPC.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	1	19 Feb 2013 00:00	0	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	1	19 Feb 2013 11:45	0	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	0	19 Feb 2013 00:00	0	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	1	19 Feb 2013 00:00	0	Function test Crown-O- Matic.	Tripped Crown-o-Matic to ensure operational.
JSA	3	19 Feb 2013 00:00	0	JSA's	JSA's for tripping, working on mud pumps and Schlumberger wireline logging

Operation	s for Perio	d 0000 Hrs	to 2400 H	lrs On 19	Feb 20	13	
PHSE	CLS	OP	From	To	Hrs	Depth	Activity Description
	(RC)					(m)	
PH0	Р	CMD	00:00	01:00	1.00	1,723.0	Continue circulate till shakers clean and geologist confirm 1723mRT as final TD.
PH0	Р	WT	01:00	02:15	1.25	1,723.0	Flow check - Static. POOH on wiper trip from 1723mRT to 1365m. Work through tight spot from 1423mRT to 1421mRT (15 - 20Kips overpull). Worked through several times till clear.
PH0	Р	WT	02:15	03:30	1.25	1,723.0	Flow check - Static. RIH to 1713m (no obstructions).
PH0	Р	CMD	03:30	04:30	1.00	1,723.0	Pick up Kelly and wash to 1723mRT. No fill. Sweep hole with 20bbl Hi- Vis pill and circulate till shakers clean.
PH0	Р	SVY	04:30	05:00	0.50	1,723.0	Run magnetic single shot survey on wireline at 1712mRT. Inclination = 1.5 degrees S30W. Flow check - Static. Pumped slug. Racked Kelly.
PH0	Р	TO	05:00	10:30	5.50	1,723.0	POOH from 1723mRT to surface. Break off and grade bit.
PH0	Р	CDF	10:30	11:00	0.50	1,723.0	Clear equipment from rig floor and clean floor for logging.
PH0	Р	LOG	11:00	12:00	1.00	1,723.0	Held PJSM with Schlumberger wire line crew. Rig up sheaves.
							Schlumberger make up and function test PEX-ADT-HRLA-HNGS tool
							string.

Operation	perations for Period 0000 Hrs to 2400 Hrs On 19 Feb 2013									
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description			
PH0	Р	LOG	12:00	18:30	6.50	1,723.0	Schlumberger RIH with Log #1 (PEX-ADT-HRLA-HNGS) and log as per programme. POOH.			
PH0	Р	LOG	18:30	20:15	1.75	1,723.0	Schlumberger lay out PEX-ADT-HRLA-HNGS tool string.			
PH0	P	LOG	20:15	21:45	1.50	1,723.0	Schlumberger make up SSSCAN-PPC tool string.			
PH0	TP (EQ)	LOG	21:45	22:15	0.50	1,723.0	Schlumberger RIH with Log #2 (SSSCAN-PPC) to +/- 100m. Wireline Witness requested tool be function tested and found SSScan Tool not working. (No function test done at surface). POOH to repair tools.			
PH0	TP (EQ)	LOG	22:15	23:00	0.75	1,723.0	Repaired and function test SSSCAN tool - OK.			
PH0	Р	LOG	23:00	24:00	1.00	1,723.0	Schlumberger RIH with Log #2 (SSSCAN-PPC) and log as per programme.			
Operation	ns for Perio	d 0000 Hrs	to 0600 H	Irs On 20	Feb 20	13				
PHSE	CLS	OP	From	Τn	Hrs	Denth	Activity Description			

Operation	Operations for Period 0000 Hrs to 0600 Hrs On 20 Feb 2013										
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description				
	(RC)					(m)					
PH0	Р	LOG	00:00	05:15	5.25	1,723.0	Schlumberger continue run Log #2 (SSSCAN-PPC) and log as per				
							programme.				
PH0	Р	LOG	05:15	06:00	0.75	1,723.0	Schlumberger lay out SSSCAN tool string.				

Performance Summary									
	D	aily	Cumulative Well						
	Hrs	%	Hrs	%					
Р	22.8	94.8	407.8	91.6					
TP	1.2	5.2	3.8	0.8					
TU	0.0	0.0	8.0	1.8					
U	0.0	0.0	25.5	5.7					
Undefined	0.0	0.0	0.0	0.0					
Total	24.0	100.0	445.0	100.0					

General Comments for	r Period 0000 Hrs to 2400 Hrs on 19 Feb 2013
Category	Comments
Lessons Learned	Making a connection at 1463.0 mMDRT there was considerable overpull and the drillstring nearly became stuck. When reaming back to bottom 7m of fill was seen. This was washed out and a HiVis pill swept around the hole. Drilling then continued but at the next connection (1473.0 mMDRT) the same thing happened but worse. The drillstring could not pass 1457.0 MDRT. A joint was racked back and the hole washed and reamed back to connection depth. Another HiVis pill was swept around and drilling continued to 1482.0 mMDRT. The drillstring was very close to being stuck while pulling back. Two singles were racked back while backreaming to 1454.0 mMDRT. The drillstring was recriprocated while circulating to increase the MW from 9.1 to 9.3 ppg. As well WL (water loss) was being reduced from 7.5 to 3.0. When the new mud had been circulated around the Bit was washed back to bottom with no further problem and drilling continued.
Lessons Learned	

WBM Data								Cost Today:	\$ 2,424
Mud Desc:	3KPO	API FL:	4.0 cm ³ /30min	CI:	25,400 %	Solids:	6.1 %	Glycol:	
Check Depth:	1,723.0 m	Filter-Cake:	1 /32nd"	KCI:	4.0 %	H2O:	94 %	Viscosity:	46 s/qt
Time:	16:00	HTHP-FL:		Hard/Ca:	320.00 mg/L	Sand:	0.3 %	PV:	13 cP
Weight:	9.30 ppg	HTHP-Cake:		мвт:	10.80 %	pH:	10	YP:	19 lbf/100ft ²
Temp:		HTHP-Temp:		Pm:	0.10	PHPA:		Gel 10s:	7 lbf/100ft²
		HTHP-Press:		Pf:	0.16	Mf:	1.00	Gel 10m:	13 lbf/100ft ²
Comment:								RPM	Reading
								3	6
								6	7
								100	19
								200	22
								300	32
								600	45

Shakers, Volum	nes and Losses Data				Engir	neer : Roni Tan
Equipmen	t Description	Mesh Size	Available	730 bbl	Losses	41 bbl
Centrifuge	Scomi DE-1000		Active	230 bbl	Downhole	6 bbl
Shaker	Derrick Shale Shaker	325 x 4	Mixing	68 bbl	Surf. + Equip.	26 bbl
Shaker	Derrick Shale Shaker	325x 4	Hole	414 bbl	Dumped	
			Slug		De-Gasser	
			Reserve	18 bbl	De-Sander	
			Kill		De-Silter	
			Other		Centrifuge	9 bbl
					Other	
Comment:	Used 25bbls from Turkey's Nest.					

Pumps	\$									
			Pump d	ata - Last 24	4 Hrs				Slow Pu	mp Data
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)
1	Continental Emsco F-800	5.500	81	97		1,100	1,637.0	9.30	41	150
									60	250

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
0.4.4 (0.5.(011)	10.70		750.0	750.0

1,637.0

9.30

43

175 250

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

BHA #3			
BHA Type:	Pendulum	Total Weight Wet:	41 klb
Depth In/Out:	1,486.0 m/1,723.0 m	Weight Below Jar Wet:	31 klb
Date In/Out:	#17 (17 Feb 2013)/#19 (19 Feb 2013)		
Total Length:	198.1 m		

8 1/2" PDC bit, Bit Sub, X/O, 6 1/2" Teledrift, X/O, 6 1/2" NMDC, 8 1/2" stab, 13 x 6 1/2" Drill Collars, Jars, 2 x 6 1/2" **BHA Description:**

Drill collars, 4 x 4 1/2" HWDP.

5.500

BHA Run Comment:

2

Continental Emsco F-800

3

BHA Daily Summary					
Pickup Weight:	136 klb	Torque (max):	14,000 ft-lbs	D.C. (1) Ann Velocity:	5 ft/s
Slack-Off Weight:	134 klb	Torque Avg. Off Bottom:	2,200 ft-lbs	D.C. (2) Ann Velocity:	0 ft/s
String Weight:	135 klb	Torque Avg. On Bottom:	12,000 ft-lbs	H.W.D.P. Ann. Velocity:	3 ft/s
Jars Hours Logged:	2.00 h			D.P. Ann. Velocity:	3 ft/s
Summary:		-			

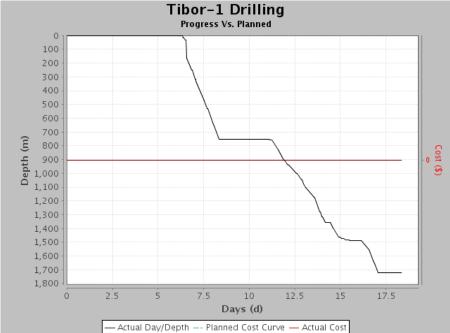
BHA Component						
Equipment	Description	Length	OD	ID	Serial #	Hours
		(m)	(in)	(in)		
Bit		0.35	8.500	2.000	7143509	0.00
Bit Sub		0.91	6.187	3.500	GUWU 2427	
X/O		0.19	6.375	2.500	12565	
Teledrift		2.82	6.250	2.875	Y1926A	
X/O		0.45	6.375	2.875	R3 010-02	
NMDC		9.18	6.500	2.875	ENS 127200-1	
8 1/2" String Stab	8 7/16" (1/16" under gauge).	1.55	6.500	2.875	T 3310-0	
Drill Collar		8.74	6.187	2.875	30-2-21	
Drill Collar		9.30	6.187	2.937	29013	
Drill Collar		8.92	6.187	3.000	30-2-2	
Drill Collar		9.10	6.125	2.937	922-22	
Drill Collar		9.09	6.125	2.937	592226	
Drill Collar		8.97	6.000	2.500	29-008	
Drill Collar		9.20	6.187	2.312	29-018	
Drill Collar		9.49	6.437	2.375	EDC 03231	
Drill Collar		8.46	6.125	3.062	GP 3922-31	
Drill Collar		8.82	6.187	3.062	GP 5922-9	
Drill Collar		8.72	6.250	3.000	30-2-15	
Drill Collar		9.11	6.250	2.875	GP 5922-24	
Drill Collar		9.05	6.125	3.000	30-2-25	
6 1/2" Hydraulic Jar	Re-run Bico Hydra-mechanical jars. Previous run 96.17 circulating hours.	9.50	6.250	2.375	650 E2-12-6	
Drill Collar	Frevious full 90.17 circulating flours.	8.92	6.125	3.000	30-2-11	
Drill Collar		9.42	6.250	2.880	S26132-13	
HWDP		9.45	6.187	2.875	A58715	
HWDP		9.45	6.187	2.812	A58730	
HWDP		9.47	6.250	2.812	A58716	
HWDP		9.45	6.312	2.812	A58720	

Directional Data					
Slide Time:		Rotate Time:		Circ. Time:	
Slide (%):		Rotate (%):		Circ. (%):	
Total Slide Time:	0.00 h	Total Rotate Time:	0.00 h	Total Circ. Time:	0.00 h
Total Revs:	0 Krevs	HSI:	1.41 hp/in ²		

Bit #3							No	ozzles
Size:	216 mm (8 1/2")	Type:	PDC	IADC #:	M223	#		Size (/32nd")
Manufacturer:	BHI (Hughes	Model:	DP505X	TFA:	0.650 in ²	7	· ·	11
	Christensen)	Bit Wear:	1-1-CT-A-X-I-RR-TD	Cost:	\$	′	^	''
Serial #:	7143509							
Bit Run Comment:								
Bit Wear Comment:			-			_		

			We	ell : Tibor-	<u>-1 Drilliı</u>	ng			
Drilling Parame	eters								
BHA Run #2									
Top Depth:			7	754.0 m	PWD E	CD:			
Bottom Depth:			1,4	186.0 m					
			Min			Avg		M	ax
Flow		;	380 galUS/min			400 galUS/mi	n	420 galUS/min	
Surface RPM			65 rpm		81 rpm			96	rpm
Downhole RPM			65 rpm			81 rpm		96	rpm
Pressure			1,166 psi			1,337 psi		1,50	7 psi
Torque			3,900 ft-lbs			4,700 ft-lbs) ft-lbs
WOB			6 klbs			10 klbs			klbs
ROP			3.40 m/h			66.55 m/h		8.57	m/h
BHA Run #3									
Top Depth:					PWD E	CD:			
Bottom Depth:				'23.0 m					
			Min			Avg			ax
Flow			349 galUS/min			383 galUS/mi	n	_	IUS/min
Surface RPM			67 rpm			79 rpm			rpm
Downhole RPM			67 rpm			79 rpm			rpm
Pressure			945 psi			1,056 psi			66 psi
Torque			3,500 ft-lbs			7,250 ft-lbs			0 ft-lbs
WOB			5 klbs		19 klbs			32 klbs	
ROP			3.01 m/h			10.77 m/h		34.3	0 m/h
Survey									
MD	Incl.	Corr. Az	TVD	'V' Sed	ct	Dogleg	N/S	E/W	Tool Type
(m)	(°)	(°)	(m)	(m))	(deg/30m)	(m)	(m)	
1,712.0	1.5	210.00	1,711.8	- 7,138,51	12.061	0.212	-5.9	7.7	MagneticSS
Farmatiana				7,100,01	12.002				
Formations									
		Name					Top (n	n)	
Winton Formation									10.7
Mackunda Form									633.0
Allaru Mudstone									750.0
Toolebuc Forma									912.0
Wallumbilla For									970.0
Cadna-Owie Fo Murta Formation									1,215.0 1,281.0
Namur Sandsto									1,314.0
Westbourne For									1,415.0
Adori Sandstone									1,460.0
Birkhead Forma									1,526.0
Hutton Sandsto									1,623.0
Personnel On I	Board			Į.					,
	b Title		Personnel			Company		P	ax
Day OCR		Ray Miller			Drillsea			•	1
Night OCR		Kevin Gord	don		Drillsea				1
Geologist		Alan Right			Drillsea				1
HSE		Tony Burn			Drillsea				1
Geogoligist Trai	nee	Craig Bunt			Drillsea				1
									1
Wireline Witnes	S	Ronti Ham	zah		Drillsea	rcn	l l		
Wireline Witnes Medic	S	Rohti Ham Simon Cha			ISOS	rcn			1

Personnel On Board			
Job Title	Personnel	Company	Pax
Night Toolpusher	Andrew Hoey	ENSIGN	1
Day Toolpusher	Pat Pyne	ENSIGN	1
Driller	Adrian Bromwich	ENSIGN	1
Derrickman	Peter Geronymakis	ENSIGN	1
Motorman	Mitchell Rosewarne	ENSIGN	1
Floorman	Robert Birse	ENSIGN	1
Floorman	Ben Shipway	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1
Lease Hand	Mike Urmersbach	ENSIGN	1
Mechanic	Nick Colbbet	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1
Driller	Paul Hall	ENSIGN	1
Derrickman	Danny Pijovic	ENSIGN	1
Motorman	Aymon Allen	ENSIGN	1
Floorman	Steven Stabile	ENSIGN	1
Floorman	Jair Hadley	ENSIGN	1
Lease Hand	Tim Moreton	ENSIGN	1
Summer Lease Hand	Nelson Hofling	ENSIGN	1
Driver	Healy Lyrtzis	ENSIGN	1
Camp Boss	Hans Dathe	Oil Industry Catering Services	1
Night Cook	John Reisir	Oil Industry Catering Services	1
Campie	P Lynch	Oil Industry Catering Services	1
Campie	J Lindgren	Oil Industry Catering Services	1
Mud Logger	Anil Jaisuara	Geoservice	1
Mud Logger	Sam Corey	Geoservice	1
Trainee	S. Cheoni	Geoservice	1
Trainee	D matthews	Geoservice	1
Mud Engineer	Roni Tang	Rheochem	1
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1
MDT/ MSCT Specialist	Marcus Hammersley-Cave	Schlumberger (Wireline)	1
Engineer	Mary-Kate Henrikson	Schlumberger (Wireline)	1


Personnel On Board			
Job Title	Personnel	Company	Pax
Engineer	Tamara Svetlichnaya	Schlumberger (Wireline)	1
Crew Chief	Jason Rayner	Schlumberger (Wireline)	1
Operator	Bambang Sulistomo	Schlumberger (Wireline)	1
Operator	David Gordon	Schlumberger (Wireline)	1
		Total	44

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	Itr		16,095	0	2,195	0	13,900
Camp Fuel (Itr)	ltr		3,150	0	350	0	2,800
Pot Water (Itr)	ltr		16,500	23,000	7,500	0	32,000
Rigsite Potable Water (ltr)	ltr		15,100	0	2,900	0	12,200
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,274	0	80	0	1,194
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		28	0	0	0	28
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (ltr)	ltr		10	0	0	0	10
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		57	0	0	0	57
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		384	0	0	0	384
Lime (sx)	sx		50	0	0	0	50
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	4
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		89	0	0	0	89
Rheopac LV (25kg) (Sacks)	Sacks		15	0	10	0	5
Salt-25KG (Sacks)	Sacks		672	0	0	0	672
Sandseal (sx)	sx		40	0	0	0	40
SAPP (sx)	sx		38	0	0	0	38
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	sx		30	0	8	0	22
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		68	0	2	0	66
Xanthan Gum (25kg sx)	25kg sx		40	0	0	0	40
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

Transport				
Transport Type	Transport Name	Arrived	Departed	Comment
		Time	Time	
Truck		16:30	06:00	Ensign supply truck arrived with cargo from Moomba.
Van		12:00	09:00	1 x ISOS and 1 x Geoservices going on leave via Brisbane.
Van		16:30	13:30	Incoming 1 x Geoservices mud logger.

Tibor-1 Drilling									
Report Number :		21 Day Wellsite		site Representative:		Ray C. Miller	C. Miller Rig Manager:		David Doherty
Latitude (South)	25° 5	52' 17.80"	Night Wells	ite Representativ	e:	Don Castles	Drilli	ng Company:	ENSIGN
Longitude (East)	141° 1	16' 19.41"					Well	site Geologist:	Alan Rightstone
Well Data									
Country:	Australia	Current F	lole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	1,723.0 m	Casing MD:	750).9 m	Original AFE:	
Rig:	Ensign 918	True Ver	tical Depth:	1,723.0 m	Casing TVD:	750).9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	0.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	20.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	14.29	Lnr Shoe MD) :		Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	P Date:	12 Feb 2013	Lnr Shoe TV	D:		Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	382
Current Op @ 0600:		Pulling or	ut after setting	g cement plug #3	@ 781m back	up inside 9.5/	8" casi	ng.	
Planned Op:		Wait on c	ement plug t	o set - Layout all	excess 4.1/2"	DP - RIH to ta	g plug	#3 after 8 hours -Pr	essure test
	cement plug #3 if at correct tag depth - Displace hole with corrosion inhibitor.								
		Recover	wear Bushing	-Layout any add	itional DP and	set cement pl	ug #4		

Summary for Period 0000 Hrs to 2400 Hrs on 21 Feb 2013

Circulate at low rate while waiting on Halliburton - POOH for wiper trip from 1637m to 732m.

Rig Service - Slip and cut drill line - RIH to 1637m - Circulate while waiting on Halliburton.

PJSM with Halliburton - Test cementing lines - Run cement plug #1 @ 1637m - Pull out to 1330m for running plug #2a - Circulate hole content from 1330m.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	0	19 Feb 2013 00:00	2	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	0	19 Feb 2013 11:45	2	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	0	19 Feb 2013 00:00	2	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	0	19 Feb 2013 00:00	2	Function test Crown-O- Matic.	Tripped Crown-o-Matic to ensure operational.
JSA	0	19 Feb 2013 00:00	2	JSA's	JSA's for tripping, working on mud pumps and Schlumberger wireline logging

Operation	s for Period	d 0000 Hrs 1	to 2400 H	irs On 21	Feb 20	13	
PHSE	CLS	OP	From	То	Hrs	Depth	Activity Description
	(RC)					(m)	
PH0	U	WOO	00:00	09:00	9.00	1,723.0	Circulated at low rate and reciprocated cementing string while waiting on
							cementers to arrive on location
PH0	U	WOO	09:00	12:00	3.00	1,723.0	Flow checked and made check trip back to the casing shoe.
PH0	U	WOO	12:00	12:30	0.50	1,723.0	Cleared and tidy rig floor
PH0	U	WOO	12:30	13:00	0.50	1,723.0	Rig service
PH0	U	WOO	13:00	14:30	1.50	1,723.0	Slipped and cut drill line
PH0	U	WOO	14:30	16:30	2.00	1,723.0	RIH from 750m to 1637m - Flow checked at 1223m
PH0	U	WOO	16:30	21:30	5.00	1,723.0	Circulated and reciprocated cementing string while waiting on Halliburton
							to arrive on location.
PH0	Р	RDC	21:30	22:00	0.50	1,723.0	Halliburton on site - Held PJSM with cementing personell and crew -
							Nipple up cement lines - Pressure tested lines to 2,000Psi for 10min

						Well : Til	bor-1 Drilling				
Operation	s for Perio	d 0000 Hrs	to 2400 H	irs On 21	Feb 20	13					
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description				
PH0	Р	PLUG	22:00	22:30	0.50	1,723.0			pumped plug #1 @ 163	7m with 44bbls of	class G
	_								with 61Bbls of mud		
PH0	P P	PLUG	22:30	23:30	1.00	1,723.0			1637m to 1330m to set		es
PH0	-	CMD	23:30	24:00	0.50	1,723.0	Circulated 1 tim	es noie	e volume prior to setting	cement plug #2	
Operation	s for Perio	d 0000 Hrs	to 0600 F	irs On 22	2 Feb 20	13					
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)			Activity Description	า	
PH0	Р	CMD	00:00	00:15	0.25	1,723.0	Continued circu	lating	1 time bottoms up 3200	stks	
PH0	Р	PLUG	00:15	00:45	0.50	1,723.0	Mixed and pump 873stks w/mud	ped HT	FB cement plug 2a - 18.5	5 Bbls and displac	e with
PH0	Р	PLUG	00:45	01:00	0.25	1,723.0	Pulled out from				
PH0	Р	CMD	01:00	01:30	0.50	1,723.0			ing content 60 bbls		
PH0	Р	PLUG	01:30	02:45	1.25	1,723.0	class G cement	- Disp	281m and mixed and pur lace with 47bbls of drillin	ng mud (733Stks)	
PH0	Р	PLUG	02:45	03:30	0.75	1,723.0	.0 Pulled out of hole to 1138m - Pipe flowing due to unbalance in annulus - installed safety valve and rigged up to circulate.				
PH0	Р	CMD	03:30	04:15	0.75	1,723.0	3.0 Circulated 1 x full circulation 3,500 stks - Minor contaminated mud to surface dumped 50bbls to sump				
PH0	Р	PLUG	04:15	05:15	1.00	1,723.0			n to 781m Plug #4 setting		
PH0	Р	PLUG	05:15	06:00	0.75	1,723.0	Mixed and pumports mud 374stks	ped ce	ment plug #3 - 28.5Bbls	class G - Displac	ed with
Performar	nce Summa	ary									
					Dail	y			Cumulat	tive Well	
			F	Irs			%		Hrs	%	
)			2	2.5			10.4		434.2	88.1	
ГР			C	0.0			0.0		3.8	0.8	
ΓU			C	0.0			0.0		8.0	1.6	
J			2	1.5			89.6		47.0	9.5	
Jndefined			C	0.0			0.0		0.0	0.0	
Γotal			2	4.0			100.0		493.0	100.0)
General C	omments f	or Period 0	000 Hrs t	o 2400 H	rs on 21	Feb 2013					
С	ategory						Comr	nents			
Lessons L	earned										
WBM Data	a								C	ost Today:	
/lud Desc:		3KPO API F				CI:		- 1	Solids: 6.2 % G	-	
Check Depth:	1,7	23.0 m Filter				KCI:		4.0 %		iscosity:	45 9
ime:		12:30 HTHF				Hard/Ca:		0 mg/L			13
Veight:	9	.30 ppg HTHF	P-Cake:			MBT:	10	0.50 %	pH: 10 Y	P:	19 lbf/100

Pm:

Pf:

0.08 PHPA:

0.14 Mf:

Temp:

Comment:

HTHP-Temp:

HTHP-Press:

6 lbf/100ft²

18 lbf/100ft²

Reading

Gel 10s:

RPM

0.80 Gel 10m:

Well	:	Tibor-1	Drilling
------	---	---------	-----------------

Shakers, Volumes a	and Losses Data		Engineer : Roni Ta				
Equipment	Description	Mesh Size	Available	759 bbl	Losses	7 bbl	
Centrifuge	Scomi DE-1000		Active	303 bbl	Downhole		
Shaker	Derrick Shale Shaker	325 x 4	Mixing		Surf. + Equip.	7 bbl	
Shaker	Derrick Shale Shaker	325x 4	Hole	376 bbl	Dumped		
			Slug		De-Gasser		
			Reserve	80 bbl	De-Sander		
			Kill		De-Silter		
			Other		Centrifuge		
					Other		
Comment: Used	1 50bbls from Turkey's Nest.						

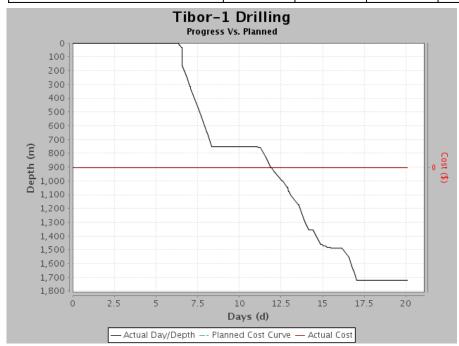
Pumps	S									
	Pump data - Last 24 Hrs									
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)
1	Continental Emsco F-800	5.500	81	97		1,100	1,637.0	9.30	41	150
									60	250
2	Continental Emsco F-800	5.500	81	97		1,100	1,637.0	9.30	43	175
									60	250

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

Formations				
Name	Top (m)			
Winton Formation	10.7			
Mackunda Formation	633.0			
Allaru Mudstone	750.0			
Toolebuc Formation	912.0			
Wallumbilla Formation	970.0			
Cadna-Owie Formation	1,215.0			
Murta Formation	1,281.0			
Namur Sandstone	1,314.0			
Westbourne Formation	1,415.0			
Adori Sandstone	1,460.0			
Birkhead Formation	1,526.0			
Hutton Sandstone	1,623.0			

Personnel On Board			
Job Title	Personnel	Company	Pax
Day OCR	Ray Miller	Drillsearch	1
Night OCR	Don Castles	Drillsearch	1
HSE	Tony Burns	Drillsearch	1
Medic	Simon Chamberlain	ISOS	1
Rig Manager	David Doherty	ENSIGN	1
Night Toolpusher	Andrew Hoey	ENSIGN	1
Day Toolpusher	Pat Pyne	ENSIGN	1
HSE	Mark Person	ENSIGN	1
Driller	Todd Hancock	ENSIGN	1
Derrickman	Kyle Senger	ENSIGN	1
Lead Floorman	Carlos Queremba	ENSIGN	1
Floorman	Daniel Stevens	ENSIGN	1
Floorman	Luke Ward	ENSIGN	1

Well: Tibor-1 Drilling


Personnel On Board						
Job Title	Personnel	Company	Pax			
Lease Hand	Nathan Ownsworth	ENSIGN	1			
Mechanic	Jason Smith	ENSIGN	1			
Electrician	Mick Milligan	ENSIGN	1			
Welder	Gary Jarrad	ENSIGN	1			
Driller	Paul Hall	ENSIGN	1			
Derrickman	Danny Pijovic	ENSIGN	1			
Motorman	Aymon Allen	ENSIGN	1			
Floorman	Steven Stabile	ENSIGN	1			
Floorman	Jair Hadley	ENSIGN	1			
Lease Hand	Tim Moreton	ENSIGN	1			
Leasehand	Kevin Murphy	ENSIGN	1			
Summer Lease Hand	Nelson Hofling	ENSIGN	1			
Summer Leasehand	Jesse Kiley	ENSIGN	1			
Driver	Healy Lyrtzis	ENSIGN	1			
Camp Boss	Michael Sim	Oil Industry Catering Services	1			
Night Cook	John Reisir	Oil Industry Catering Services	1			
Campie	P Lynch	Oil Industry Catering Services	1			
Campie	J Lindgren	Oil Industry Catering Services	1			
Mud Logger	Anil Jaisuara	Geoservice	1			
Mud Logger	Sam Corey	Geoservice	1			
Trainee	S. Cheoni	Geoservice	1			
Trainee	D matthews	Geoservice	1			
Mud Engineer	Roni Tang	Rheochem	1			
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1			
Cementer	Hayden Klingberg	Halliburton Australia Pty Ltd -	1			
		Cement & Cementing Services				
Cementer Offsider	Clint Rawson	Halliburton Australia Pty Ltd -	1			
		Cement & Cementing Services				
	•	Total	39			

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (ltr)	ltr		13,000	0	950	0	12,050
Camp Fuel (ltr)	ltr		2,750	0	250	0	2,500
Pot Water (Itr)	ltr		32,000	0	0	0	32,000
Rigsite Potable Water (ltr)	ltr		12,200	0	0	0	12,200
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,194	0	0	0	1,194
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		25	0	0	0	25
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (Itr)	ltr		10	0	0	0	10
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		57	0	0	0	57
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		384	0	0	0	384
Lime (sx)	sx		50	0	0	0	50
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20

Well: Tibor-1 Drilling

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	4
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		89	0	0	0	89
Rheopac LV (25kg) (Sacks)	Sacks		5	0	0	0	5
Salt-25KG (Sacks)	Sacks		564	0	0	0	564
Sandseal (sx)	sx		40	0	0	0	40
SAPP (sx)	SX		38	0	0	0	38
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	sx		12	0	0	0	12
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		66	0	0	0	66
Xanthan Gum (25kg sx)	25kg sx		40	0	0	0	40
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

Well: Tibor-1 Drilling

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		22 52' 17.80" 16' 19.41"	17.80" Night Wellsite Representative:		Don Castles Drilli		Manager: ng Company: site Geologist:	David Doherty ENSIGN Alan Rightstone	
Well Data									
Country:	Australia	Current F	lole Size:	8.500 in	Casing OD:	9.6	25 in	AFE Number:	OPS-13-018
Field:		Measure	d Depth:	1,723.0 m	Casing MD:	750).9 m	Original AFE:	
Rig:	Ensign 918	True Ver	ical Depth:	1,723.0 m	Casing TVD	: 750).9 m	Supp AFE No:	
Ground Level:	135.0 m	24 Hr Pro	gress:	0.0 m	TOL MD:			Orig. & Sup.	
RT to GL	5.15 m	Days On	Well:	21.54	TOL TVD:			AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	ce Spud:	15.29	Lnr Shoe MI	D:		Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF	Date:	12 Feb 2013	Lnr Shoe T\	/D:		Cum. Cost:	
		FIT/LOT:		/16.64 ppg				Last LTI Date:	05 Feb 2012
								Days Since LTI:	383
Current Op @ 0600	:	Removing	the BOP Sta	ack.			<u>-</u>		
Planned Op:		Remove	BOP Stack, c	ut off and remove	the well head	d. Release the	Rig an	d proceed to rig dov	vn.

Summary for Period 0000 Hrs to 2400 Hrs on 22 Feb 2013

Set and displcaced cement plugs #2: #3. Waited on cement, laid down DP. Tagged cement plug #3. Laid down DP. displaced hole contents to inhibited water. Pulled wear bushing.

HSE Summary					
Events	Num. Events	Date of Last	Days Since	Description	Remarks
Pre-Tour Safety Meeting	0	19 Feb 2013 00:00	3	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	0	19 Feb 2013 11:45	3	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	0	19 Feb 2013 00:00	3	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	0	19 Feb 2013 00:00	3	Function test Crown-O- Matic.	Tripped Crown-o-Matic to ensure operational.
JSA	0	19 Feb 2013 00:00	3	JSA's	JSA's for tripping, working on mud pumps and Schlumberger wireline logging

Operation	s for Perio	d 0000 Hrs	to 2400 H	irs On 22	2 Feb 20	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
PH0	Р	CMD	00:00	00:15	0.25	1,723.0	Continued circulating 1 time bottoms up 3200 stks
PH0	Р	PLUG	00:15	00:45	0.50	1,723.0	Mixed and pumped HTB cement plug 2a - 18.5 Bbls and displace with 873stks w/mud
PH0	Р	PLUG	00:45	01:00	0.25	1,723.0	Pulled out from 1329m to 1214m
PH0	Р	CMD	01:00	01:30	0.50	1,723.0	Reverse circulated string content 60 bbls
PH0	Р	PLUG	01:30	02:45	1.25	1,723.0	Ran back in hole to 1281m and mixed and pumped plug # 2b- 27.7 bbls class G cement - Displace with 47bbls of drilling mud (733Stks)
PH0	Р	PLUG	02:45	03:30	0.75	1,723.0	Pulled out of hole to 1138m - Pipe flowing due to unbalance in annulus - installed safety valve and rigged up to circulate.
PH0	Р	CMD	03:30	04:15	0.75	1,723.0	Circulated 1 x full circulation 3,500 stks - Minor contaminated mud to surface dumped 50bbls to sump
PH0	Р	PLUG	04:15	05:15	1.00	1,723.0	Pulled out from 1138m to 781m Plug #4 setting depth
PH0	Р	PLUG	05:15	06:00	0.75	1,723.0	Mixed and pumped cement plug #3 - 28.5Bbls class G - Displaced with mud 374stks
PH0	Р	PLUG	06:00	06:30	0.50	1,723.0	Pulled back to 549 meters.
PH0	Р	PLUG	06:30	06:45	0.25	1,723.0	Reversed out pipe contents.

Well: Tibor-1 Drilling

0 "		1 0000 11					oor-1 Drilling		
•		d 0000 Hrs							
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)		Activity Description	
PH0	Р	LDP	06:45	08:45	2.00	1,723.0	Laying down ex	cess drill pipe from the mast a	nd hole.
PH0	Р	LDP	08:45	11:30	2.75	1,723.0	RIH from 200m derrick.	to 490m and continued laying	out excess 4-1/2" DP from
PH0	Р	LDP	11:30	12:00	0.50	1,723.0	Cleared excess	4-1/2" DP from racks.	
PH0	Р	LDP	12:00	13:15	1.25	1,723.0	Continued pullin	g out with excess 4-1/2" DP ar	nd laid 27 singles.
PH0	Р	TI	13:15	14:45	1.50	1,723.0	Ran in and tagg	ed top of cement plug at 675m	
PH0	Р	CIC	14:45	15:45	1.00	1,723.0	Circulate annulu	s content to inhibited water	
PH0	Р	RUD	15:45	18:00	2.25	1,723.0	Picked up kelly l rat hole.	oroke connections and laid out	subs - Rack kelly back in
PH0	Р	LDP	18:00	21:00	3.00	1,723.0		rs and continued laying out 4-	1/2" DP
PH0	Р	LDP	21:00	23:00	2.00	1,723.0		out 2-7/8" tubing from 198m (C	
PH0	Р	WB	23:00	24:00	1.00	1,723.0	Installed 4-1/2" I	OP elevators ran 1 x standd of	DP from derrick and laid
							out same - Made	e up wear bushing combination	tool and recovered
							bushing from we	•	
Operation	s for Perio	d 0000 Hrs	to 0600 H	irs On 23	3 Feb 20	13			
PHSE	CLS	OP	From	То	Hrs	Depth		Activity Description	1
	(RC)		,			(m)	Т		
PH0	Р	PT	00:00	01:30	1.50	1,723.0	5min	pressure tested plug #3 (casing	g shoe plug) - 8psi Low
DLIO	_	DLLIC	04.00	04.45	0.05	4 700 0	1,500Psi High for 10min - Good test. RIH with 3 x DP - Pushing sax to 30m - Rigged up Halliburton.		
PH0	P P	PLUG PLUG	01:30	01:45 02:30	0.25 0.75	1,723.0			
PH0			01:45			1,723.0	cement plug #4	crew and Halliburton - Mixed a - Flushed cementing lines with	water.
PH0	Р	PLUG	02:30	03:15	0.75	1,723.0		alliburton cementing equipmen	
PH0	Р	RUD	03:15	03:45	0.50	1,723.0		lines, choke hoses, mud pumpered to nipple down BOP.	os. Filled up lines with fresl
PH0	Р	RUD	03:45	06:00	2.25	1,723.0	Bled down Koon lines, cleaning n	ney unit - Removed flow line, b nud tanks.	pell nipple, flare and vent
Performa	nce Summa	ary							
					Dail	у		Cumulat	ive Well
			F	Irs			%	Hrs	%
			2	4.0			100.0	458.2	88.6
P			C	0.0			0.0	3.8	0.7
U				0.0			0.0	8.0	1.5
				0.0			0.0	47.0	9.1
ndefined				0.0			0.0	0.0	0.0
otal			2	4.0			100.0	517.0	100.0
		or Period 0	000 Hrs t	o 2400 H	rs on 2	2 Feb 2013			
C	ategory						Comn	nents	
Lessons L	earned								

Well	: '	Tibor-1	Drilling
------	-----	---------	----------

Shakers, Volumes	and Losses Data		Engineer : Roni Tan				
Equipment	Description	Mesh Size	Available	759 bbl	Losses	7 bbl	
Centrifuge	Scomi DE-1000		Active	303 bbl	Downhole		
Shaker	Derrick Shale Shaker	325 x 4	Mixing		Surf. + Equip.	7 bbl	
Shaker	Derrick Shale Shaker	325x 4	Hole	376 bbl	Dumped		
			Slug		De-Gasser		
			Reserve	80 bbl	De-Sander		
			Kill		De-Silter		
			Other		Centrifuge		
					Other		
Comment: Us	ed 50bbls from Turkey's Nest.						

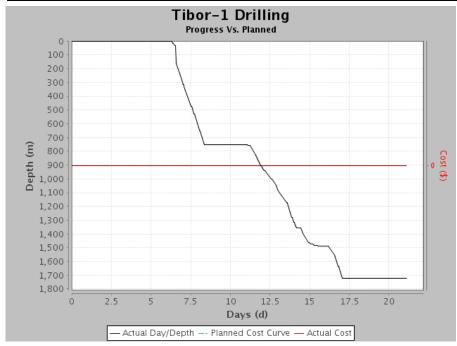
Pumps	3									
	Pump data - Last 24 Hrs									
No	Туре	Liner	SPM	Eff.	Flow	SPP	Depth	MW	SPM	SPP
		(in)		(%)	(galUS/min)	(psi)	(m)	(ppg)		(psi)
1	Continental Emsco F-800	5.500	81	97		1,100	1,637.0	9.30	41	150
									60	250
2	Continental Emsco F-800	5.500	81	97		1,100	1,637.0	9.30	43	175
									60	250

Casing				
OD	LOT	FIT	Casing Shoe (MD)	Casing Shoe (TVD)
244 mm (9 5/8")	16.70 ppg		750.9 m	750.9 m

Formations	
Name	Top (m)
Winton Formation	10.7
Mackunda Formation	633.0
Allaru Mudstone	750.0
Toolebuc Formation	912.0
Wallumbilla Formation	970.0
Cadna-Owie Formation	1,215.0
Murta Formation	1,281.0
Namur Sandstone	1,314.0
Westbourne Formation	1,415.0
Adori Sandstone	1,460.0
Birkhead Formation	1,526.0
Hutton Sandstone	1,623.0

Personnel On Board			
Job Title	Personnel	Company	Pax
Day OCR	Ray Miller	Drillsearch	1
Night OCR	Don Castles	Drillsearch	1
HSE	Tony Burns	Drillsearch	1
Medic	Simon Chamberlain	ISOS	1
Rig Manager	David Doherty	ENSIGN	1
Night Toolpusher	Andrew Hoey	ENSIGN	1
Day Toolpusher	Pat Pyne	ENSIGN	1
HSE	Mark Person	ENSIGN	1
Driller	Todd Hancock	ENSIGN	1
Lead Floorman	Carlos Queremba	ENSIGN	1
Floorman	Daniel Stevens	ENSIGN	1
Floorman	Luke Ward	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1

Well: Tibor-1 Drilling


Personnel On Board			
Job Title	Personnel	Company	Pax
Mechanic	Jason Smith	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1
Driller	Paul Hall	ENSIGN	1
Derrickman	Danny Pijovic	ENSIGN	1
Motorman	Aymon Allen	ENSIGN	1
Floorman	Steven Stabile	ENSIGN	1
Floorman	Jair Hadley	ENSIGN	1
Lease Hand	Tim Moreton	ENSIGN	1
Leasehand	Kevin Murphy	ENSIGN	1
Summer Lease Hand	Nelson Hofling	ENSIGN	1
Summer Leasehand	Jesse Kiley	ENSIGN	1
Driver	Healy Lyrtzis	ENSIGN	1
Camp Boss	Michael Sim	Oil Industry Catering Services	1
Night Cook	John Reisir	Oil Industry Catering Services	1
Campie	P Lynch	Oil Industry Catering Services	1
Campie	J Lindgren	Oil Industry Catering Services	1
Mud Logger	Anil Jaisuara	Geoservice	1
Trainee	S. Cheoni	Geoservice	1
Trainee	D matthews	Geoservice	1
Mud Engineer	Roni Tang	Rheochem	1
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1
Cementer	Hayden Klingberg	Halliburton Australia Pty Ltd -	1
		Cement & Cementing Services	
Cementer Offsider	Clint Rawson	Halliburton Australia Pty Ltd -	1
		Cement & Cementing Services	
		Total	37

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (ltr)	Itr		12,050	0	1,650	0	10,400
Camp Fuel (ltr)	ltr		2,500	0	250	0	2,250
Pot Water (ltr)	ltr		32,000	0	0	0	32,000
Rigsite Potable Water (ltr)	ltr		12,200	0	0	0	12,200
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,194	0	0	0	1,194
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		25	0	0	0	25
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (Itr)	ltr		10	0	0	0	10
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	SX		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		57	0	0	0	57
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		384	0	0	0	384
Lime (sx)	sx		50	0	0	0	50
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32

Well: Tibor-1 Drilling

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	4
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		89	0	0	0	89
Rheopac LV (25kg) (Sacks)	Sacks		5	0	0	0	5
Salt-25KG (Sacks)	Sacks		564	0	0	0	564
Sandseal (sx)	sx		40	0	0	0	40
SAPP (sx)	SX		38	0	0	0	38
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	SX		12	0	0	0	12
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		66	0	0	0	66
Xanthan Gum (25kg sx)	25kg sx		40	0	0	0	40
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

Well: Tibor-1 Drilling

Tibor-1 Drilling									
Report Number : Latitude (South) Longitude (East)		23 52' 17.80" 16' 19.41"	•	e Representative te Representative		Ray C. Miller Don Castles	Drilli	Manager: ng Company: site Geologist:	David Doherty ENSIGN Alan Rightstone
Well Data									
Country: Field:	Australia	Current F Measure		8.500 in 1,723.0 m	Casing OD: Casing MD:		25 in).9 m	AFE Number: Original AFE:	OPS-13-018
Rig:	Ensign 918		ical Depth:	1,723.0 m	Casing TVD	: 750).9 m	Supp AFE No:	
Ground Level: RT to GL	135.0 m 5.15 m	24 Hr Pro Days On	J	0.0 m 22.04	TOL MD: TOL TVD:			Orig. & Sup. AFE:	
Plan TD (MD):	1,738.0 m	Days Sin	•	15.79	Lnr Shoe MI			Daily Cost:	
Plan TD (TVD):	1,738.0 m	Last BOF FIT/LOT:		12 Feb 2013 /16.64 ppg	Lnr Shoe T\	/D:		Cum. Cost: Last LTI Date: Days Since LTI:	05 Feb 2012 384
Current Op @ 0600	:	Rigging d	own. Plan to	have derrick dow	n today.		1 = = , = =		
Planned Op:		Rig down	down for rig move to Cook.						

Summary for Period 0000 Hrs to 2400 Hrs on 23 Feb 2013

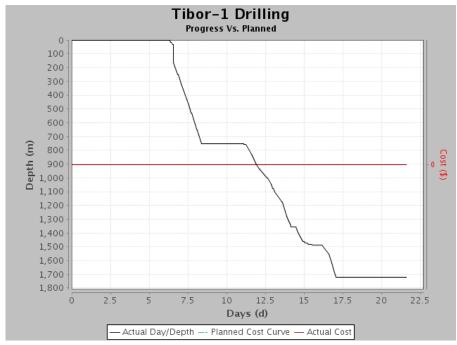
Pressure tested plug #3. to 1,500psi for 10 mintes. Hallliburton set plug #4 at surface. Removed the BOP and cleaned mud tanks. Laid out Kelly and cut off the wellhead. Released rig at 12:00 Hrs.

HSE Summary					
Events	Num.	Date of Last	Days	Description	Remarks
	Events		Since		
Pre-Tour Safety Meeting	0	19 Feb 2013 00:00	4	PTSM	Discuss hazards of upcoming operations.
Pre-Tour Safety Meeting	0	19 Feb 2013 11:45	4	PTSM	Discuss hazards of upcoming operations.
Number of Observe Cards	0	19 Feb 2013 00:00	4	Hazardous observation cards.	Various hazardous conditions or behaviour observed.
Function tested TBA/TDS Upper & Lower Stop Limits	0	19 Feb 2013 00:00	4	Function test Crown-O- Matic.	Tripped Crown-o-Matic to ensure operational.
JSA	0	19 Feb 2013 00:00	4	JSA's	JSA's for tripping, working on mud pumps and Schlumberger wireline logging

Operation	s for Perio	d 0000 Hrs	to 2400 F	irs On 23	Feb 20	13	
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)	Activity Description
PH0	Р	PT	00:00	01:30	1.50	1,723.0	Rigged up and pressure tested plug #3 (casing shoe plug) - 8psi Low 5min 1,500Psi High for 10min - Good test.
PH0	Р	PLUG	01:30	01:45	0.25	1,723.0	RIH with 3 x DP - Pushing sax to 30m - Rigged up Halliburton.
PH0	Р	PLUG	01:45	02:30	0.75	1,723.0	Held PJSM with crew and Halliburton - Mixed and pumped 6.1bbls cement plug #4 - Flushed cementing lines with water.
PH0	Р	PLUG	02:30	03:15	0.75	1,723.0	Rigged down Halliburton cementing equipment.
PH0	Р	RUD	03:15	03:45	0.50	1,723.0	Flushed all mud lines, choke hoses, mud pumps. Filled up lines with fresh water and prepared to nipple down BOP.
PH0	Р	RUD	03:45	06:00	2.25	1,723.0	Bled down Koomey unit - Removed flow line, bell nipple, flare and vent lines, cleaning mud tanks.
PH0	Р	RUD	06:00	09:00	3.00	1,723.0	Lifted and removed the BOP Stack. Landed the Stack on the trolley and moved it to storage area.

						Well : Til	or-1 Drilling						
Operation	ns for Perio	d 0000 Hrs	to 2400 H	lrs On 23	Feb 20	13							
PHSE	CLS (RC)	OP	From	То	Hrs	Depth (m)		Activity Des	scription				
PH0	P	RUD	09:00	12:00	3.00	1,723.0	Laid out Kelly & End of Tibor-1.	cut off & removed wellt	nead. Rig released at 12:00 hr	S.			
							Final fuel figures Camp: 2000 Lite	s: Rig total remaining = ers remaining.	6950 Liters remaining.				
Performa	nce Summa	ıry											
					Daily	/		C	Cumulative Well				
			F	Irs			%	Hrs	%				
Р			1:	2.0		,	00.0	470.2	88.9				
TP			(0.0			0.0	3.8	0.7				
TU				0.0	-			8.0					
							0.0		1.5				
U				0.0			0.0	47.0	8.9				
Undefined			C	.0			0.0	0.0	0.0				
Total			1:	2.0			00.0	529.0	100.0				
General C	Comments f	or Period (0000 Hrs t	o 2400 H	rs on 23	Feb 2013							
С	Category						Comr	ments					
Lessons L	earned												
Casing													
	OD		L	OT.			FIT	Casing Shoe (MD)) Casing Shoe (TVI	D)			
		OD LOT 244 mm (9 5/8") 16.70 ppg								50.9 m			
Farmatia.	Formations												
Formation	IIS .		Name					Тор	(m)				
Winton Fo	rmation		Ivanic					ТОР	(111)	10.7			
	Formation									633.0			
Allaru Muc										750.0			
Toolebuc I										912.0			
Wallumbill	la Formation									970.0			
Cadna-Ow	vie Formatio	n							1,	,215.0			
Murta Forr										,281.0			
Namur Sa										,314.0			
	ne Formatior	1								,415.0			
Adori Sand Birkhead F										,460.0 ,526.0			
Hutton Sai										,520.0 ,623.0			
	el On Board								,	, == 0.0			
	Job Title			Pe	ersonnel		(Company	Pax				
Day OCR			Ray N	/liller			Drillsearch						
							Drillsearch			1			
Night OCF			Don 0	Castles			Dillisearch						
HSE			Tony	Burns			Drillsearch			1			
HSE Medic	₹		Tony Simo	Burns n Chamb			Drillsearch ISOS			1			
HSE Medic Rig Manag	ger		Tony Simo David	Burns n Chamb Doherty			Drillsearch ISOS ENSIGN			1 1			
HSE Medic Rig Manag Night Tool	ger Ipusher		Tony Simo David Andre	Burns n Chamb Doherty w Hoey			Drillsearch ISOS ENSIGN ENSIGN			1 1 1			
HSE Medic Rig Manag Night Tool Day Toolp	ger Ipusher		Tony Simo David Andre Pat P	Burns n Chamb Doherty w Hoey yne			Drillsearch ISOS ENSIGN ENSIGN ENSIGN			1 1 1			
HSE Medic Rig Manag Night Tool	ger Ipusher		Tony Simo David Andre Pat P Mark	Burns n Chamb Doherty w Hoey			Drillsearch ISOS ENSIGN ENSIGN			1 1 1 1 1 1			

Well: Tibor-1 Drilling


Personnel On Board			
Job Title	Personnel	Company	Pax
Floorman	Daniel Stevens	ENSIGN	1
Floorman	Luke Ward	ENSIGN	1
Lease Hand	Nathan Ownsworth	ENSIGN	1
Mechanic	Jason Smith	ENSIGN	1
Electrician	Mick Milligan	ENSIGN	1
Welder	Gary Jarrad	ENSIGN	1
Driller	Paul Hall	ENSIGN	1
Derrickman	Danny Pijovic	ENSIGN	1
Motorman	Aymon Allen	ENSIGN	1
Floorman	Steven Stabile	ENSIGN	1
Floorman	Jair Hadley	ENSIGN	1
Lease Hand	Tim Moreton	ENSIGN	1
Leasehand	Kevin Murphy	ENSIGN	1
Summer Lease Hand	Nelson Hofling	ENSIGN	1
Summer Leasehand	Jesse Kiley	ENSIGN	1
Driver	Healy Lyrtzis	ENSIGN	1
Camp Boss	Michael Sim	Oil Industry Catering Services	1
Night Cook	John Reisir	Oil Industry Catering Services	1
Campie	P Lynch	Oil Industry Catering Services	1
Campie	J Lindgren	Oil Industry Catering Services	1
Mud Logger	Anil Jaisuara	Geoservice	1
Trainee	S. Cheoni	Geoservice	1
Trainee	D matthews	Geoservice	1
Mud Engineer	Roni Tang	Rheochem	1
Centrifuge Technician	Ray Lloyd	Scomi Oiltools	1
Cementer	Hayden Klingberg	Halliburton Australia Pty Ltd -	1
		Cement & Cementing Services	
Cementer Offsider	Clint Rawson	Halliburton Australia Pty Ltd -	1
		Cement & Cementing Services	
		Total	37

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Rig Fuel (Itr)	Itr		10,400	0	3,450	0	6,950
Camp Fuel (ltr)	ltr		2,250	0	250	0	2,000
Pot Water (Itr)	ltr		32,000	0	0	0	32,000
Rigsite Potable Water (ltr)	ltr		12,200	0	0	0	12,200
Cementing Water (bbl)	bbl		360	0	0	0	360
Ancor-1(25 kg) (Pails)	Pails		16	0	0	0	16
Barite Sacks (Sacks)	Sacks		1,194	0	0	0	1,194
Calcium Chloride(25 kg) (Sacks)	Sacks		42	0	0	0	42
Caustic Soda (25 kg sx)	25 kg sx		25	0	0	0	25
Cell Plug (11.3kg) (Sacks)	Sacks		70	0	0	0	70
Citric Acid (25kg) (Sacks)	Sacks		38	0	0	0	38
Defoam - A (Itr)	ltr		10	0	0	0	10
EDTA (25kg) (Sacks)	Sacks		40	0	0	0	40
Fracseal Fine (sx)	sx		210	0	0	0	210
Idcide-20 (20ltr) (Pails)	Pails		57	0	0	0	57
JK 161 LV (25kg) (Sacks)	Sacks		59	0	0	0	59
Potassium Chloride (25 kg bag)	25 kg bag		384	0	0	0	384
Lime (sx)	sx		50	0	0	0	50
Maxigel (25kg) (Sacks)	Sacks		255	0	0	0	255

Well: Tibor-1 Drilling

Bulk Stocks							
Name	Unit	Start Amount	Previous Balance	In	Used	Adjust	Balance
Mica Med (25kg) (Sacks)	Sacks		20	0	0	0	20
Micro Flow (20ltr) (Pails)	Pails		32	0	0	0	32
Pipe Freeing Compound (Tessodril BS 2001) (drums)	drums		4	0	0	0	4
Quikseal Coarse (18.2kg) (Sacks)	Sacks		50	0	0	0	50
Quikseal Med (18.2kg) (Sacks)	Sacks		89	0	0	0	89
Rheopac LV (25kg) (Sacks)	Sacks		5	0	0	0	5
Salt-25KG (Sacks)	Sacks		564	0	0	0	564
Sandseal (sx)	sx		40	0	0	0	40
SAPP (sx)	sx		38	0	0	0	38
SI 70P (25kg) (Sacks)	Sacks		2	0	0	0	2
Soda Ash (sx)	sx		12	0	0	0	12
Sodium Bicarbonate (bag)	bag		44	0	0	0	44
Sodium Sulphite (sx)	sx		66	0	0	0	66
Xanthan Gum (25kg sx)	25kg sx		40	0	0	0	40
Extrasweep (25kg) (Sacks)	Sacks		7	0	0	0	7

 Report #
 1
 Total MD
 0
 to
 16
 m

 Rig #
 918
 Total VD
 0
 to
 16
 m

 Date
 07/02/13
 Daily Depth Drilled
 16
 m

 Soud Date
 07/02/13
 Interval Depth Drilled
 16
 m

Daily Drilling Report Interval Depth Drilled RHEOCHEM Spud Date 07/02/13 16 m **OPERATOR DrillSearch** CONTRACTOR **Ensign Scott Cameron** REPORT FOR Ray Holmes/Kevin Gordon REPORT FOR WELL NAME AND No. **FIELD LOCATION STATE** Tibor 1 {Rev 2} **ATP539 Cooper Basin** Queensland BIT TYPE JET SIZE **DEPTHS/CASING** MUD VOLUME (BBL) **CIRCULATION DATA** BHA BIT SIZE (") CIRCULATION Baker psi 15.25 Riser Length Hughes PDC TYPE 12.25 14 14 0 0 0 5.5 x 9 Inches PRESS DRILL PIPE PUMP MODEL % EFFICIENCY LENGTH Active Pits Reserve Pits SURFACE 16 Conductor @ **7** m SIZE (") 4.5 mir 9 m 413 53 Emco F-800 TO BIT TYPE Surface @ 0 LENGTH BOTTOMS UP DRILL PIPE mir TOTAL CIRCULATING VOL BBL / STK STK / MIN SIZE (") 4.5 HW m Intermediate @ 0.0642 412 TOT CIRC TIME min DRILL COLLAR SIZE (") LENGTH STORAGE TANKS BBL / MIN GAL / MIN Prod. or LNR @ m **MUD PROPERTIES MUD PROPERTY SPECIFICATIONS** SAMPLE FROM Pit **MUD TYPE** 4KPP TIME SAMPLE TAKEN 17:00 MUD COMMENTS FLOWLINE TEMPERATURE °F/°C 88 31 Turkeys nest water analysis pH=7, CI-=2000 mg/ltr, TH= 500 mg/ltr. Treated water with 0.25ppb caustic and 0.25 soda ash. Built 200 bbls 5%KCL/PHPA mud in active & TOTAL MEASURED DEPTH (TMD) Metres WEIGHT ppg / SG 8.7 1.04 premix tank with 1.25ppb Rheopac LV, 1.0ppb PHPA. Prepare 240 bbls 20- 25ppb PHB on settling and degasser FUNNEL VISCOSITY (sec / qt) API ٥F οС RHEOLOGY 600:300 RPM 18 11 Mud properties sample taken from Suction tank. °C RHEOLOGY 200:100 RPM 8 6 Turkeys nest water used: 450bbls оF °C RHEOLOGY 6:3 **RPM** 3 2 PLASTIC VISCOSITY cP@ ٥F °C YIELD POINT (lb / 100 ft²) 4 10sec/10min/30min GEL STRENGTH (lb / 100 ft² 2 4 **OPERATIONAL COMMENTS** LOW SHEAR RATE VISCOSITY (LSRV) Continued R/U rig equipment's. repaired leaking on mud K (lb/100 ft²) 0.71 0.13 tank. Pressure test all surface line. Plan: Perform pre spud inspection, Pre Spud meeting and Hazard hunt. Spud API FILTRATE (cm³ / 30 min.) 15 Tibor 1 well on 7th February 2013 at 19:00hrs. Drill to οС HPHT FILTRATE (cm³ / 30 min.) 16mVD at report time. API: HPHT (Cake / 32nd in.) 9.5 ALKALINITY MUD (Pm) ALKALINITY FILTRATE (Pf / Mf) 0.17 1.0 CHLORIDE (mg/L) 24300 TOTAL HARDNESS AS CALCIUM (mg/L) 400 Water Source Turkeys nest water SULPHITE (mg/L) KCL (% by Wt.) 5.0 **MUD ACCOUNTING (BBLS)** SUMMARY 27020 (mg / L) FLUID BUILT FLUID LOSSES Start Vol 0 PHPA (Calc ppb) **Drill Water** Received 0 0 S.C.E. 0 METHYLENE BLUE CAPACITY (ppb / % by vol) 465 Discharge Chemical 0 Backload 0 **BENTONITE ADDED** 20 22 (ppb / % by vol) 0 Downhole Built Sump/SeaWat O 465 OTHER PRODUCTS ADDED (ppb / % by vol) Other Rec'd 0 Tripping 0 Lost sub 0 0 Lost srf 0 Other Built 0 Other OIL (% by Vol) TOTAL WATER (% by Vol) 97.3 TOTAL MUD ON RIG (bbls): 465 TOTAL SOLIDS (% by Vol) 2.8 (% by Vol) SAND PRODUCT USAGE SOLIDS CONTROL EQUIPMENT Time Breakdown UnitSize Used Close Hrs OF UF **Analysis Item** Product Start Received Hrs Type Cone Size Qty Water 0 0 1 bbl 1619 450 1169 Desande 0 O Drilling Cone Size Qty 0 Other 20 Desilter 0 0 KCI (fine) 25 Kg Sack 1180 0 96 1084 0 Mud Cleaner 0 0 Maxigel 25 Kg Sack 527 0 84 443 Centrifuge 1 Scomo DE-1000 0 0 0 Rheopac L 25 Kg Sack 112 0 8 104 Centrifuge 2 0 0 0 JK-161 LV 25 Kg Sack 88 0 4 84 Cuttings Dryer 0 0 0 Caustic Soda 25 Kg Drum 49 0 3 46 Degasser 0 **SOLIDS ANALYSIS** dcide-20 20 Ltr Drum 73 0 2 71 Shale Shaker #1 | 100x100x100x100 5 Salt % HGS % Soda Ash 25 Kg Sack 0 Shale Shaker #2 100x100x100x100 5 LGS % 0 Corrected Drilled -1.8 Solids % Solids% 0 0 CURRENCY **CUMULATIVE COSTS** DAILY COST

Rheochem Engineer: Roni Tang

Office: Perth

AUD

\$5,710.65

Telephone: +61

\$5,710.65

Fax: +61

 Report #
 2
 Total MD
 16
 to
 251
 m

 Rig #
 918
 Total VD
 16
 to
 251
 m

 Date
 08/02/13
 Daily Depth Drilled
 235
 m

 Spud Date
 07/02/13
 Interval Depth Drilled
 251
 m

RHEOCHE	≣M	Da	ily D	rilling	у Кер	ort	Sr	oud D	ate		07/02/13		-	Depth I		d		251	m
		D.	illSear	o b			O,	_	CONT	DAC			sign	-	Dillie	u		201	
OPERATO REPORT				en nes/Kevi	n Gorde	<u></u>			REPO					Camero	on.				
WELL NA			ay i ioiii	ICS/ICCVI	ii Goid	<i>)</i>		_	IELD		On			ΓΙΟΝ	JII		STATE	-	
WELLIA	IVIL AIVD	_	bor 1 {	Rev 21						ATP5	530			r Basi	n			- Island	
ВНА	BIT TYP		ET SIZE		EPTHS/	^ ^ C II	NG	MII			(BBL)	C	Jope			ULATION			
BIT SIZE (")	Baker	14 14	1 14 14	14					E VOL		JD INHOLE	PUN	/IP SIZ		CIIIC		IRCULA		psi
12.25	Hughes PD TYPE		4 0 0		Riser Lengtl		m		122		113			Inches			PRES	<u> </u>	psi
DRILL PIPE SIZE (") 4.5		LENGT		m	Conductor	@	7 m		ve Pits 332	Re	serve Pits 57	PU E i	IMP MO mco F:	ODEL % E	EFFICIE 97		JRFACE O BIT	1	l _{min}
DRILL PIPE	TYPE	LENGT			Surface @		m			RCULAT	TING VOL		BBL / S		STK / N	IIN BOT	TOMS	JP 12	2 min
SIZE (") 4.5 DRILL COLLAR	HW R SIZE (")	LENGT	38 TH	m	Intermediate	@	m			445			0.064		132		CIRC TI	ME 5 3	3 min
8	6.5	27	18	m	Prod. or LN	₹ @	m		STOF	RAGE TA	ANKS	Ŀ	BBL / N 8.47		3AL / M 356	IN	ECD		
		MUD PRO	PERTIE	S										MUD P	ROP	ERTY SP	ECIFIC	CATIONS	
SAMPLE FF	ROM						FL		Pi	t	FL								
MUD TYPE							4KPF	Р	4KF	PP	4KPP								
TIME SAMP	LE TAKEN	1					5:20)	13:	05	18:30				MU	D СОММ	ENTS		
FLOWLINE	TEMPERA	TURE			°F/	°С												mud with1	
TOTAL MEA	ASURED D	EPTH (TM	/ID)		Metr	es	92		18	1	250							l into active uilt on pill t	
WEIGHT			-		ppg / S	SG	8.8 1	.06	8.8	1.06	8.8 1.0							ifuge to ma	
FUNNEL VI	SCOSITY	(sec / qt)	API				48		43		42	M.	.wt as	specified	d and	discard dri	led soli	ds.	
RHEOLOGY		•		120	°F / 49	οС	42	29	43	30	41 29							(8 ea API on shakers	
RHEOLOGY	Y 200 : 100	RPM		120	^o F / 49	°С	22	15	22	16	22 16					concentra			
RHEOLOGY	Y 6:3	RPM		120	^o F / 49	°С	7	5	7	6	7 5	Tı	ırkevs	water us	sed : 1	50 bbls			
PLASTIC VI	SCOSITY	cP@		120	°F / 49	°C	13		13	3	12	_l`	,5						
YIELD POIN	T (lb/	100 ft ²)		120	°F / 49	°C	16		17	7	17								
GEL STREN	NGTH (lb.	/ 100 ft ²)		10sec/1	0min/30r	nin	5 12		5 12	2	5 11			OPE	ERAT	IONAL C	ОММЕ	NTS	
LOW SHEA	R RATE VI	SCOSITY	(LSRV)				, ,			·		Co	ontinu					Run magne	tic
n K (lb/	100 ft ²)						0.53 1	.04	0.52	1.18	0.50 1.2	9 sir	ngle sl	hort. Drill	l ahea	d to 249m\	/D at re	port time.	illo
API FILTRA	TE (cm ³	³ / 30 min.	.)				10.5	;	10)	9								
HPHT FILTE	RATE (cm	³ / 30 min.	.)		°F/	°C													
API : HPHT	(Cake / 3	2nd in.)					1		1		1								
pН							9.5		9.	5	9.5								
ALKALINIT	Y MUD (P	m)																	
ALKALINIT	Y FILTRAT	E (Pf/Mt	f)				0.17	0.8	0.16	8.0	0.16 0.8	3							
CHLORIDE	(mg / L)						2100	0	224	00	22100								
TOTAL HAP	RDNESS A	S CALCIUI	M (mg	/ L)			360		36	0	360				-				
SULPHITE												٧	vater	Source	e Iu	rkeys nes	t wate	r	
KCL (%by	y Wt.)						4.0		4.	5	4.0		MU	D ACC	OUNT	ΓING (BB	LS)	SUMM	ARY
K +	(mg / L)						2161	6	243	18	21616		FL	UID BUIL	Т	FLUID L	OSSES	Start Vol	465
PHPA (Ca	alc ppb)						1.1		1.3	2		D	rill Wa	ater	0	S.C.E.	132	Received	0
METHYLEN	IE BLUE C	APACITY	(ppb / %	6 by vol)			12.5	1.4	12.5	1.4	13.8 1.5	5 c	hemi	cal		Discharg	е 0	Backload	0
BENTONITE	E ADDED		(ppb / %	6 by vol)								s	ump/s	SeaWat	0	Downhol	е 0	Built	169
OTHER PRO	ODUCTS A	DDED	(ppb / %	% by vol)								0	ther F	Rec'd	0	Tripping	0	Lost sub	0
												0	ther E	Built	0	Other	(Lost srf	132
OIL		y Vol)																	
TOTAL WAT	•	, ,					96.4		96.		96.4		T	OTAL I	MUD	ON RIG	(bbls	s) : 502	
TOTAL SOL							3.6		3.0		3.6								
SAND	(% b	y Vol)					0.1		0.		0.1								
		PRODUC	TUSAG							SOLIE	OS CONTR	OL E	EQUI	PMENT			Tin	ne Breako	down
Produ	uct	UnitSize	Start	Received		Close		Type	-			_	Hrs	OF		UF		alysis Item	
Water		1 bbl	1169	0	150	1019				one Size	Qty	0	0	0		0	Drilli		23
KCI (fine)		25 Kg Sack	1084	0	144	940		ter Cleane		one olze	Qty	0	0	0		0	Othe	:I	1
Maxigel		25 Kg Sack	443	0	62	381		ifuge 1		como	DE-1000		24	0		12.5			
JK-161 LV		25 Kg Sack	84	0	8	76		ifuge 1	_	.501110	1000		0	8.6 0		13.5 0			
Rheopac L		25 Kg Sack	104	0	8	96		ngs Dry					0	0		0			
Xanthan Gum	` '	25 Kg Sack	80	0	6	74	Degas						0	_	IDS A	NALYSIS			
Caustic Soda		25 Kg Drum	46	0	3	43			er #1 1	70x170	0x170x170		24	Salt %		HGS %			
Soda Ash		25 Kg Sack	55	0	2	53					0x170x170		24	/		LGS % 1.	5		
Sodium Sulph	ite :	25 Kg Sack	90	0	2	88							0	Corrected	1.5	Drilled 1.			
ldcide-20	2	20 Ltr Drum	71	0	1	70							0	Solids %		Solids%			
													0						
								CUR	RENC	Υ		DAII	LY CC	ST		CUM	IULATI	/E COSTS	
								Α	AUD			\$8,	,286.0)2			\$13,99	6.66	
Rheochem	Engineer:	Roni Tano	a		<u></u>	(Office: F	Perth			Telepho	one.	+61			Fax:	+61		
			_					- ***			. Jiopiic					. 47.	-		

 Report #
 3 Total MD
 251 to 591 m

 Rig #
 918 Total VD
 251 to 591 m

 Date
 09/02/13 Daily Depth Drilled
 340 m

 Spud Date
 07/02/13 Interval Depth Drilled
 591 m

OPERATOR CREDIT FOR Ray Holmes/Kevin Gordon REPORT FOR Repor	RHEOCHE	≣M	Da	ily D	rilling	j Rep	ort	Sp	ud Dat	ite		7/02/13								m
REPORT FOR			D.	rillCoor	o b			Op							pui Di	illea			001	
MAIL AND No.						n Gord	on								marai	<u> </u>				
Tibor				ау пош	ies/Kevi	ii Goiu	OII				го	<u>n</u>					97	ΔTE		
BAR BIT YPE	WELL IVA	IVIL AND		hor1 (Boy 21						D53	0	_	-	-					
March 1962 1964 1965	DUA	DIT TVE				EDTUC	CACIN	VIC.	MIID				COL	opei						
12.55 Hagbar PRO			14 1	4 14 14	14								PUMF	SIZE	U	INCUL			ON	
Second 1	12.25	Hughes Pl			0 15.25	Riser Leng	th	m					5.5	x 9				PRESS	608	psi
Section Property Property Section Se		ITPE	LENG		m 16	Conductor	@	7 m					PUM Fm	IP MOD	EL % EF				2	min
MUD PROPERTIES	DRILL PIPE		LENG	TH		Surface @)	m									DOTT		⊃ 18	min
B		•	LENC		m	Intermediat	te @	m		61	1					224		RC TIM	1E 43	min
MUD PROPERTIES MUD TYPE					m	Prod. or LN	NR @	m	;			KS					Е	CD	8.98	ppg
SAMPLE FROM MID TYPE		I	MIID PRO	PERTIE	S												TV SPE	CIFIC	ATIONS	
MUD TYPE	CAMBLE	2014	MOD I IIC	/ LITTIE	.0		ĺ			Dia			_	10	00111	OI LI	11 1 31 L	OII IO	AHONO	
TAME SAMPLE TAKEN		TOW																		
FLOWILNE TEMPERATURE													-			MILID	0014145	UTC		
Marting Mart						0	0-		-0 4				Cot	inoroo					antad antiv	ro with
WEIGHT									50 12											
FUNNEL UISCOSITY (see / qt) API		ASURED L	EPIH (II	MD)									syst	tem. Bı	uilt and b	blend 5	%KCL pre	mix w	ith 1.0ppg	
##EOLOGY 200 : 100 RPM						ppg /	SG		.07 8)7 8									ve
RHECLOGY 50: 100 RPM			• •	API		0= / /			_				— Ćor							and
RHEOLOGY 6:3 RPM 120 °F / 49 °C 10 11 1 10 7 120 °F / 49 °C 15 18 11 10 7 10 7 10 820 °F / 49 °C 15 18 11 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 7 10 820 °F / 49 °C 15 18 18 10 10 820 °F / 49 °C 15 18 18 10 10 820 °F / 49 °C 15 18 18 10 10 820 °F / 49 °C 15 18 18 10 10 820 °F / 49 °C 15 18 18 10 10 82 °F / 49 °C 15 18 18 10 820 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 15 18 18 10 82 °F / 49 °C 18 °F / 49 °F /												-	mai	intain N	1.wt.					
RHECLOGY 6: 3 RPM 120 °F / 49 °C 10 11 11 10 11 11 11 11 11 11 11 11 11					120	F / 49	2,6										API 200 (4ea n	ew screen	١
YIELD POINT								6	4	7 5	i	6 5					: 150bbls			
GEL STRENGTH (III) 100 Pt 2) 100 ec/10min/30min 4 10 16 6 11 17 5 10 16 6 11 17 5 10 16 6 11 17 5 10 16 6 11 17 5 10 16 6 11 17 5 10 16 6 11 17 5 10 16 6 11 17 10 10 10 10 10 10	PLASTIC VI							10		11										
Company Comp		•											_							
LOW SHEAR RATE VISCOSITY (LSRV) 0.49 1.21 0.46 1.51 0.45 1.59 0.50 0	GEL STREN	NGTH (lb	/ 100 ft ²)	1	10sec/1	0min/30	min	4 10	16 6	6 11 1	17 5	5 10 16	6		OPER	RATIO	NAL CO	мме	NTS	
N K (1b / 100 ft ²) NAPPI FILTRATE (cm³ / 30 min.) NAPPI TITRATE (cm² / 30 min.) NAPPI	LOW SHEA	R RATE V	ISCOSITY	(LSRV)									Cor	ntinued						ale
APH TELTRATE Cm3 30 min. OF OC OC OC OC OC OC OC	n K (lb/	100 ft ²)						0.49 1.	.21 0.	.46 1.6	31 0	1.59	sho	rt surve	ey. Drill	ahead t	to 591mVI	D at re	port time.	,.0
HPHT FiLTRATE (cm² /30 min.) PH ABP : HPHT (cake / 32nd in.) PH ALKALINITY MUD (Pm) 0.16	API FILTRA	TE (cm	³ / 30 min	.)				10		10.5		9.5	Dor	form o	121011011	ory 2 io	int'a drilla	d		
PH	HPHT FILTE	RATE (cm	1 ³ / 30 min.	.)		°F/	°C						- Fei	101111 50	iivey ev	ery 3 ju	ints anne	u		
PH	API : HPHT	(Cake / 3	32nd in.)	•				1		1		1								
ALKALINITY MUD (Pm) ALKALINITY FILTRATE (Pf /Mf) CHLORIDE (mg / L) SULPHITE (mg / L) K+ (mg / L) CHETHYLENE BLUE CAPACITY (ppb /% by vol) BENTONITE ADDED (ppb /% by vol) OIL (% by Vol) OIL (% by Vol) TOTAL WATER (% by Vol) SAND (% by Vol) TOTAL WATER (% by Vol) SAND (% by Vol) PRODUCT USAGE PRODU	pН	`						9.5		9.5		9.5								
ALKALINITY FILTRATE (Pf / Mf) 0.16 1.0 0.17 0.8 0.17 0.18 0.17 0.18 0.1	•	Y MUD (F	Pm)					0.11		0.12		0.11								
Childright Ch				f)					.0 0.		8 0									
TOTAL HARDNESS AS CALCIUM (mg / L)				-,							-									
SULPHITE (mg / L) SUM		`		M (ma	/1.)															
KCL (% by W1.)				(9	, – ,								Wa	ater S	ource	Turke	eys nest	water		
Control Con								5.0		5.0		4.5	-	MIID	1000	LINITIN	IC /BBL	C/	CLIMANA	ADV
Physical Calcity Physical Ca	•	<u> </u>											-				•	_		
METHYLENE BLUE CAPACITY (ppb / % by vol)									' —				-							
Sent Onlife Added Continue Sent Onlife			ADACITY	/mmh / 0	/ b				E 40		E 4									
OTHER PRODUCTS ADDED (ppb / % by vol)			APACITY										- 011	emical		21 D	ischarge			0
OIL (% by VoI)			. DDED					20 2	2 2	25 2.0	8	25 2.8	Su	mp/Se	aWat	0 D	ownhole	12	Built	371
OIL	OTHER PRO	ODUCISA	ADDED	(ppb / 9	6 by voi)								Oth	her Re	c'd	0 T	ripping	0	Lost sub	12
OIL	011	,	1/ 1 1										Otl	her Bu	ilt	0 0	Other	0	Lost srf	105
A,4			-								-				1	1			"	
SAND (% by Vol) SOLIDS CONTROL EQUIPMENT Time Breakdown Product UnitSize Start Received Used Close Type Solids Start Solids Start Solids Solids Start Solids														TO	TAL M	UD 0	N RIG (bbls) : 756	
Product UnitSize Start Received Used Close Type Uthough UnitSize Start			· ·																	
Product UnitSize Start Received Used Close Type Desander Cone Size Qty 0 0 0 0 0 Other 2	SAND	(% b	<u> </u>					0.15												
Water 1 bbl 1019 0 350 669 Desander Cone Size Qty 0 0 0 Other 2 KCI (fine) 25 Kg Sack 940 0 168 772 Desilter Cone Size Qty 0 0 0 Drilling 22 Maxigel 25 Kg Sack 381 0 62 319 Mud Cleaner Scomo DE-1000 24 8.65 14.1 ————————————————————————————————————			PRODUC	T USAG	iE					SO	LIDS	CONTRO	OL E	QUIPN	/IENT			Tim	e Breakd	lown
KCl (fine) 25 Kg Sack 940 0 168 772 Desilter Cone Size Oty 0 0 0 O O O Drilling 22		uct													OF		UF			Hrs
Maxigel 25 Kg Sack 381 0 62 319 Rheopac L 25 Kg Sack 96 0 12 84 JK-161 LV 25 Kg Sack 76 0 10 66 Soda Ash 25 Kg Sack 53 0 6 47 Xanthan Gum (P) 25 Kg Sack 74 0 6 68 Caustic Soda 25 Kg Drum 43 0 4 39 Idcide-20 20 Ltr Drum 70 0 1 69 Idcide-20 20 Ltr Drum 70 0 1 69 Image: Company of the comp	Water		1 bbl	1019	0	350		_												
Rheopac L	KCI (fine)	T	25 Kg Sack	940	0	168	772			Cone S	Size	Qty	0		0		0	Drillin	g	22
Soda Ash 25 Kg Sack 76 0 10 66 68 Caustic Soda 25 Kg Drum 43 0 4 39 Idcide-20 20 Ltr Drum 70 0 1 69 69 69 69 69 69 69	Maxigel		25 Kg Sack	381	0	62	319								0		0			
Soda Ash 25 Kg Sack 76 0 10 66 Cuttings Dryer 0 0 0 0 0 Cuttings Dryer Degasser Solate Shaker #1 170x170x170x170 24 Salt % 2.2 HGS % LGS % 2.0 Cuttings Dryer Degasser Solate Shaker #2 200x200x200x200 24 Solids % Caustic Soda 25 Kg Drum 43 0 4 39 Shale Shaker #2 200x200x200x200 24 Shale Sh	Rheopac L		25 Kg Sack	96	0	12	84			Scon	no DE	E-1000			8.65		14.1			
Soda Ash 25 Kg Sack 53 0 6 47 Degasser 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	JK-161 LV		25 Kg Sack	76	0	10	66													
Xanthan Gum (P) 25 Kg Sack 74 0 6 68 Caustic Soda 25 Kg Drum 43 0 4 39 Idcide-20 20 Ltr Drum 70 0 1 69 Male Shaker #2 200x200x200x200 24 Salt % 2.2 HGS % 2.0 LGS % 2.0 Degasser Shale Shaker #2 200x200x200x200 24 20 LGS % 2.0 Degasser Shale Shaker #2 200x200x200x200x200 24 Degasser 0 Corrected Solids % 2.0 Drilled Solids % 2.0 Drilled Solids % 2.0 Drilled Solids % -0.7 <	Soda Ash			-	0					r										
Caustic Soda 25 Kg Drum 43 0 4 39 Shale Shaker #1 170x170x170 24 Salt % 2.2 HGS % LGS % 2.0 LGS % 2.0				-								:-								
Shale Shaker #2 200x200x200		` '		-											alt %					
Currency Daily Cost Cumulative Costs								Shale	Shaker	#2 200x	200x2	200x200		_						
CURRENCY DAILY COST CUMULATIVE COSTS	146146-20		בט בנו טועווו	70	U	'	UB	_						- 0		-				
CURRENCY DAILY COST CUMULATIVE COSTS AUD \$9,718.84 \$23,715.50														U	/0	50	IIUS%	1		
AUD \$9,718.84 \$23,715.50				1				-	01155	TNO.			D * '' '		-	1	011.01		F 00077	
100000000000000000000000000000000000000																				
Rheochem Engineer: Roni Tang Office: Perth Telephone: +61 Fax: +61									AL	טט			\$9,7	18.84			\$2	23,/1	5.50	
	Rheochem	Engineer	: Roni Tan	g			C	Office: P	Perth			Telepho	ne:	+61			Fax: +6	61		

 Report #
 4 Total MD
 591 to
 754 m

 Rig #
 918 Total VD
 591 to
 754 m

 Date
 10/02/13 Daily Depth Drilled
 163 m

 Spud Date
 07/02/13 Interval Depth Drilled
 754 m

RHEOCHEM	Da	lily Di	riiiiiig	, nep	UII	Sp	ud D	ate		07/02/13	Inte	rval	Depth D	Orille	d		754	m
OPERATOR		rillSearc					С	CONTR	AC ⁻	ΓOR	En	sign						
REPORT FOR	R	ay Holm	es/Kevi	n Gordo	n		R	REPOR	T F	OR			Camero	n				
WELL NAME A	_						F	IELD					ΓΙΟΝ		S	TATE		
		ibor 1 {							TP5		Co	ope	r Basir			ueen	sland	
		JET SIZE		EPTHS/0	CASI	NG		J D VOLU LE VOL		D INHOLE	DUIN	ID 017		CIRC	ULATION		011	
12.25	0		0 15.25	Riser Length	1	m		362	IVIU	362		IP SIZI	Inches		CIF	RCULATI PRESS	ON	psi
DRILL PIPE T SIZE (") 0	YPE LENG	TH O	16	Conductor (<u>@</u>	7 m		ve Pits	Res	serve Pits	PU	мр мо	DDEL % E		ENCY SUI	RFACE BIT	0	min
DRILL PIPE T	YPE LENG			Surface @		m		320 TAL CIRC	I II AT	ING VOI		nco F-		<u>97</u> STK / N	DOTT	OMS UF	· 0	
SIZE (")	HW	0	m	Intermediate	@	m			82		Ь	DL / 3	IK G)		IRC TIM	IE	min
DRILL COLLAR SIZE	(") LENG 0 0	0 I	m	Prod. or LNF	٦ @	m		STORAG	GE TA	ANKS	Е	BBL / N	IIN G	AL / M	IN	ECD		
	MUD PRO	PERTIE	S						<u> </u>				MUD P	ROP	ERTY SPE	CIFIC	ATIONS	
SAMPLE FROM		J.				FL		Pit		Pit	T							
MUD TYPE						4KPP	,	4KPP	,	4KPP	-							
TIME SAMPLE T	AKEN					5:05		11:30		17:00	┢			MU	D СОММЕ	NTS		
FLOWLINE TEM				°F /	°С		56				Ma	aintair	n mud pro		es as specifi		t and blen	id into
TOTAL MEASUR		MD)		Metro	Ĭ	733		754		754					oremix mud			
WEIGHT	`			ppg / S			.08		.08		7 su	, 1.2 d rface	JK161LV volume. l	, caus Prepa	stic and soda red 50bbls (a asn to 30ppb F	maintain PHB with tr	races
FUNNEL VISCOS	SITY (sec/gt) API		1113		43		42		42	Qι	ıiksea	ıl M on pil	II tank	for Hivis sv	reep. Ti	reated mu	d with
RHEOLOGY 600		,	120	°F / 49	оС	41 2	29	39 2	28	39 28					ldcide was u rifuge to low			
RHEOLOGY 200):100 RPM		120	^o F / 49	°C	22 1	16	22 1	16	21 16	Pe	rform	preventiv	ve ma	intenance c			.oppg
	6:3 RPM			^o F / 49		7	6	7	6	6 5	Tu	rkeys	nest wat	er us	ed: 80 bbls			
PLASTIC VISCO				°F / 49		12		11		11								
YIELD POINT	(lb / 100 ft ²)			°F / 49		17		17		17								
GEL STRENGTH	l (lb / 100 ft ²)		0min/30n		6 11	17	6 11	17	6 10 16	6		OPE	DAT	IONAL CO		MTC	
LOW SHEAR RA	<u> </u>										┪	ill to T			. Circulate b			Ohblo
n K (lb / 100 f						0.50 1.	.29 (0.48 1.	.42	0.48 1.42	2 Hi	vis sw	eep. Circ	culate	out sweep.	Perform	n Magnetic	single
API FILTRATE		ı.)				9		9		9.5	sh	ort su	rvey. Pur	np 20	bbls with tra	aces Qı	uikseal M.	_
HPHT FILTRATE				°F/	°С										clean. Spot : OH to surfa			ottom.
API : HPHT (Ca	•			. ,		1		1		1	rec	corde	d. L/O 12	.25" E	BHA. R/D flo	wline aı	nd conduc	
μ	•					9.5		9.5		9.5			U to run 9 ing at rep		casing. PJS	SM. Pre	pare to RI	H 9-
ALKALINITY MU	D (Pm)					0.12		0.11		0.12	5/0	, cas	ing at rep	2011 111				
ALKALINITY FIL		lf)				0.16 1	.0	0.16 1	.0	0.16 1.0)							
CHLORIDE (mg	g / L)					22600		22100		22300								
TOTAL HARDNE	SS AS CALCIL	JM (mg	/ L)			520		480		400								
SULPHITE (mg	1 / L)		-								W	/ater	Source	Tu	rkeys nest	water		
KCL (% by Wt.)					4.0		4.0		4.0	Ī	MU	D ACCO	OUN.	ΓING (BBL	.S)	SUMM	ARY
K + (mg	J / L)					21616	6	21616	6	21616			UID BUILT		FLUID LO		Start Vol	756
PHPA (Calc pr	pb)					1		1		1	D	rill Wa	ater	80	S.C.E.		Received	
METHYLENE BL		(ppb / %	by vol)			13.8 1	.5	13.8 1	.5	13.8 1.5	. —	hemio			Discharge		Backload	
BENTONITE ADI	DED	(ppb / %	by vol)			12.8 1	.4	12.8 1	.4	12.8 1.4			SeaWat		Downhole		Built	90
OTHER PRODUC	CTS ADDED	(ppb / %	6 by vol)									ther F			Tripping		Lost sub	7
												ther E			Other		Lost srf	111
OIL	(% by Vol)										Ľ	lilei E	Junt	U	Other	U		
TOTAL WATER	(% by Vol)					94.9		94.9		95.6		Т	OTAL N	MUD	ON RIG	(bbls	: 728	
TOTAL SOLIDS	(% by Vol)					5.2		5.2		4.4		-				(33.0)		
SAND	(% by Vol)					0.15		0.15		0.15								
	PRODUC	CT USAG	E					SC	OLID	S CONTR	OL E	QUI	PMENT			Time	e Breakd	lown
Product	UnitSize	Start	Received	Used	Close		Туре					Hrs	OF		UF		vsis Item	Hrs
Water	1 bbl	669	0	80	589	_			Size	Qty	0	0	0		0	Circul		1
KCI (fine)	25 Kg Sack		0	72	700				Size	Qty	0	0	0		0	Drillin		6
Maxigel	25 Kg Sack		0	42	277			_	mc '	DE 1000		10	0		0	Trippi		6 5
Xanthan Gum (P)	25 Kg Sack	68	0	7	61		fuge 1		niio I	DE-1000		18	8.7		14	Other		
Sodium Sulphite	25 Kg Sack	. 88	0	4	84		fuge 2 gs Dry					0	0		0	runni	ng Casing	, 0
Rheopac L	25 Kg Sack		0	3	81	Degas		, = 1				0	-	IDS A	NALYSIS			
JK-161 LV	25 Kg Sack	66	0	2	64			er #1 170	x170)x170x170		12			HGS %			
SI-70P	20 Ltr Drum	4	0	2	2)x200x200		24	Juli /0		LGS % 2.2			
Soda Ash	25 Kg Sack	47	0	2	45	2.70.0						0	Corrected	2.2	Drilled 0.8			
Caustic Soda	25 Kg Drum	39	0	1	38							0	Solids %		Solids%			
ldcide-20	20 Ltr Drum	69	0	1	68							0						
Quickseal (M) 18 Kg Sack 100 0 1 99							CUR	RENCY			DAIL	Y CO	ST		CUMU	JLATIVI	E COSTS	
						AUD		\$5,258.96		\$28,974.45								
Phoophar: F:::	neer Doni To	na				Office: Perth												
Rheochem Engi	neer: non rar	ıy			(JIIICE: F	CILII			reiepno	ne:	+01			Fax: +	υı		

Report # 5 Total MD 754 to 754 m 754 Rig # 918 Total VD 754 m Date 11/02/13 Daily Depth Drilled 0 m Spud Date 07/02/13 Interval Depth Drilled 754

RHEOCHE	М	Dai	יט פוו		ן יינין	JUIL	Sp	ud Date		07/02/13	Inter	val De	pth Drille	ed		754	m
OPERATO	R	Dri	illSearc	h			CONTR			TOR	Ens	ign					
REPORT F	OR	Ra	y Holm	es/Kevi	in Gord	lon		REP	ORT F	OR			neron				
WELL NAM	ME AND No							FIEL	D			CATIO			STA	TE	
		Tib	or 1 {	Rev 2}					ATP	539	Coc	per E	Basin		Que	ensland	
BHA	BIT TYPE		ET SIZE		<u>DEPTHS</u>	/CASI	NG.	MUD V					CIRC	CULATIO			
BIT SIZE (") 12.25	None	0 0	0 0	0 15.25	Riser Leng	gth	m	HOLE VC	L M	UD INHOLE 192	PUMP 5.5)	SIZE : 9 li	nches			ILATION ESS	psi
DRILL PIPE	TYPE	LENGT	Н	16	Conductor	@	7 m	Active Pit	s Re	eserve Pits	PUM	P MODE	L % EFFIC	IENCY	SURFA	ACE	0 _{min}
SIZE (") DRILL PIPE	TYPE	LENGT	0	9.625	Surface @	9	752 m	427	OLDOLII A	170	Emo	o F-800	97	,	TO BI		0 min
SIZE (")	HW	LLINGI	'' 0	m	Intermedia	te @	m	IOTAL	JIRGULA 619	TING VOL	BB	L / STK	STK /	IVIIIV	OT CIRC		min
DRILL COLLAR 0	SIZE (") 0	LENGT 0	H 0		Prod. or Li		m	ST	ORAGE T	ANKS	ВВ	L / MIN	GAL / I		ECI	-	
v						_			0				ID DDOI	DEDTY (10
0414DI E ED		UD PRO	PERIIE	5		ı				1	_	IVI	JD PROI	PERIT	SPECI	FICATION	15
SAMPLE FR	ОМ						Pit				-						
MUD TYPE	FTAKEN						4KPP							ID 001			
TIME SAMPI							13:00)			D:	la a company		JD COM			4 1 - 4 -
FLOWLINE 1					°F/											from desilte ber Co.Man	
TOTAL MEA	SURED DEF	'IH (IM	(טו		Met		754				аррі	oval). (ot good o	ement re	turn or	surface. No	o losses
WEIGHT					ppg /	SG	8.9 1.	.07								clean sand acterial deg	
FUNNEL VIS			API	400	. 0= / 4	0.00	41		1							ardness. Ru	
RHEOLOGY) °F / 4	_		24			cent	rifuge c	n surface	volume t	o disca	rd drilled so	ılid.
RHEOLOGY					^o F / 4			14			— Turk	eys ne	st water us	sed : 189	bbls		
RHEOLOGY		RPM) ^o F / 4			4				,.					
PLASTIC VIS		cP@		120) °F / 4	9 °C	9				_						
YIELD POIN	,				^o F / 4		15										
GEL STREN				10sec/1	10min/30)min	4 10	15					OPERA	TIONAL	СОМ	MENTS	
LOW SHEAF		COSITY (LSRV)								Run	9-5/8"	casing to	752mVD	as set	shoe depth.	Without
n K (lb/1							0.46 1.	.37								Cellar pump	
API FILTRAT							10									rm cementir g lead slurry	
HPHT FILTR	ATE (cm ³ /	30 min.)		°F/	°C					36bl	ols 15.8	ppg tail sl	urry. Disp	olace w	ith189bbls v	vater. Go
API : HPHT	(Cake / 32n	d in.)					1									luring ceme /U BOP's ar	
pН							9.0					at repo		, equipine	511L S. IV	/O DOI 3 ai	ia crioke
ALKALINITY	MUD (Pm)					0.10										
ALKALINITY	FILTRATE	(Pf / Mf)				0.12 0	0.8									
CHLORIDE	(mg / L)						19900)									
TOTAL HAR	DNESS AS (CALCIUN	/I (mg	/ L)			440										
SULPHITE	(mg / L)						80				Wa	iter Sc	urce	urkeys n	nest wa	ater	
KCL (% by	Wt.)						4.0					MUD A	CCOUN	ITING (E	BBLS)	SUM	IMARY
K +	(mg / L)						21616	3					BUILT) LOSSI	_	ol 728
PHPA (Ca	lc ppb)						1				Dril	I Water		9 S.C.E.		39 Receiv	
METHYLENI		ACITY	(ppb / %	by vol)			12.5 1	.4				emical		0 Discha		55 Backlo	
BENTONITE				by vol)				.4						_			
OTHER PRO				by vol)								np/Sea		0 Downh		0 Built	189
			(100000	,							-	er Rec		0 Trippir		0 Lost su	
OIL	(% by V	/ol)									Oth	er Buil	t (0 Other		34 Lost sr	rf 128
TOTAL WATER (% by Vol.)							95.7					T		. ON D	10 /h	7 00	•
TOTAL SOL		4.4					101	AL MUL	J ON R	iiG (b	bls) : 789	,					
SAND	(% by V						0.1										
		RODUC	T USAG	E		J			SOLI	DS CONTR	OL EC	JUIPM	ENT		-	Time Brea	kdown
Drod				, ,	Hood	Closs	,	Type						115	_		
Produc Water		nitSize 1 bbl	Start 589	Received 0	Used 189	Close 400	Desan	Type ider	Cone Size	Qty	0	1rs 0	OF 0	UF 0		Analysis Ite irculating	em Hrs
Idcide-20		Ltr Drum	68	0	2	66	Desilte		Cone Size		0	0	0	0		lunning Cas	
Soda Ash		Kg Sack	45	0	2	43		leaner			-	0	0	0		ementing J	
ooua Asil	25	ny Jack	40	U		40	Centri		Scomo	DE-1000		12	8.7	13.5		lipple-up BC	
								fuge 2				0	0	0		ther	6
								gs Dryer				0	0	0			
							Degas					0	SOLIDS		IS		
									170x17	0x170x170		9 Sa		HGS %			
										0x200x200		9		LGS %	2.4		
													ected 2.4	Drilled	1.0		
						1			1			O Sol	ids %	Solids%	ı		-
												U		Oolid370			
												0		Oolid370			
								CURREN	CY		DAILY				UMULA	ATIVE COST	rs
								CURREN	CY			0				ATIVE COST 1,250.47	ΓS

 Report #
 6 Total MD
 754 to
 755 m

 Rig #
 918 Total VD
 754 to
 755 m

 Date
 12/02/13 Daily Depth Drilled
 1 m

 Spud Date
 07/02/13 Interval Depth Drilled
 1 m

RHEOCHEM		Dai	ט צוו	riiiing	ј кер	ort	Spi	ud Date	е	0	7/02/13	Inte	rval l	Depth	Drille	d		1	m
OPERATOR		Dri	IISearc	ch				CO	NTR	ACTO	OR	En	sign	•		<u>"</u>			
REPORT FOR				r/Kevin (Gordor	1			POR					amer	on				
WELL NAME AN	ND No.							FIE				1	CAT				TATE		
		Tib	or 1 {	Rev 2}					Α	ГР53	9			r Basi	n	(ueer	sland	
BHA BIT	ГҮРЕ		ET SIZE		EPTHS/	CASIN	IG	MUD	VOLU	ME (BBL)					ULATION	DATA	1	
BIT SIZE (") Bal	ker es PDC		12 12 0 0		Riser Leng	th	m	HOLE V			INHOLE		1P SIZE	Inche		CI	RCULAT		psi
8.5 Hughe DRILL PIPE TYPE		LENGT		-	Conductor		7 m	192 Active F			rve Pits			DEL %		NCV SL	RFACE		
SIZE (") 4.5	PF .	LENGE	568	m	Surface @		752 m	427		1	177	Er	mco F-	300	97	1	O BIT	JP 14	
DRILLFIFL	w	LENGT	н 37		Intermediat		m	TOTAI	L CIRCU		IG VOL		BL / ST 0.0642		STK / N 151		TOMS L		
DRILL COLLAR SIZE (" 6.5 6.		LENGT			Prod. or LN		m	S	STORAG		IKS		3BL / M		GAL / M		CIRC TI		
6.5 6.		132	18		1 100: 01 E1	411 @)			9.69		407		ECD	10.81	ppg
	MUD	PRO	PERTIE	S		-						_		MUD	PROP	ERTY SP	ECIFIC	CATIONS	
SAMPLE FROM							Pit		FL										
MUD TYPE							4PHB		4KPP			L							
TIME SAMPLE TA							5:15		23:00		1					D COMM			
FLOWLINE TEMPI					°F/	oC										alysis ph=7		800mg/l, process su	rface
TOTAL MEASURE	D DEPTI	H (TM	D)		Met		754		755		1							ctive syste	
WEIGHT					ppg /	SG	8.8 1.0	06 8.9		07		Bu	ilt 50b	bls 25p	pb PH	B on pill tai	k, ther	transfer sl	owly
FUNNEL VISCOSI	-		API				41		42									uilt with1.5 . Treat acti	
RHEOLOGY 600:					°F / 49	-	33 2	_				SA	APP ar	ıd sodiı	ım bica	ırbonate to	prever	t cement	
RHEOLOGY 200:					^o F / 49		19 1		_	5			ntamir th muc		Jischai	rge cement	water	while displa	ace we
RHEOLOGY 6:					^o F / 49		•	4 6		1		Re	e-dress	shake			NPI 270	(8ea new	- 1
PLASTIC VISCOSI					^o F / 49		9		9							Search). ed = 150 bl	.lo		
	lb / 100				^o F / 49		15		16			Ιu	irkeys	nest wa	tter use	90 = 150 DI	iis		
GEL STRENGTH (•			10sec/1	0min/30	min	4 9	15 4	9	14				OP	ERAT	IONAL C	ОММЕ	NTS	
LOW SHEAR RAT	E VISCO	SITY (LSRV)									Co	ntinue					est.PJSM. N	M/U &
n K (lb / 100 ft ²							0.46 1.3	37 0.4	14 1.	57		RII	H 8-1/	2" BHA	to tag	TOC. DOC	on sho	rt system v	ria pill
API FILTRATE (10		10									ew formatio d. Drill 3mti	
HPHT FILTRATE (cm ³ / 30) min.)		°F/	Oo								at rep			OL IIId	a. Dilli olilli	11CW
API : HPHT (Cake	e / 32nd i	in.)					1		1										
рН							9.0		9.5										
ALKALINITY MUD							0.08		0.11										
ALKALINITY FILTI	RATE (F	Pf / Mf)				0.12 0.	.8 0.1	16 1	.0									
CHLORIDE (mg	/ L)						20000	2	21000										
TOTAL HARDNES	S AS CA	LCIUN	/I (mg	/ L)			440		480										
SULPHITE (mg/	L)						80		80			W	Vater	Sourc	e Wa	aterbore 2	and 3	}	
KCL (% by Wt.)							4.0		4.0			f	MUI	D ACC	OUNT	ING (BB	LS)	SUMM	ARY
K + (mg/	L)						21616	- 2	21616			T		JID BUIL		FLUID LO		Start Vol	789
PHPA (Calc ppb))						1		0.6			_	rill Wa			S.C.E.	1	Received	
METHYLENE BLU		CITY ((ppb / %	6 by vol)			12.5 1.	.4 12		.4		_	hemic			Discharg		Backload	
BENTONITE ADDE				6 by vol)			9.29 1.	.0 9.2	29 1	.0				eaWat		Downhole		Built	208
OTHER PRODUCT		D ((ppb / %	6 by vol)									ther R			Tripping		Lost sub	0
									l .									Lost sub	233
OIL ('	% by Vol	l)										0	ther B	uilt	0	Other	(LUSUSII	233
TOTAL WATER (% by Vol	l)					96.4		95.7				т/	TAI	MIID	ON RIG	/hhla	N · 764	
TOTAL SOLIDS (% by Vo	Í)					3.6		4.4				1	JIAL	IVIOD	ON RIG	וטטו	5). 104	
SAND (% by Vol	I)					0.1		0.1										
·	PRO	ODUC	T USAG	ìΕ		<u> </u>			SC	LIDS	CONTR	OL E	QUIF	MEN	-		Tin	ne Breako	lown
Product	Unit	Size	Start	Received	Used	Close	Т	уре					Hrs	OF		UF	An	alysis Item	Hrs
Water	1 b		400	3000	150	3250	Desand		Cone	Size	Qty	0	0	0		0		Test	8
KCI (fine)	25 Kg	Sack	700	0	48	652	Desilte	r	Cone	Size	Qty	0	0	0		0	Othe	r	4
Maxigel	25 Kg	-	277	0	22	255	Mud Cl	leaner					0	0		0	Tripp	oing	5
Rheopac L	25 Kg	-	81	0	5	76	Centrifi	uge 1	Sco	mo DE	E-1000		12	8.7	7	13.5	Drilli	ng	7
JK-161 LV	25 Kg	-	64	0	4	60	Centrifi						0	0		0			
Sodium Sulphite	25 Kg	-	84	0	4	80	-	s Dryer					0	0		0			
Caustic Soda	25 Kg	-	38	0	2	36	Degass						0		T T	NALYSIS			
Idcide-20	20 Ltr	-	66	0	2	64					270x270		12	Salt %	2.0	HGS %			
SAPP			40	0	2		Shale S	Shaker #	#2 270:	x270x	270x270		12			LGS % 2.			
	25 Kg					38	-							Corrected Solids %	2.3	Drilled 1.	3		1
Soda Ash	25 Kg		43	0	2	41	_						0	Julius /0		Solids%	-		+
Sodium Bicarbonate	25 Kg		45	0	1	44	-	CLIEST	NO.			D 4 11	0	CT.	1	0.11	II A T."	/F 000T0	\bot
Xanthan Gum (P)	25 Kg	Sack	61	0	1	60	+	CURRE			1		-Y CO					/E COSTS	
								AU	ט			\$3 ,	582.9	2			\$32,83	3.39	 ↓
Rheochem Engine	eer: Ron	ni Tang	I			0	ffice: P	erth			Telepho	ne:	+61			Fax:	-61		

 Report #
 7
 Total MD
 755
 to
 888
 m

 Rig #
 918
 Total VD
 755
 to
 888
 m

 Date
 13/02/13
 Daily Depth Drilled
 133
 m

 Soud Date
 07/02/13
 Interval Depth Drilled
 134
 m

RHEOCHE	М	Da	וט עוו	riiiing	j Kej	oort	Sp	ud Date)	07/02	2/13	Interva	al Dep	th Drille	ed			134	m
OPERATO)R	Dr	illSearc	:h				CO	NTRA	CTOR		Ensid							
REPORT				r/Kevin	Gordoi	<u> </u>			PORT			Scott		neron					
WELL NA			<u>,</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-		FIE				LOC				ST	ATE		
			or 1 {	Rev 2}					ATI	P539		Coop	er B	asin				sland	
ВНА	BIT TYPE		ET SIZE		EPTHS	/CASIN	NG.	MUD		IE (BBL	_)				ULAT				
BIT SIZE (")	Baker	12 12	12 12	12			m	HOLE V		MUD INHO		PUMP S				CIRC	ULATI	ON 910	psi
8.5 DRILL PIPE	Hughes PDC TYPE	0 0 LENGT	0 0	•	Riser Leng		-	222		186		5.5 x				SURF	RESS		po.
SIZE (") 4.5		LENGI	701	m	Conductor		7 m	Active P 358	ITS I	Reserve P 144	IIS	Emco	MODEL F-800	% EFFIC 97		TO		3	3 min
DRILL PIPE	TYPE	LENGT			Surface @		752 m		CIRCUL	ATING VO	OL	BBL /	STK	STK /		вотто	MS UF	16	6 min
SIZE (") 4.5 DRILL COLLAR	HW SIZE (")	LENGT	37		Intermedia		m		544			0.0		150		TOT CIF	RC TIM	E 57	7 min
6.5	6.5	132	18	m	Prod. or Li	NR @	m	5	TORAGE 0	TANKS			/ MIN 62	GAL / N 404		EC	DD	9.16	6 ppg
	N	MUD PRO	PERTIE	S									MU	D PROF	PERTY	SPEC	IFIC	ATIONS	
SAMPLE FR	ROM						FL		Pit		FL		•			-			
MUD TYPE							4PHB	. 4	PHB		PHB								
TIME SAMP	LE TAKEN						6:00	1	2:40	18	3:00			ML	JD CO	MMEN	ITS		
FLOWLINE		TURE			°F/	00		6 13			56	Contir	nue rur					solids. Ma	intain
TOTAL MEA			ID)		Met		775		833		88	mud p	ropert	ies as sp	ecified.	Mixed S	Sodiur	n sulphat	e,
WEIGHT		(,		ppg /			07 8.9			1.07							tration ob ease the ?	
FUNNEL VIS	SCOSITY /	sec / at \	ΔΡΙ		PP9 /	54	43	· 0.8	42		42							ter 1-2bbl	
RHEOLOGY	•	• • •	OL.		°F /	°C		27 35		_	26	repler	ish ev	aporation				n screen,	
RHEOLOGY					°F /	°C		7 22			17	API 27	/U new	1					
					°F /	°C		6 7	16	6	5	Turke	ys nes	t water us	sed : 70	bbls			
RHEOLOGY		RPM						0 <i>1</i>				-							
PLASTIC VI		cP@			^o F /	°C	10		9	_	9	-							
YIELD POIN		100 ft ²)		1000-14			17	, .	17		17								
GEL STREN				10sec/1	Umin/30	min	6 10	15 6	10 14	4 6	11 15	9	(OPERA	ΓΙΟΝΑ	L CO	/ME	NTS	
LOW SHEA		SCOSITY	(LSRV)															VD. Circu	
n K (lb/							0.45 1.	59 0.4	3 1.80	_								. LOT res mVD at re	
API FILTRA		/ 30 min.					10		9		9	time.	ρg ⊑ivi	W. Dilli o	-5 101111	ialion li	000	iiivD at ie	eport
HPHT FILTE)		°F/	°C			9.5										
API : HPHT	(Cake / 32	nd in.)					1		1		1								
pН							9.5		9.5	9	9.5								
ALKALINIT\	Y MUD (Pr	n)					0.10		0.11	0	.10								
ALKALINITY	Y FILTRATE	E (Pf / M1	·)				0.16 1	.0 0.1	7 0.8	0.16	0.8								
CHLORIDE	(mg / L)						22500) 2	3300	23	800								
TOTAL HAR	RDNESS AS	CALCIUI	VI (mg	/ L)			440		440	4	40								
SULPHITE	(mg / L)						80		80	8	80	Wat	er So	urce W	ater b	ore 2&	3		
KCL (% by	/ Wt.)						4.0		4.5	4	1.5	M	UD A	CCOUN	TING	(BBLS	3)	SUMM	ARY
K +	(mg / L)						21616	5 2	4318	24	318	_	FLUID E			ID LOSS	_	Start Vol	764
PHPA (Ca							0.56		0.6	0	.56		Water		S.C.E			Received	_
METHYLEN		PACITY	(ppb / %	by vol)				.2 11.							_			Backload	
BENTONITE				by vol)				.9 8.4			0.9	Cileii			Disch				
OTHER PRO				6 by vol)				-	3.3		2.0	Sulli	p/SeaV		Dowr			Built	80
3			(660, 7	- 2, 101)							1	Othe	r Rec'o		Tripp			Lost sub	
OIL	(% by	Vol \						-				Othe	r Built	(Othe	er	0	Lost srf	143
TOTAL WAT	• •						95.7		95.8	0	5.7	1							
TOTAL WAT							4.4		4.3	_	5. <i>1</i> 1.4	1	TOT	AL MU	ON	RIG (I	obls)	: 688	
SAND	עם %) פטו. by (% by)						0.1		7.3	_	+.4).1	1							
SKIND		PRODUC	TUSAC	E			0.1		901	IDS CO			IIDM	NT			Time	Breako	down
				_		C:			SUL	טט פעו.	/IN I FI		_						$\overline{}$
Produ		UnitSize	Start	Received		Close		Type dor	Cone Siz	70	Qty	0 0		OF	U			vsis Item	
KCI (fine)	2	5 Kg Sack	652	0	96	556	Desan		Cone Siz		-	0 0		0	0		LOT	otin~	1
Water		1 bbl	3250	0	70	3180			Cone Siz	4 0	Qty			0	0		Circul		1
Rheopac L		5 Kg Sack	76	0	10	66	Mud C		Soom	o DE-100	00	24		0	0		Drillin	y	22
Xanthan Gum	(P) 2	5 Kg Sack	60	0	4	56	Centrif	-	Scom	∩ DE-10(UU	0	_	8.6	13				
Caustic Soda	2	5 Kg Drum	36	0	2	34	Cutting	gs Dryer				0		0	0				
Idcide-20	20	0 Ltr Drum	64	0	2	62	Degas					0		0					
Soda Ash	2	5 Kg Sack	41	0	2	39		Shaker#	1 270~2	70v270v	270	24		SOLIDS					
Sodium Sulphi	ite 2	5 Kg Sack	80	0	2	78		Snaker# Shaker#				24	- u.	1 % 2.2	HGS %				
JK-161 LV	2	5 Kg Sack	60	0	1	59	snale	JIIANEI #	L L 1 U X Z	., UAE/UX	-10	0		cted 2.0	LGS %	2.0			
		-					-					0	Colid		Drilled Solids%				
												0							
								CURRE	NCY			DAILY ((CUMITI	ATIV	COSTS	
							+	AUI				\$5,161					7,994		
-				1			_												
Rheochem	Engineer:	Roni Tanç				C	office: P	erth		Tel	epho	ne: +6	51		Fa	x: +6	1		

Report #	8	Total MD	888	to	1050	m
Rig #	918	Total VD	888	to	1050	m
Date	14/02/13	Daily Depth Drille	ed		162	m
Spud Date	07/02/13	Interval Denth Dr	illad		296	m

RHEOCHE	M		Dali	יט א	ııııııç	j ne	port	Sp	ud Dat	te		07/02/	/13 lı	nterva	I Dep	th Drill	led			296	m
OPERATO)R		Drill	Searc	:h			·	CC	ONTF	RACT	OR		Ensid	ın			·			
REPORT					r/Kevin	Gordo	n			POF				Scott		eron					
WELL NA		No.							FIE	ELD				LOC	OITA	1		ST	ATE		
			Tibo	or 1 {l	Rev 2}					A	TP5	39		Coop	er Ba	asin		Qu	een	sland	
BHA	BIT TY			T SIZE		EPTHS	CASIN	NG	MUD	VOL	UME	(BBL))			CIR	CULAT	ION D	ATA		
BIT SIZE (") 8.5	Baker Hughes P			12 12	12 0 15.25	Riser Leng	ath	m	HOLE		MUI	D INHOL		PUMPS		hoe			ULATI	ON 1163	psi
DRILL PIPE	TYPE		LENGTH		•	Conductor		7 m	25 Active		Res	220 serve Pits				% EFFIC	CIENCY	SURF		4	
SIZE (") 4.5	TYPE		LENOTU	863	m	Surface @		752 m	358	В		112		Emco	F-800	9	7	TOE		4	
DRILL PIPE SIZE (") 4.5	HW		LENGTH	37		Intermedia		m	TOTA		DULAT 578	ING VOL	L	BBL /		STK /	IVIIIN	BOTTO			
DRILL COLLAR 6.5	SIZE (") 6.5		LENGTH 132	18		Prod. or L		m		STORA		ANKS		BBL /		GAL/		TOT CIF			
0.5	0.5					00. 0. 2	@				0			10.		42:			CD	9.4	ppg
		MUD	PROP	ERTIE	S						-			_	MU	D PRO	PERIY	SPEC	JIFIC	ATIONS	
SAMPLE FF	ROM							FL		Pit		FI									
MUD TYPE		·						4PHB	3	4PHI		4PI					10.00		.=-		
TIME SAMP			_					6:00		14:0		19:		I/ a a m			UD COI			d D 70	hhla
FLOWLINE							/ °C		55 13		56	134								d. Built 70 m active t	
TOTAL MEA	ASURED	DEPIR	I (I IVIL))			tres	965	00 0	1010		10		transfe	er back	into act	tive tank.	. Redre	ess sh	akers scre	en
WEIGHT	COCITY	1	/ m t \ /	A DI		ppg /	SG		.08 9	.1 1	.09									by Drillsea led solid.	
FUNNEL VIS		•		API	100	°F / 4	a oc	36 2	26 2	43	20	40	- 00	2bbl/h	rs wate	er add in	ito possu	ım belly	y to re		
RHEOLOGY											28	40		evapo	ration.	Dischar	ge 10 bb	ols sand	dtrap.		
RHEOLOGY RHEOLOGY		O RPI				⁰ F / 4				7	17 6	22 7	17 5	Turke	/s nest	water u	sed : 11	0 bbls			
PLASTIC VI								10	J	10	0	1		1							
YIELD POIN		/ 100 f				^o F / 4		16		18		18									
GEL STREN					10sec/1			5 11	17 5		17		4 20								
LOW SHEA				SBW	10300/1	011111700	,,,,,,,	3 11	17 3	12	17	0 1.	4 20				TIONA				
n K (lb/		/13000	JIII (L	.5117)				0.47 1.	.39 0.	44 1	80	0.46	1 61	Contine every			50mVD a	at repor	t time	. Take sur	vey
API FILTRA		3 / 30	min \					9	.55 0.	9	.00	9.40		every	o joint	uiii					
HPHT FILTE						°F /	°С			10		- 3	,								
API : HPHT						Γ/	U	1		1		1	İ								
рН	(Care /	OZIIG II	,					9.5		9.5		9.									
ALKALINITY	Y MUD (Pm)						0.10		0.10	,	0.1									
ALKALINIT	•		f/Mf)							16		0.16									
CHLORIDE		•	., ,					23100		2270		229									
TOTAL HAP		-	CIUM	(ma	/ L)			440		440		40									
SULPHITE				` 3	,			80		80		80	0	Wate	er Sou	ırce V	Vater bo	ore 2&	3		
KCL (%b)		<i>,</i>						4.5		4.5		4.	5	М	UD A	CCOUN	NTING (BBLS	3)	SUMM	ARY
K +	(mg / L)						24318	3	2431	8	243	318		LUID E			ID LOSS	_	Start Vol	688
PHPA (Ca	` •	<u>, </u>						0.39		0.39		0.3	39	1	Nater		0 S.C.E			Received	000
METHYLEN		CAPAC	HY (p	pb / %	by vol)				.2 11	1.3	1.2	11.5	1.3	Chem			3 Disch			Backload	0
BENTONITE					by vol)			7.48 0).8 7.	48	8.0	7.5	0.8		/SeaV		0 Down	_		Built	113
OTHER PRO	DDUCTS	ADDE) (p	opb / %	by vol)										Rec'c		0 Tripp			Lost sub	16
								· ·		,										Lost sub	95
OIL	(%	by Vol)											Otnei	Built		0 Othe	er	U	LUSUSII	33
TOTAL WAT	TER (%	by Vol)					94.9		94.1		94	.1		TOTA	MUI	D ON I	RIG (Ł	hbls'	: 690	
TOTAL SOL	.IDS (%	by Vol)					5.2		5.9		5.	9		. •						
SAND	(%	by Vol)					0.15		0.15		0.1									
		PRO	DUCT	USAG	E					S	OLID	S COI	NTRO	L EQI	JIPME	NT			Tim	e Breakd	lown
Produ	ıct	UnitS			Received	Used	Close		Туре					Hr		OF	UF			ysis Item	Hrs
Water		1 bb	ol	3180	0	110	3070	_			e Size		,	0 0	_	0	0		Other		1
KCI (fine)		25 Kg		556	0	30	526	Desilte		Cor	e Size		Qty	0 0		0	0		Drillin	g	23
ldcide-20		20 Ltr [62	0	2	60	_	Cleaner	0.0	omo 「	DE. 100/	0	0		0	0				
Rheopac L		25 Kg		66	0	2	64		fuge 1	50	OIIIO L	DE-1000	U	0	_	8.9	13.				
Soda Ash		25 Kg	Sack	39	0	2	37		fuge 2 gs Dryei	r				0		0	0				
Sodium Sulphi		25 Kg :	Sack	78	0	2	76	Degas						0	_		ANALYS				
Xanthan Gum	(P)	25 Kg :	Sack	56	0	2	54		Shaker	#1 32	5x325	x325x3	325	24	_						
Caustic Soda		25 Kg [Drum	34	0	1	33		Shaker					24		. ,	LGS %				
				_										0	Correc	cted 3.6					
														0	Colid		Solids%	I 1			
				·										0							
									CURR	ENCY			D	AILY C	OST		(CUMUL	ATIV	COSTS	
									AU	JD				\$1,843	3.41			\$3	9,838	3.00	
Rheochem	Engineer	r: Roni	Tang				0	Office: F	erth			Tele	phon	e : +6	 61		Fav	x: +6	1		
555116111	gcci		ه									. 5.6	۱۱،۰۰۰ م	J			, u,				

 Report #
 9 Total MD
 1050 to
 1273 m

 Rig #
 918 Total VD
 1050 to
 1273 m

 Date
 15/02/13 Daily Depth Drilled
 223 m

 Spud Date
 07/02/13 Interval Depth Drilled
 223 m

RHEOCHE	M		Dai	וט עוו	ııııııç	j ne	port	Sp	ud Dat	e		07/02/	13 lı	nterva	Il Dep	th Drill	ed			223	m
OPERATO)R		Dri	illSearc	ch				СО	NTR	ACT	OR		Ensig	ın						
REPORT	FOR				r/Kevin	Gordo	n		RE	POR	T FC)R	Ç	Scott	Cam	eron					
WELL NA	ME AND	No.							FIE	LD			ı	LOC	ATIOI	N		ST	ATE		
			Tib	or 1 {	Rev 2}					Α	TP5	39	(Coop	er Ba	asin		Qu	een	sland	
BHA	BIT TY			ET SIZE		EPTHS	/CASIN	IG				(BBL))			CIRC	CULATI				
BIT SIZE (") 8.5	Baker Hughes P			12 12 0 0		Riser Leng	ath	m	HOLE \			INHOL		PUMPS		nhoc			ULATI	ON 1013	psi
DRILL PIPE	TYPE		ENGT		•	Conductor		7 m	Active F			266 erve Pits				% EFFIC	IENCV	SURF		-	
SIZE (") 4.5	TYPE		FNOT	1,086	m	Surface @		752 m	359)		118		Emco	F-800	97	,	TO E		5	
DRILL PIPE SIZE (") 4.5	HW		ENGT	н 37		Intermedia		m	TOTA		ULATI 25	NG VOL	-	BBL /		STK /	2	вотто			
DRILL COLLAR		L	ENGT			Prod. or L		m	5	STORA		NKS		BBL /		GAL/I		TOT CIF			
6.5	6.5		132	18	""	1 100. 01 L	IVII (W				0			9.	56	402			CD	9.24	ppg
		MUD	PRO	PERTIE	S									_	MU	D PRO	PERTY	SPEC	CIFIC	ATIONS	
SAMPLE FF	ROM							FL		Pit		FL		Mud	Wt 8	.9-9.0 YI	d Pt	20-	-15 A	PI Loss	<9
MUD TYPE								3KPC		3KPC		3KF		MBT			PHT Los	_		GS	<3
TIME SAMP	LE TAKE	N						5:45		13:00		18:					D COM				
FLOWLINE	TEMPER	ATURE				°F.	/ °C	134 5	57 13	37	58	137								Dilute 120 n M.wt and	
TOTAL MEA	ASURED	DEPTH	(TM	ID)		Me	tres	1143		1189		127	/3	surfac	e volui	me. Redr	ess shal	ker#1 v	with 2	2xAPI400.	
WEIGHT						ppg /	SG	9.0 1.	.08 9.	.0 1	.08	9.0	1.08	2xAPI	325. K	eep addi	ng 1-2bb	ols wate	er into	possum b	
FUNNEL VI	SCOSITY	(sec /	qt)	API				40		41		40)							liscard drill 00 new scr	
RHEOLOGY	600:30	00 RPN	1			°F / 4			25 3		27	37		Drillse	arch.						
RHEOLOGY		00 RPN	1			^o F / 4			14 2	1	15	21	.0	No Mid Reque		added t	o drilling	fluid a	as per	DrillSearc	h
RHEOLOGY		RPN			120	^o F / 4	9 °C	6	4 6	6	5	6	5			t water us	sed : 220	Obbls			
PLASTIC VI						°F / 4		10		11		11	1	•							
YIELD POIN	•	/ 100 ft			120	^o F / 4	9 °C	15		16		15	5								
GEL STREN	IGTH (Ib	/ 100 f	t ²)		10sec/1	0min/30	Omin	5 9	14 5	10	14	5 10	16		(OPERA	TIONAL	L CON	име	NTS	
LOW SHEA	R RATE \	/ISCOS	ITY (LSRV)										Drill 8.						time. Take	
n K (lb/								0.49 1.	.21 0.4	49 1	.25	0.51	1.09	survey	every	3 joints	drilled.	. D ut . t	орол	annor rano	
API FILTRA	TE (cm	1 ³ / 30	min.)				9		8		8.9	5								
HPHT FILTE	RATE (cn	n ³ / 30 i	min.)	250	⁰ F / 12	1 °C			19											
API : HPHT	(Cake /	32nd in	1.)					1		1		1									
pН								9.0		9.5		9.	5								
ALKALINIT	Y MUD (Pm)						0.08		0.10		0.1	0								
ALKALINIT	Y FILTRA	TE (P	f / Mf)				0.12 0	0.1	16 (8.0	0.16	1.0								
CHLORIDE	(mg / L)						21400)	2750)	231	00								
TOTAL HAP	RDNESS A	AS CAL	.CIUN	/I (mg	/ L)			400		400		40	0								
SULPHITE	(mg / L))						40		80		80)	Wate	er Sou	urce V	ater bo	ore 2&	3		
KCL (%by	y Wt.)							4.0		4.0		4.0	0	М	UD A	CCOUN	ITING (BBLS	S)	SUMMA	ARY
K +	(mg / L))						21616	ĵ :	21610	õ	216	16	1	-LUID E			ID LOSS	_	Start Vol	690
PHPA (Ca	alc ppb)							0.21		0.21					Water		0 S.C.E			Received	0
METHYLEN		CAPAC	ITY ((ppb / %	by vol)			10.4 1	1.1 10	0.0	1.1	10.0	1.1	Chem			0 Disch			Backload	0
BENTONITE					by vol)			5.6 0	0.6 5.5	58 (0.6	5.6	0.6		/SeaV		0 Down	_		Built	230
OTHER PRO	DUCTS	ADDED			6 by vol)										Rec'o	_	0 Trippi			Lost sub	18
										ı											182
OIL	(%	by Vol))											Other	Built		0 Othe	r	0	Lost srf	102
TOTAL WAT	TER (%)	by Vol))					94.9		94.9		94.	.8		TOT/	AL MUI) (N E	oic /r	hhla	. 720	
TOTAL SOL								5.2		5.2		5.2	2		1017	AL IVIOI	J ON F	iiG (i	פוטט	, , , 20	
SAND		by Vol)						0.15		0.15		0.2	2								
		PROI	DUC	T USAG	E					S	OLID	S CON	NTRO	L EQI	JIPME	NT			Tim	e Breakd	lown
Produ	ıct	UnitSi			Received	Used	Close		Туре					Hr	_	OF	UF			vsis Item	$\overline{}$
Water		1 bb		3070	0	220	2850			Con	Size	C	Qty (0 0		0	0		Other		1
KCI (fine)		25 Kg S	_	526	0	96	430	Desilte		Con	Size	C	Qty (0 0		0	0		Drillin	g	23
Rheopac L		25 Kg S	_	64	0	10	54	Mud C	Cleaner					0		0	0				
Xanthan Gum	(P)	25 Kg S	_	54	0	4	50	Centri	fuge 1	Sco	omo D	E-1000)	24	1	8.8	13.	5			
Caustic Soda	. /	25 Kg D	_	33	0	2	31	Centri	fuge 2					0		0	0				
Idcide-20		20 Ltr D	_	60	0	2	58	Cutting	gs Dryer					0		0	0				
Soda Ash		25 Kg S	_	37	0	2	35	Degas						0		SOLIDS	ANALYS	SIS			
	ito		_				74		Shaker i					24	1 Salt	t % 2.1	HGS %	5			
Sodium Sulph	ite	25 Kg S	эаск	76	0	2	/4	Shale	Shaker i	#2 325	x325	x325x3	25	24	1		LGS %	2.9			
					-									0	Colid		Drilled	2.3			
														0	Solid	o 70	Solids%				
														0							
								4	CURRE					AILY C			С			E COSTS	
									AU	D			\$	\$5,045	5.22			\$4	4,88	3.23	
Rheochem	Engineer	r: Roni	Tang	3			C	office: F	Perth			Tele	phone	e : +6	61		Fax	(: +6	1		
	-											-	-								

Report # 10 Total MD 1273 1456 to m 1273 Rig # 918 Total VD 1456 m 16/02/13 Daily Depth Drilled Date 183 m Spud Date 07/02/13 Interval Depth Drilled 406

RHEOCHE	М	L	Jan	וט טו	ıııııí	, itel	JOIL	Sp	oud Da	ate		07/02	/13 In	nterva	l Dep	th Drille	ed			406	m
OPERATO	R		Dril	ISearcl	h				С	ON	TRAC	ΓOR	Е	nsig	n						
REPORT F			Ray	/ Miller/	Kevin	Gordor	1				ORT F	OR		Scott							
WELL NAI	ME AND	No.							F	IELI				LOCA				STA			
				or 1 {R							ATP5			Coop	er Ba					sland	
BHA	BIT TYP			T SIZE		EPTHS	/CASIN	IG	_		DLUME					CIRC	ULATIO				
BIT SIZE (") 8.5	Baker Hughes PI	OC 0		0 0 0		Riser Leng	jth	m		.E VOL 353	_ MU	ID INHOI 308		UMP SI		hes		CIRCU PR	LA II	ON 114	0 psi
DRILL PIPE	TYPE	LE	ENGTH		16	Conductor	@	7 m	Activ	e Pits	Re	serve Pit	s I	PUMP N	NODEL	% EFFIC	IENCY	SURFA			6 _{min}
SIZE (") 4.5 DRILL PIPE	TYPE	LE	ENGTH	1,086 m	9.625	Surface @	Ò	752 m		31 TAL C	IRCULAT	95	1	Emco		97 STK /		TO BI		, 2	27 min
SIZE (") 4.5	HW			37 n	n	Intermedia	te @	m	10	1712 0	639		_	BBL / 0.06		147		T CIRC			68 min
DRILL COLLAR 6.5	SIZE (") 6.5		ENGTH 132	1	n	Prod. or LI	NR @	m		STC	RAGE TA	ANKS		BBL / 9.4		GAL / N 396		ECD)	9.3	35 ppg
		MUD P	PROP	ERTIES	1									9.4			PERTY S	PECI	FIC		
SAMPLE FR	OM	WOD I	1101	LITTIEC				Pit	T	_	L	D	it	Mud	_	9-9.0 YI	_		_	PI Loss	, o
MUD TYPE	OW							3KP0	.		PO	3K		MBT	VV (0.		PHT Los)		_		<3
TIME SAMP	I F TAKFI	N						5:10			:20	19:		MDI			JD COM		_	33	
FLOWLINE '						°F /	00			138	59	140		Chang	e brok		n 2ea API			and 4ea	API325
TOTAL MEA			(TME	D)		Met		1357			109	14	56	used a	ınd 2 e	a API325	new this	due to	dril	l on sand	b
WEIGHT			(- ,		ppg /				9.0	1.08	9.0					sing M.wt t active and				
FUNNEL VIS	SCOSITY	(sec /	at)	API		1919		40			11	4	2	Co.Ma	n appr	oval. Co	ntinuously	run ce	entri	uge to p	rocess
RHEOLOGY					120	°F / 49	9 °C		26	36	26	39					POOH and bacterial of				ıctive
RHEOLOGY						^o F / 49	-			20	15	21	16	4 Sack	s Lime	was us	ed for Rig	Camp			
RHEOLOGY		RPM				^o F / 49		6	4	6	5	6		Turkey	nest v	vater use	ed : 150bb	ls			
PLASTIC VIS		cP @				°F / 49		10	-		0	1									
YIELD POIN		/ 100 ft	-		120	F / 49	9 %	16			6	1									
GEL STREN						0min/30		5 10	16		0 16		1 16			DEDAT	TIONIAL A	COM	NAIT 8	ITC	
LOW SHEAF				_SRV)				0 1.0		<u> </u>			<u> </u>	6 :: .			FIONAL (
n K (lb/1			,-					0.47 1	.39 (0.47	1.39	0.48	1.42	Drill to clean	135/n Flow c	1VD. Pur heck St	np 20bbls atic. POOI	Hivis. H to 12	. Circ 202n	culate sh nVD Tid	akers ht hole
API FILTRA		3 / 30 n	nin.)	<u> </u>				8			.5	7.	5	record	ed. Cir	culate bo	ottom up. F	POOH	to c	asing sh	oe. Flov
HPHT FILTE					250	⁰ F / 12	1 °C				24	-				ack to bo report tir	ottom. Res	ume d	drill 8	3.5" form	ation to
API : HPHT				'	200	, , , , , ,		1			1	1	ı	143011	IVD at	report til	iie.				
pH	(canor c		,					9.5			.5	9.									
ALKALINITY	/ MUD / F	Pm)						0.10)		10	0.									
ALKALINITY			/ Mf)	`				0.16			0.8	0.16									
CHLORIDE			, ,	,				2340			200	227									
TOTAL HAR	DNESS A	S CAL	CIUM	(ma/	L)			400			20	32									
SULPHITE	(ma / L)		<u> </u>	(mg/	-,			80			30	8		Wate	r Sou	rce W	ater bore	2&3			
KCL (% by								4.0			.0		.0	M	IID A	COLIN	TING (B	DI C/		SUMN	IADV
	(mg / L)							2161	6		616	216			LUID B		FLUID				_
PHPA (Ca									Ť		0.0		,,,,							Start Vo Receive	
METHYLEN	F BI UF C	ΑΡΑΟΙ	TY (r	nnh / %	by vol)			10.0	1.1 1	10.0	1.1	10.0	1.1		Vater		S.C.E.	_	_		
BENTONITE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ppb / %						4.51	0.5	4.5	0.5	Chem			Dischar	-	_	Backloa	
OTHER PRO		ADDED		ppb / %					0.0		0.0		0.0		/SeaW		Downho		_	Built	156
01112111110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\	PPD 7 70	Dy 10. /									Other	Rec'd		Tripping	g	_	Lost sub	
OIL	(% b	y Vol)												Other	Built	(Other		0	Lost srf	125
TOTAL WAT		-						94.1		94	4.8	94	. 8	_				.		704	
TOTAL SOL								6.0			.2		.3		IOIA	L MUL	ON RI	G (bi	DIS)	: /34	
SAND		y Vol)						0.2			.2	0.2									
	(/	<u> </u>	UCT	USAGE				1					NTROL	- EQU	IIPME	NT		11	Γime	Break	down
Produ	ct	UnitSiz			Received	Used	Close		Туре					Hrs	_	OF	UF	-		ysis Iten	_
Water		1 bbl		2850	0	150	2700				Cone Size	(Qty 0			0	0		rippi		8
KCI (fine)		25 Kg Sa		430	0	46	384	Desilt			Cone Size		Qty 0	0	1	0	0	_	ther	-	2
Rheopac L		25 Kg Sa		54	0	15	39	Mud (Cleaner	r				0		0	0		rillin	g	14
Sodium Sulphi	-	25 Kg Sa		74	0	5	69	Centr	ifuge 1		Scomo I	DE-100	0	23	1	8.8	14				
Lime		20 Kg Sa		54	0	4	50	Centr	ifuge 2	:				0		0	0				
Soda Ash		25 Kg Sa		35	0	4	31	Cuttin	ngs Dry	er er				0		0	0				
Xanthan Gum		25 Kg Sa		50	0	2	48	Dega						0		OLIDS A	ANALYSIS	3			
Caustic Soda		25 Kg Dr 25 Kg Dr		31	0	1	30				400x400			24		% 2.0	HGS %				
Jausiic Soud	-	LO NG DI	aill	01	U	'	30	Shale	Shake	er #2	325x325	5x325x3	325	24				3.0			
				+										0	Correc			2.5			
														0	Condo		Solids%				
								-	CLIE	DEN	2V			0	OCT	I	011	NALU A	T!\ '	COCT	
<u> </u>									CURI		J ₹			AILY C			CU			COSTS)
										UD			\$	3,820	.02			\$48	,704	1.04	
Rheochem	Engineer:	: Roni 1	Tang				0	ffice:	Perth			Tele	phone	e: +6	i1		Fax:	+61			

 Report #
 11
 Total MD
 1456
 to
 1482
 m

 Rig #
 918
 Total VD
 1456
 to
 1482
 m

 Date
 17/02/13
 Daily Depth Drilled
 26
 m

 Spud Date
 07/02/13
 Interval Depth Drilled
 432
 m

RHEOCHE	M	Da	illy D	riiiing	ј кеј	port	Sp	ud Dat	е		07/02/	/13 li	nterval	Den	th Drille	ed		432	m
OPERATO		D	rillSearc	ch				1	NTR			-	Ensig		51				
REPORT				r/Kevin	Gordo	<u> </u>			POR				Scott		oron				
WELL NA			ay wiile	I/Keviii	GOIGOI	11			LD	III	UN		LOCA				TAT	'E	
WELLINA	IVIE AND		bor 1 {	Day 21						TP5	20								
DUA	DIT TV		JET SIZE		EDTUG	/O A CIA	10	MILE					Coope	el De				nsland	
BHA BIT SIZE (")	BIT TYI Baker		2 12 12	12	<u>EPTHS</u>		NG	HOLE \		_	(BBL)		PUMP SIZ	7F	CIRC	ULATION	RCUL/		
8.5	Hughes P	DC 0 0	0 0	0 15.25	Riser Leng	gth	m	359			314	5	i.5 x 9) Inc			PRES	SS	psi
DRILL PIPE SIZE (") 4.5	TYPE	LENG	1,086	16 m	Conductor	@	7 m	Active I		Res	serve Pits	s	PUMP M	ODEL	% EFFICI		JRFAC O BIT	E 0	min
DRILL PIPE	TYPE	LENG		9.625	Surface @	j)	752 m	328 TOTA		LILAT	88 ING VOI	ı	BBL / S		97 STK / I	D.O.T	TOMS	UP 0	
SIZE (") 4.5	HW		37	m	Intermedia	ite @	m			642		_	DDL / S	SIK	011(71		CIRC 1	IME	min
DRILL COLLAR 6.5	R SIZE (") 6.5	LENG 132		m	Prod. or Li	NR @	m	9	STORA		ANKS		BBL /	MIN	GAL / N		ECD		
		MUD DD								0				R/III	D DDOD	EDTV CD		CATIONS	
		MUD PRO	PERIIE	:5		1								_				CATIONS	
SAMPLE FF	ROM						FL		Pit	_	Pi			Vt 8	.9-9.0 YI			API Loss	<9
MUD TYPE							3KPC		3KPC		3KI		MBT			HT Los 3@			<3
TIME SAMP							9:00		14:00)	18:	:00				D COMM			
FLOWLINE					°F/	/ °C		61										I fluids loss nl as reques	
TOTAL MEA	ASURED I	DEPTH (TI	MD)		Met	tres	1482		1482		148	_	DrillSea	arch. I	Redress b	oth shaker	s with	4xAPI325 an	nd stop
WEIGHT					ppg /	SG	9.3 1.	.12 9.	.3 1	.12	9.3	1.12	run cer	trifug	e while in	crease M.w	t from	9.0ppg to 9.	.3ppg.
FUNNEL VIS) API				43		45]	4	5				p hole. Obs Hivis on su		no significar	nt
RHEOLOGY	600:30	0 RPM			°F / 4		43 3	30 4°	7	33	47	33	outing		ASC WIIGH	I IIVIS UII SU	mace.		
RHEOLOGY	200 : 10	0 RPM		120	^o F / 4	9°C	22 1	16 2	4	18	24	18	Turkey	s nest	water us	ed: 50 bbls			
RHEOLOGY	6:3	RPM			^o F / 4		6	5 7	7	6	7	6							
PLASTIC VI					°F / 4		13		14		14	4	1						
YIELD POIN		/ 100 ft ²)			oF / 4		17		19		19		i						
GEL STREN)		0min/30			17 6		20		2 20			1DED 47	IONAL C	OR484	ENTO	
LOW SHEA									1		<u> </u>	_	<u></u>			IONAL C			
n K (lb/			(20.11)				0.52 1.	18 0 4	51 1	37	0.51	1 37	Drill to Hivis (1461r Sheen	nVD. Got ved no sic	tight hole. '	Workii tina in	ng on pipe. F crease on sl	oump haker
API FILTRA		3 / 30 min	1				6	.10 0.	5. .	.57	5.51							ean and able	
HPHT FILTE				050	⁰ F / 12	1 00			16		10							to 1482mVI	
			.)	250) F/ 12	1 0			1									m 1482mVD k ream from	
API : HPHT	(Cake / .	32Na In.)					1				1		1461m	VD to	1454mV	D. Circulate	, recip	rocateand ro	otate
pH							9.5		9.5		9.							opg. RIH bad	
ALKALINITY							0.10		0.10		0.1							slow ROP. k. POOH to	
ALKALINITY			lf)						16 (0.16	0.8						m at report	
CHLORIDE		,					22800)	2250		225								
TOTAL HAP			IM (mg	/ L)			320		320		32	20	Wata	. Cai	Iroo W	ater bore 2	102		
SULPHITE							80		80		8	0	wate	1 300	ince wa	alei buie z	-α3		
KCL (% by	y Wt.)						4.0		4.0		4.	0	MU	JD A	CCOUN	TING (BB	LS)	SUMM	ARY
	(mg / L))					21616	6	2161	6	216	316	F	LUID E	UILT	FLUID LO	DSSES	Start Vol	734
PHPA (Ca	alc ppb)												Drill W	/ater	50	S.C.E.	3	9 Received	
METHYLEN	E BLUE (CAPACITY	(ppb / %	6 by vol)			10.0 1	.1 10	.5	1.2	10.5	1.2	Chemi		_	Discharg		0 Backload	
BENTONITE	ADDED		(ppb / %	6 by vol)			4.18 0).5 4.1	18 (0.5	4.18	0.5	Sump			Downhol		1 Built	61
OTHER PRO	ODUCTS.	ADDED	(ppb / 9	6 by vol)									Other			Tripping	_	5 Lost sub	11
							I										- 1		
OIL	(%	oy Vol)											Other	Built	0	Other		0 Lost srf	54
TOTAL WAT	•	• •					93.7		93.7		93	.7	.	·		ים ואס	/ <u> </u>	lo\ . 720	
TOTAL SOL		•					6.3		6.3		6.		l '	UIF	AL WIUL	ON RIG	ומט)	5): 130	
SAND	•	y Vol)					0.2		0.2		0.								
		PRODUC	T USAG	iΕ					S	OLID	S COI	NTRO	L EQU	ІРМЕ	NT		Ti	me Breako	lown
Produ	ıct	UnitSize	Start	Received	Used	Close		Typo				5	Hrs	_	OF	UF	_	nalvsis Item	-
Barite	ıot	25 Kg Sack		0	240	1274		Type nder	Con	e Size	10	Qty (0 0		0	<u>UF</u> 0		<u>nalysis Item</u> ling	Hrs 4
Water		1 bbl	2700	0	50	2650				e Size			0 0		0	0	Oth		5
								Cleaner	1.5.		1 1	-	0		0	0		pping	15
Rheopac L	(D)	25 Kg Sack		0	10	29	Centri		Sco	omo r	DE-100	0	6		8.8	14	1	ירייש	
Xanthan Gum	(P)	25 Kg Sack		0	6	42		fuge 2				-	0		0	0			
ldcide-20		20 Ltr Drum		0	1	57		gs Dryer					0		0	0			
Sodium Sulphi	ite	25 Kg Sack	69	0	1	68	Degas						0			NALYSIS			
								Shaker i	#1 32	5x325	x325x3	325	12			HGS % 1.	1		
								Shaker					12		/0 2.0				
							Silale	Juanti	,, _ 52.				0	Correc	cted 4.1	LGS % 2.			
													0	Solid		Solids%	٠ <u> </u>		
							1						0				+		
								CURRE	ENCY			D	AILY C	OST		CLIM	ULAT	IVE COSTS	
								AU					\$5,387.					91.75	
 			1		<u> </u>														
Rheochem	Engineer	: Roni Tan	ıg			C	Office: F	Perth			Tele	phon	e: +6	1		Fax:	+61		

 Report #
 12
 Total MD
 1482
 to
 1656
 m

 Rig #
 918
 Total VD
 1482
 to
 1656
 m

 Date
 18/02/13
 Daily Depth Drilled
 174
 m

 Spud Date
 07/02/13
 Interval Depth Drilled
 606
 m

RHEOCHE	М	Da	וט עוו	riiiing	j Ke	port	Sp	oud Dat	е	0	07/02/1	13 I	nterva	l Dep	th Drill	ed			606	m
OPERATO	R	Dr	illSearc	ch				СО	NTRA	ACT	OR		Ensid	ın						
REPORT F				r/Kevin	Gordo	n			PORT						neron					
WELL NA								FIE	LD				LOC				ST	ATE		
			or 1 {	Rev 2}					A٦	ГР53	39		Coop				Qu	een	sland	
ВНА	BIT TYPE		ET SIZE		EPTHS	/CASII	NG	MUD	VOLU	ME ((BBL)		•			CULAT	ION D	ATA		
BIT SIZE (")	Baker		12 12	12	Riser Leng		m	HOLE \			INHOLE		PUMP S				CIRC	ULAT	ION 1100	psi
8.5 DRILL PIPE	Hughes PDO TYPE	0 0 LENGT	0 0	0				Active I			346 erve Pits	_	5.5 x				P	RESS FACE		
SIZE (") 4.5		LLIVO	1,469	m	Conductor		7 m	303			92		Emco	F-800	% EFFIC		TO		7	min
DRILL PIPE SIZE (") 4.5	TYPE HW	LENGT			Surface @		752 m	TOTA	L CIRCL		NG VOL		BBL /		STK /	MIN	BOTTO	MS U	P 30	min
DRILL COLLAR		LENGT	37 TH		Intermedia		m		64 STORAG		II/C		0.00	642 MIN	GAL /		TOT CII	RC TIM	ИЕ 69	9 min
6.5	6.5	132	18	m	Prod. or L	NR @	m	3	0 0		NVO			10111N 43	390		E	CD	9.61	ppg
		MUD PRO	PERTIE	S										MU	D PRO	PERTY	SPEC	CIFIC	ATIONS	
SAMPLE FR	OM						FL		Pit		FL	_	Mud	Wt 8	8.9-9.0 Y	ld Pt	20	-15 A	PI Loss	<9
MUD TYPE							ЗКРС)	3КРО		3KP	0	мвт			PHT Lo	s 3@2!	50F L	GS	<3
TIME SAMP	LE TAKEN						5:45		13:00		18:3					UD CO		_		
FLOWLINE T					0 F	/ °C	145 (63 14	5 6	3	145	63	Built 4	0ppb l					Sandseal I	F. Spot
TOTAL MEA			ID)			tres	1509		1580		165								viscosity w	
WEIGHT			,		ppg /			.12 9.		12			Xanta	ngum :	and Rhe	opac LV	′ to low maintai	er dov	wn fluids lo vt in active	ss as
FUNNEL VIS	COSITY (sec / at)	API		rr9 /		46		46	-	45		Mainta	ain ado	dition 1-2	bbls/hrs	water	into p	ossum bel	ly to
RHEOLOGY	•		· · ·		°F /	οС		33 4		3	45	32							discard dril	
RHEOLOGY					°F /	°C		19 2			26				ge 4ea <i>P</i> 2ea used			scre	en with 2e	a new
RHEOLOGY		RPM			°F /	°C		6 8			7		-							
PLASTIC VIS		cP@						0 0		-	-	6	Turke	ys nes	t water u	sed:10	00bbls			
		сР @ 100 ft ²)			^o F /	°C	13		13		13		1							
YIELD POIN	•			10sec/1			20	10 -	20	10	19 6 14									
GEL STREN			(I OD) ()	10560/1	UIIIII/30	וווווו	7 13	19 7	14	19	6 14	20		(OPERA	TIONA	L COI	ИМЕ	NTS	
LOW SHEAF		SCOSITY	(LSRV)																bottom @	
n K (lb/1								.67 0.4	18 1.0	67 (1.49			Spot 3bbl o 1656m				nection dri	lled.
API FILTRA					_		4		4		4		- Dilli a	icau ii	0 1000111	VD at it	port till	iie.		
HPHT FILTR)	250	^o F / 12	21 °C			13											
API : HPHT	(Cake / 32	nd in.)					1		1		1									
рН							9.5		9.5		9.5	5								
ALKALINITY	MUD (Pr	n)					0.10		80.0		0.1	0								
ALKALINITY	FILTRATI	E (Pf / M1	f)				0.17	0.1	14 0.	.8 (0.17	8.0								
CHLORIDE	(mg / L)						22600	0	24500		2560	00								
TOTAL HAR	DNESS AS	CALCIU	M (mg	/ L)			320		320		320	0								
SULPHITE	(mg / L)						80		80		80)	Wat	er Soi	urce V	Vater b	ore 28	3		
KCL (% by	Wt.)						4.0		4.0		4.0)	M	UD A	CCOUN	ITING	(BBLS	3)	SUMM	ARY
K +	(mg / L)						21616	6	21616		2161	16		LUID E	BUILT	FLU	JID LOS	SES	Start Vol	730
PHPA (Ca	lc ppb)												-	Water		0 S.C.E			Received	
METHYLENI		PACITY	(ppb / %	by vol)			10.5 1	1.2 10	.5 1.	.2	10.7	1.2	Chen			2 Disc			Backload	0
BENTONITE				by vol)				0.4 3.5				0.4		/SeaV		0 Dow			Built	112
OTHER PRO	DUCTS A	DDED		6 by vol)									l							
			V-12	. , ,										Rec'o		0 Tripp			Lost sub	12
OIL	(% by	Vol)											Othe	Built		0 Othe	er	0	Lost srf	89
TOTAL WAT	<u> </u>						93.6		93.6		93.	5	1	TOT:	A	D 011	DIA "	. - -	\ . 744	
TOTAL WAT	. ,						6.5		6.5		6.5		1	101/	AL MU	אט ע	KIG (I	SIQU) : 741	
SAND	(% by						0.2		0.2		0.2		1							
J 15	, ,	PRODUC	T USAG	E			3.2			LIDS	S CON		L FOI	ПБМЕ	NT			Tim	e Breakd	lown
Dun -li-				_	Head	Class		Tuna	- 50		- 5511			_			_			
Produc Water	UL	UnitSize 1 bbl	Start 2650	Received 0	Used 100	Close 2550		Type nder	Cone	Size	0)ty	0 0		OF 0	U		Ana Drillir	lysis Item	Hrs 23
Salt				0		672	Desailte		Cone			-	0 0		0	(Othe	•	1
		5 Kg Sack	732		60			er Cleaner	00110	5.20	Q	,	0 0	_	0	(Jule	1	+ '
Rheopac L		5 Kg Sack	29	0	14	15	-	ifuge 1	Scor	mo Di	E-1000)	18		9.1	1				
Quickseal (M)		8 Kg Sack	99	0	10	89		ifuge 2	2001				0	_	0	(
Sand Seal (fine		5 Kg Sack	50	0	10	40		gs Dryer					0		0	(
Caustic Soda		5 Kg Drum	30	0	2	28	Degas						0	_	SOLIDS					
Sodium Sulphi		5 Kg Sack	68	0	2	66		Shaker	#1 325	x325×	325x32	25	24			HGS 9				
Xanthan Gum	(P) 2	5 Kg Sack	42	0	2	40		Shaker					24	u.	. /0 2.2	LGS %				
Defoam A	2	5 Kg Drum	11	0	1	10	Griale	J.IUNEI 1	5_5/		,_0,02		0	_	cted 4.0	Drilled				
Soda Ash		5 Kg Sack	31	0	1	30							0	Colid		Solids%				
													0			1				
								CURRE	ENCY			Г	DAILY (CUMLII	ATIV	E COSTS	
								AU					\$4,629					8,72		
	_	5		1					-							1				
Rheochem	Engineer:	Roni Fanç	9			C	Office: F	erth			Telep	phon	ie: +6)1		Fa	x: +6	1		

13 Total MD Report # 1656 1723 to m 1656 Rig # 918 Total VD 1723 m Date 19/02/13 Daily Depth Drilled 67 m Spud Date 07/02/13 Interval Depth Drilled 673

RHEOCHE	М	Dai	וט פוו		, nep	, Oi t	Sp	ud Date		07/02/13	Interv	/al Dep	th Drille	ed		673	m
OPERATO	R	Dr	illSearc	h				CON	ITRAC	TOR	Ensi	ign					
REPORT F	OR	Ra	y Miller	/Kevin	Gordon			REP	ORT F	OR	Sco	tt Can	neron				
WELL NAM	ME AND No.							FIEL	.D		LOC	ATIO	N		STA	TE	
		Tik	or 1 {	Rev 2}					ATP	539	Coo	per B	asin		Que	ensland	
BHA	BIT TYPE		ET SIZE		EPTHS/	CASIN	NG			E (BBL)			CIRC	CULATIC			
BIT SIZE (") 8.5	None	0 0	0 0	0 15.25	Riser Lengt	h	m	HOLE VC 414	DL M	UD INHOLE	PUMP	SIZE 9 In	ches			LATION ESS	psi
DRILL PIPE	TYPE	LENGT		_	Conductor		7 m	Active Pit	s R	eserve Pits			% EFFIC	IENCY	SURFA	CE	0 min
SIZE (") 0	TYPE	LENGT	0	m	Surface @		752 m	230		86	Emo	o F-800	97	,	TO BI		1111111
DRILL PIPE SIZE (")	HW	LENGT			Intermediate	- @	m	TOTAL	CIRCULA 644	TING VOL	BBL	/ STK	STK /	IVIIIN	ОТТОМ		0 min
DRILL COLLAR		LENGT	H.				m	ST	ORAGE 1	TANKS	BBI	L / MIN	GAL / N		OT CIRC		min
0	0	0		m	Prod. or LN	н @	""		0						ECD		
	MU	D PRO	PERTIE:	S								MU	D PROF	PERTY S	PECI	FICATIONS	3
SAMPLE FR	OM						Pit		Pit		Mu	d Wt 8	.9-9.0 YI	d Pt	20-1	5 API Loss	<9
MUD TYPE							3KP0	3	KPO		МВ	Т	<11 HF	PHT Los	€250)	F LGS	<3
TIME SAMPI	LE TAKEN						5:20	1	6:00				MU	JD COM	MENT	S	
FLOWLINE 7	TEMPERATU	RE			°F /	οС										n. While drilli	
TOTAL MEA	SURED DEP	TH (TN	ID)		Metr	es	1723	1	723							y to replenis i mud from a	
WEIGHT					ppg/S	SG	9.3 1.	.12 9.3	1.12		and	adjust v	iscosity w	ith Xanta	ngum.	Barite was u	sed to
FUNNEL VIS	COSITY (se	c/qt)	API				46		46							Treated acti	
RHEOLOGY	600:300 R	PM		120	°F / 49	oC	46 3	33 45	32			e and S ice volu		лрпаце. К	un cen	trifuge to pro	JCE88
RHEOLOGY	200:100 R	PM		120	^o F / 49	°C	26 1	19 22	19					1.55			
RHEOLOGY	6:3 R	PM			^o F / 49		7	6 7	6		Turk	eys nes	t water us	sed: 25bb	IS		
PLASTIC VIS	SCOSITY c	Р@			^o F / 49		13		13		1						
YIELD POIN				120	°F / 49	°C	20		19		1						
	GTH (lb / 10				0min/30r		7 14	19 7	13 19					TIONAL	COM	MENTS	
	RATE VISCO		(LSRV)								D.:II						110.25
n K (lb/1			(0.48 1.	67 0.49	1.49							ump 20bbls ck. Wiper tri	
	ΓΕ (cm ³ /3	30 min.)				4		4		1400	mVD. T	ight hole	recorded	@142)-1420mVD.	Work
	ATE (cm ³ / 3			250	⁰ F / 121	00			13							RIH back to	
	(Cake / 32nd		,	200	, F / 1 2 1	U	1		1							ic. Take surv BHA to mas	
	(Cake / 32110	111.)					9.5		9.5		Schl	umberg	er wireline	e equipme		JSM. Perforn	
pH	/ MUD. / Dm. \										wirel	ine logg	ing at rep	ort time.			
	MUD (Pm)		: \				0.10).10		-[
	FILTRATE (Pi / Mi)				0.17 0		1.0		\dashv						
CHLORIDE		41 0111					25400		5400								
	DNESS AS C	ALCIUI	vi (mg	/ L)			320		320		Wa	ter So	urce W	ater bor	e 2&3		
SULPHITE	-						80		80								
KCL (% by							4.0		4.0			MUD A	CCOUN	ITING (B	BLS)	SUMN	//ARY
	(mg / L)						21616	5 2·	1616			FLUID E			LOSSE	Otal Co	
PHPA (Ca									1		Dril	l Water	25	S.C.E.		21 Receive	d 0
	E BLUE CAPA	ACITY	(ppb / %	by vol)			10.8 1	.2 10.8	1.2		Che	mical	į	5 Discha	rge	0 Backloa	ıd 0
BENTONITE	ADDED		(ppb / %				3.42 0	0.4 3.4	0.4		Sun	np/SeaV	Vat (Downh	ole	6 Built	30
OTHER PRO	DUCTS ADD	ED	(ppb / %	by vol)							Oth	er Rec'o	d (Trippin	ıa	14 Lost sub	b 6
												er Built		0 Other	3	0 Lost srf	
OIL	(% by Vo	ol)									Otti	ei buiit	,	Other		0 =001 011	
TOTAL WAT	ER (% by Vo	ol)					93.9	9	3.9			TOT	ы миг	ON R	IG (bl	ols) : 730	
TOTAL SOL	IDS (% by Vo	ol)					6.2		6.1			. •		O	·	J.G, 1 1 2 2	
SAND	(% by Vo	ol)					0.25	().25								
	PR	ODUC.	T USAG	E					SOLI	DS CONTR	OL EG	UIPME	ENT		1	ime Break	down
Produc			Start	Received	Used	Close) 7	Гуре			F	Irs	OF	UF		Analysis Iter	n Hrs
	ct Un	itSize		0	80	1194			Cone Size	Qty		0	0	0		rculating	1
		itSize g Sack	1274		O.F.	2525	Desilte	er	Cone Size	Qty	0	0	0	0	Lo	ogging	10
Barite	25 K		1274 2550	0	25									ı ——			3
Barite Water	25 K	g Sack bbl		0	10	5	Mud C	leaner				0	0	0	О	ther	
Barite Water Rheopac L	25 K 1 25 K	g Sack bbl g Sack	2550 15			5 22	Mud C		Scomo	DE-1000		0	9.1	14		ther ipping	10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22		fuge 1	Scomo	DE-1000							10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack	2550 15	0	10		Centrit	fuge 1	Scomo	DE-1000		12	9.1	14			10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrii Centrii Cuttin Degas	fuge 1 fuge 2 gs Dryer				0 0	9.1 0 0	14 0	Tı		10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrii Centrii Cuttin Degas	fuge 1 fuge 2 gs Dryer		DE-1000		0 0	9.1 0 0 SOLIDS A	14 0 0	T ₁		10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrit Centrit Cuttino Degas Shale	fuge 1 fuge 2 gs Dryer sser Shaker #1	325x32			12 0 0 0	9.1 0 0 SOLIDS A	14 0 0 0 ANALYSI	T ₁		10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrit Centrit Cuttino Degas Shale	fuge 1 fuge 2 gs Dryer sser Shaker #1	325x32	25x325x325		12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.1 0 0 SOLIDS A t % 2.2 cted 3.7	14 0 0 ANALYSI HGS %	S 1.4		10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrit Centrit Cuttino Degas Shale	fuge 1 fuge 2 gs Dryer sser Shaker #1	325x32	25x325x325		12 0 0 0 0 10 Sal	9.1 0 0 SOLIDS A t % 2.2 cted 3.7	14 0 0 ANALYSI HGS % LGS %	S 1.4 2.3		10
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrit Centrit Cuttino Degas Shale	fuge 1 fuge 2 gs Dryer sser Shaker #1	325x32	25x325x325		12 0 0 0 10 10 Sali 10 0 Corre	9.1 0 0 SOLIDS A t % 2.2 cted 3.7	14 0 0 0 ANALYSI: HGS % LGS %	S 1.4 2.3		10
Barite Water Rheopac L Soda Ash Sodium Sulphit	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrit Centrit Cuttino Degas Shale	fuge 1 fuge 2 gs Dryer sser Shaker #1	325x32	25x325x325		12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.1 0 0 SOLIDS A t % 2.2 cted 3.7	14 0 0 ANALYSI: HGS % LGS % Drilled Solids%	S 1.4 2.3 2.0		
Barite Water Rheopac L Soda Ash	25 K 1 25 K 25 K	g Sack bbl g Sack g Sack	2550 15 30	0	10	22	Centrit Centrit Cuttino Degas Shale	fuge 1 fuge 2 gs Dryer sser Shaker #1 Shaker #2	325x32 325x32	25x325x325		12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.1 0 0 SOLIDS A t % 2.2 cted 3.7	14 0 0 ANALYSI: HGS % LGS % Drilled Solids%	S 1.4 2.3 2.0	ipping	

Report # 14 Total MD 1723 1723 to m 1723 Rig # 918 Total VD 1723 m 20/02/13 Daily Depth Drilled Date 0 m Spud Date 07/02/13 Interval Depth Drilled 0 m

RHEOCHE	М		, <u>J</u> .	9	, o p	<u> </u>	Sp	oud D	ate		07/02/13	Inte	rval l	Depth [Orille	d		0	m
OPERATO			illSearc					C	CONTR	RACT	OR	Ens	sign						
REPORT F			y Miller	/Don Ca	stelo				REPOR	RT F	OR			Dohert	у				
WELL NAI	ME AND No							F	FIELD			_	_	ION			STA		
			or 1 {F							TP5	39	Co	ope	r Basir				ensland	
BHA	BIT TYPE		ET SIZE		EPTHS/0	CASII	NG		JD VOL	*	·	5	D 0175		CIRC	ULATIO			
BIT SIZE (") 8.5	None	0 0			Riser Length	1	m		LE VOL 414	MUI	D INHOLE 414		PSIZE x 9	Inches				LATION ESS	psi
DRILL PIPE	TYPE	LENGT		16 (Conductor (@	7 m	Acti	ve Pits	Res	erve Pits	PUN	ир мс	DDEL % E	FFICIE	ENCY	SURFA		o _{mir}
SIZE (") DRILL PIPE	TYPE	LENGT	О Н	9.625	Surface @		752 m		276 OTAL CIR	TH AT	76		nco F-		97 STK / N	un Bo	TO BI	I	0 mir
SIZE (")	HW		0	m ı	ntermediate	@	m	10		590	ING VOL	В	BL / ST	IK S	ork/IV	···· v	T CIRC		mir
DRILL COLLAR 0	SIZE (") 0	LENGT 0		m I	Prod. or LNF	٦ @	m		STORA		NKS	В	BL / M	IN G	AL / M		ECD		
	M	ID PRO	PERTIES	3						0				MUD P	ROP	FRTY S		FICATIONS	;
SAMPLE FR				-			Pit	T	Pit			М		t 8.9-9.	_			5 API Loss	<
MUD TYPE							3KPC	,	3KP	2			BT		_	HT Los			
TIME SAMP	I F TAKFN						9:00		16:0	_		IVI	ы			D COMI			
	TEMPERATU	JRE			°F / '	°C	0.00		1010			Bui	ilt 50b	bls PHB				weight up wit	h Salt
	SURED DEF		ID)		Metre		1723	1	172	3		9.3	ppg tl	hen blen	d into	active sy	stem t	o maintain s	urface
WEIGHT	IOONIED DEI	(,		ppg / S			.12		.12								sodium sulpl a API325 da	
	SCOSITY (s	ec / at)	API		рру с	,	46		43			scr	een v					during loggin	
	600:300 F		711.	120	°F / 49	°C		32		31			obls.	oveces i	nyont	on, for or	dium	sulphite, Idcio	do and
	200 : 100 F				^o F / 49			19		18			xigel	excess i	nvent	DIY IOI SC	diuiii	sulprille, lucio	ue anu
RHEOLOGY		RPM			^o F / 49	°C:		6	7	6		Tur	rkeys	nest wat	er use	ed: 50bbl	s		
PLASTIC VI		cP @			°F / 49		13		13										
YIELD POIN					^o F / 49		19		18										
	IGTH (Ib/1				0min/30n		7 13	19		17							0011		
	R RATE VISC		(LSRV)				, 10		0									MENTS	
n K (lb/1		,00111	(LOITY)				0.49 1	49	0.50	.33								line logging. D 8.5" BHA fi	
	TE (cm ³ /	30 min	1				4	. 10	4	.00				report tin		.0013.1 00)IVI. L/	D 0.5 DI 1/(II	0111
	RATE (cm ³ /				°F /	°С													
	(Cake / 32n		,		Γ/	U	1		1			-							
pH	(Cake / 3211	u III.)					9.5		9.5										
-	/ MUD (Pm	`					0.10		0.08			-							
	/ FILTRATE	•	: \				0.16			0.8									
CHLORIDE		(FI / IVII	,				25400		2360										
	(IIIg / L)	CAL CILII	M / ma	/ 1 \			320		320										
SULPHITE		JALCIUI	w (IIIg	/ L)								W	ater	Source	Wa	ater bore	e 2&3		
KCL (% by	-						80 4.0		180 4.0			╆					DI O	0	
` '	(mg / L)								2161	6		-		D ACC				SUMN	1
	· • ·						21610	0	2101	0		-		JID BUILT		FLUID	LOSSE	0.0	
PHPA (Ca		AOITV	/ h / 0/	h			100		10.5	4.0		Dr	ill Wa	ater	50	S.C.E.		0 Received	d 0
METHYLEN			• •					-		1.2		Cr	nemic	al		Discha	_	5 Backloa	d 0
BENTONITE			(ppb / %				3.2	0.4	3.2	0.4		Su	ımp/S	SeaWat		Downh		0 Built	54
OTHER PRO	DDUCTS ADI	JED	(ppb / %	by voi)								Ot	her R	Rec'd	0	Trippin	g	0 Lost sub	0
OII	/ 0/ h)	/~! \										Ot	her B	Built	0	Other		13 Lost srf	18
OIL	(% by \									.									
	IEK (% by \						93.8		93.8				T	DTAL I	MUD	ON RI	G (bl	ols) : 766	
TOTAL WAT	IDO (0/ lees)	/OI 1					6.2		6.2										
TOTAL SOL	IDS (% by \						0.25		0.2	<u> </u>	COONTD		O 1 111	DATAIT				ina Duad	al a
	(% by \	/ol)	TUCACI	_						OLID	S CONTR	OL E					_	ime Break	
TOTAL SOL SAND	(% by \ P	ol)	T USAG			•		Type					Hrs	OF		UF		Analysis Iten	
TOTAL SOL SAND	(% by \ P	ol) RODUC nitSize	Start	Received	Used	Close			C	م Ci ح	O+.	\cap	n	^				ogging	14
TOTAL SOL SAND Produce Water	(% by \P	rol) RODUC nitSize 1 bbl	Start 2525	Received 0	50	2475	Desar	nder		e Size	Qty	0	0	0		0			
Produ Water	(% by \ P ct U	ritSize black 1 bbl Kg Sack	Start 2525 672	Received 0 0	50 48	2475 624	Desar Desilt	nder er	Cor	e Size e Size	Qty Qty	0	0	0		0	0	ther	5
Produ Water Salt Rheopac L	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack	Start 2525 672 5	Received 0 0 0	50 48 5	2475 624 0	Desar Desilte Mud C	nder er Cleane	Cor	e Size	Qty						0		5
Production Salt Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilte Mud C	nder er Cleane ifuge 1	Cor er 1 So	e Size			0	0		0	0	ther	_
Production Salt Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack	Start 2525 672 5	Received 0 0 0	50 48 5	2475 624 0	Desar Desilte Mud C Centri	nder er Cleane ifuge 1 ifuge 2	Cor er 1 Sc	e Size	Qty		0	0		0	0	ther	_
Produce Water Salt	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilte Mud C Centri	nder er Cleane ifuge 1 ifuge 2 igs Dry	Cor er 1 Sc	e Size	Qty		0 0	0 0 0	IDS A	0 0 0	O Ti	ther	_
Production Salt Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilt Mud C Centri Centri Cuttin Degas	nder er Cleane ifuge 1 ifuge 2 gs Dry	Cor er 1 Sc 2 yer	e Size	Qty DE-1000		0 0 0	0 0 0 0 SOLI		0 0 0 0 NALYSIS	O Ti	ther	_
Production Salt Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilt Mud C Centri Centri Cuttin Degas Shale	er Cleane ifuge 1 ifuge 2 igs Dry sser Shak	Cor er 1 Sc 2 yer er #1 32	e Size omo [Qty DE-1000 x325x325		0 0 0	0 0 0		0 0 0 0 NALYSIS	O TI	ther	_
Production Salt Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilt Mud C Centri Centri Cuttin Degas Shale	er Cleane ifuge 1 ifuge 2 igs Dry sser Shak	Cor er 1 Sc 2 yer er #1 32	e Size omo [Qty DE-1000		0 0 0 0 0	0 0 0 0 SOLI	2.1	0 0 0 0 NAL YSIS HGS %	O TI	ther	_
Production Salt Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilt Mud C Centri Centri Cuttin Degas Shale	er Cleane ifuge 1 ifuge 2 igs Dry sser Shak	Cor er 1 Sc 2 yer er #1 32	e Size omo [Qty DE-1000 x325x325		0 0 0 0 0	0 0 0 0 SOL I Salt %	3.9	0 0 0 0 NAL YSIS HGS %	O TI	ther	_
Production Water Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilt Mud C Centri Centri Cuttin Degas Shale	er Cleane ifuge 1 ifuge 2 igs Dry sser Shak	Cor er 1 Sc 2 yer er #1 32	e Size omo [Qty DE-1000 x325x325		0 0 0 0 0	0 0 0 SOLI	3.9	0 0 0 NALYSIS HGS % LGS %	O TI	ther	_
Production Water Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilt Mud C Centri Centri Cuttin Degas Shale	nder er Cleane ifuge 1 ifuge 2 igs Dry sser Shak	Cor er 1 Sc 2 yer er #1 32	e Size omo [5x325 5x325	Qty DE-1000 x325x325	0	0 0 0 0 0	0 0 SOLI Salt % Corrected Solids %	3.9	0 0 0 NALYSIS HGS % LGS % Drilled Solids%	O TI	ther	5
Production Salt Salt Rheopac L Caustic Soda	(% by \ P	rol) RODUC nitSize 1 bbl Kg Sack Kg Sack Kg Drum	Start 2525 672 5 28	Received 0 0 0 0	50 48 5 1	2475 624 0 27	Desar Desilt Mud C Centri Centri Cuttin Degas Shale	nder er Cleane ifuge 1 ifuge 2 gs Dry sser Shak Shak	Cor er 1 Sc 2 yyer er #1 32 er #2 32	e Size omo [5x325 5x325	Qty DE-1000 x325x325	DAIL	0 0 0 0 0 0	0 0 SOLI Salt % Corrected Solids %	3.9	0 0 0 NALYSIS HGS % LGS % Drilled Solids%	0 TI	ther ripping	5

15 Total MD Report # 1723 1723 to m 1723 Rig # 918 Total VD 1723 m Date 21/02/13 Daily Depth Drilled 0 m Spud Date 07/02/13 Interval Depth Drilled

RHEOCHE	М	Daily L	71 1111111	g riep	, OI t	Sp	ud Date		07/02/1	3 Int	terval	Dept	h Drille	ed		0	m
OPERATO	R	DrillSea	rch				CON	TRAC	TOR	E	nsigr	1					
REPORT F	OR	Ray Mille	er/Don C	astle			REP	ORT F	OR	D	avid	Dohe	erty				
WELL NAM	ME AND No.						FIEL	.D		L	OCA	TION			STAT	E	
		Tibor 1	{Rev 2}					ATP	539	С	oope	r Ba	sin		Quee	nsland	
BHA	BIT TYPE	JET SIZ		DEPTHS/	CASIN	G			E (BBL)				CIRC	ULATIO			
BIT SIZE (") 8.5	None	0 0 0 0 0 0 0	0 15.25	Riser Lengt	h	m	HOLE VC	L M	UD INHOLE 376		JMP SIZ		nes	(OIRCULA PRES		psi
DRILL PIPE	TYPE	LENGTH	16	Conductor	@	7 m	Active Pit	s Re	eserve Pits				% EFFICI	IENCY S	URFACE		
SIZE (") 4.5 DRILL PIPE	TYPE	1,637 LENGTH	9.625	Surface @		752 m	303		80		Emco F	-800	97		TO BIT		1111111
SIZE (")	HW		m	Intermediate	e @	m	IOIAL	CIRCULA 679	TING VOL		BBL / S	TK	STK / I	VIIIN		-	
DRILL COLLAR 0	SIZE (") 0	LENGTH 0	m	Prod. or LN		m	ST	ORAGE T	ANKS		BBL / N	ΛIN	GAL / N		CIRCT	IME	min
Ů				1 100. 01 2.1	e			0							ECD		
		PROPERTI	ES						1							CATIONS	
SAMPLE FR	ОМ					Pit					Mud W	/t 8.9	9-9.0 YI			API Loss	<9
MUD TYPE						3KP0					MBT			PHT Los 3		LGS	<3
TIME SAMPI						12:30								ID COMM			
	TEMPERATUR			°F/							No mud nud wh			ıs used. Rı	ın centr	ifuge to pro	cess
	SURED DEPT	H(TMD)		Metr		1723					naa wii		diato.				
WEIGHT				ppg / S	SG	9.3 1.	12										
	COSITY (sec	• •		0.0= / :	0.5	45											
	600:300 RP			0 °F / 49			32										
	200 : 100 RF			0 ^o F / 49			8										
RHEOLOGY				0 ^o F / 49			6										
	SCOSITY cF		120	0 °F / 49	°C	13											
YIELD POIN				0 ^o F / 49		19		1									
	GTH (lb / 100			10min/30r	min	6 13	18					0	PERAT	TIONAL C	ОММ	ENTS	
	R RATE VISCO	SITY (LSRV))							P	P/U 24	ioints 2	2-7/8" tu	bina stinae	er and n	nule shoe. F	RIH wit
n K (lb/1					().49 1.	49				OP to 1	637m\	/D for pe	erform plug	g#1. Cir	culate. Wait	
	ΓΕ (cm ³ /30					4				-	Hallibur	ton ce	menting	at report t	ıme		
HPHT FILTR	ATE (cm ³ / 30	0 min.)		°F/	°C												
API : HPHT	(Cake / 32nd	in.)				1											
рН						9.5											
ALKALINITY	MUD (Pm)					0.08											
ALKALINITY	FILTRATE (Pf / Mf)			(0.14 0	.8										
CHLORIDE	(mg / L)					23600)										
TOTAL HAR	DNESS AS CA	LCIUM (m	g / L)			320											
SULPHITE	(mg / L)					180					Water	Soul	rce W	ater bore	2&3		
KCL (% by	Wt.)					4.0					MU	D AC	COUN	TING (BE	BLS)	SUMM	ARY
K +	(mg / L)					21616	;				FL	UID BL	JILT	FLUID I	OSSES	Start Vol	766
PHPA (Ca	lc ppb)										Drill W	ater	C	S.C.E.	-	Received	
	E BLUE CAPA	CITY (ppb /	% by vol)		1	10.5	.2				Chemi			Dischar		Backload	
BENTONITE	ADDED	(ppb /	% by vol)			3.2 0	.4				Sump/			Downho		Built	0
OTHER PRO	DUCTS ADDE	D (ppb /	% by vol))							Other I			Tripping		Lost sub	-
						1				-					_		7
OIL	(% by Vo	I)								- 1	Other I	Built	C	Other		0 Lost srf	1
TOTAL WAT	ER (% by Vo	I)				93.8					т.	OT A	MILE	ON RIG	2 (bbl	o) - 750	
TOTAL SOL	IDS (% by Vo	1)				6.2						OIA	LIVIOL	ON THE	וטט) ג	3) . 733	
SAND	(% by Vo					0.2											
	PR	ODUCT USA	GE		1			SOLI	DS CON	TROL	EQUI	PME	VΤ		Tir	ne Breako	down
				d Used	Close	1 7	уре				Hrs	()F	UF	Δn	alysis Item	Hrs
Produc		Size Start			0.000	Desan		Cone Size	Qt	ty 0	0		0	0		ping	8
Produc		Size Start				_		Cone Size	O+	ty 0	0		0	0		ulating	6
Produc		Size Start				Desilte	, I	00.10 0.20	G C								10
Produc		Size Start				Mud C		00110 0120	· · ·		0		0	0	Oth	er	
Produc		Size Start				_	leaner		DE-1000				0 9.1	0 14	Oth	er	
Produc		Size Start				Mud C	leaner uge 1				0	ę			Oth	er 	
Produc		Size Start				Mud C Centrif	leaner uge 1				0	9	9.1	14	Oth	er	
Produc		Size Start				Mud C Centrif Centrif Cutting Degas	leaner fuge 1 fuge 2 gs Dryer ser	Scomo	DE-1000		0 6 0	ę	9.1 0 0	14		er	
Produc		Size Start				Mud C Centrif Centrif Cutting Degas Shale	leaner fuge 1 fuge 2 gs Dryer ser Shaker #1	Scomo 325x32	DE-1000		0 6 0	ę	0 0 0 DLIDS A	14 0 0		er	
Produc		Size Start				Mud C Centrif Centrif Cutting Degas Shale	leaner fuge 1 fuge 2 gs Dryer ser	Scomo 325x32	DE-1000		0 6 0 0	S	0 0 0 DLIDS A	14 0 0 ANALYSIS HGS %		er	
Produc		Size Start				Mud C Centrif Centrif Cutting Degas Shale	leaner fuge 1 fuge 2 gs Dryer ser Shaker #1	Scomo 325x32	DE-1000		0 6 0 0 0 12	Salt C	0.1 0 0 DLIDS A % 2.1	14 0 0 ANAL YSIS HGS % 1 LGS % 2 Drilled 2	.3	er	
Produc		Size Start				Mud C Centrif Centrif Cutting Degas Shale	leaner fuge 1 fuge 2 gs Dryer ser Shaker #1	Scomo 325x32	DE-1000		0 6 0 0 0 12	Salt o	0.1 0 0 DLIDS A % 2.1	14 0 0 ANALYSIS HGS % 1 LGS % 2	.3	er	
Produc		Size Start				Mud C Centrif Centrif Cutting Degas Shale	leaner ruge 1 ruge 2 gs Dryer ser Shaker #1 Shaker #2	Scomo 325x32 325x32	DE-1000	25	0 6 0 0 0 12 0 0 0	Solids to	0.1 0 0 DLIDS A % 2.1	14 0 0 0 ANALYSIS HGS % 1 LGS % 2 Drilled Solids%	.3 2.6 2.3		
Produc		Size Start				Mud C Centrif Centrif Cutting Degas Shale	leaner ruge 1 ruge 2 gs Dryer ser Shaker #1 Shaker #2	Scomo 325x32 325x32	DE-1000	25	0 6 0 0 0 12 0 0	Solids to	0.1 0 0 DLIDS A % 2.1	14 0 0 0 ANALYSIS HGS % 1 LGS % 2 Drilled Solids%	.3 2.6 2.3 MULATI	VE COSTS	
Produc		Size Start				Mud C Centrif Centrif Cutting Degas Shale	leaner ruge 1 ruge 2 gs Dryer ser Shaker #1 Shaker #2	Scomo 325x32 325x32	DE-1000	25	0 6 0 0 0 12 0 0 0	Solids to	0.1 0 0 DLIDS A % 2.1	14 0 0 0 ANALYSIS HGS % 1 LGS % 2 Drilled Solids%	.3 2.6 2.3	VE COSTS	

 Report #
 16
 Total MD
 1723
 to
 1723
 m

 Rig #
 918
 Total VD
 1723
 to
 1723
 m

 Date
 22/02/13
 Daily Depth Drilled
 0
 m

 Spud Date
 07/02/13
 Interval Depth Drilled
 0
 m

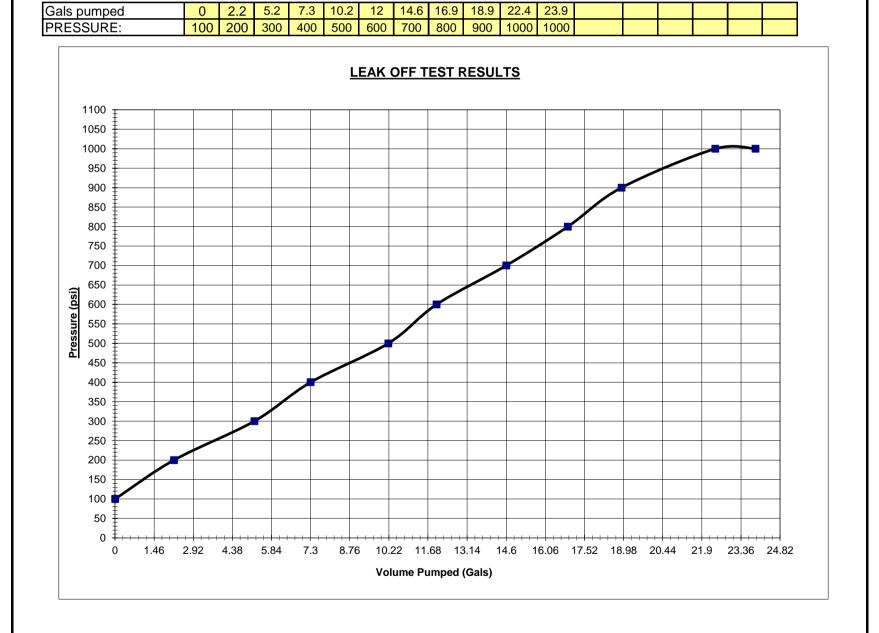
RHEOCHE	M		Dai	וט פוו	ııııııç	, ne	port	Spı	ud Date		07/	02/13	Inter	val D	epth D	rille	d		0	m
OPERATO)R		Dri	illSearc	h				CON	TRAC	CTOF	₹	Ens	ign						
REPORT	FOR				r/Don Ca	astle			REP	ORT	FOR		Dav	rid D	oherty	/				
WELL NA	ME AND	No.							FIEL	D			LO	CATI	ON		(STAT	Ē	
			Tib	or 1 {l	Rev 2}					ATF	P539		Cod	per	Basin	1		Queei	nsland	
BHA	BIT TY			ET SIZE		EPTHS	S/CASING	G	MUD V		_				С	IRC	ULATION			
BIT SIZE (") 8.5	None			0 0		Riser Len	gth	m	HOLE VO	L	AUD INI		PUMP		Inches		C	IRCULA PRES		psi
DRILL PIPE	TYPE		LENGT		-	Conducto		7 m	414 Active Pits	s F	414 Reserve				EL % EF	EEICIE	ENCV SI	JRFACE		
SIZE (") 0	TYPE				m	Surface (752 m	0		0		Em	co F-80	0 / L	97		OBIT	0	111111
DRILL PIPE SIZE (")	HW	l l	LENGT	н 0		Intermedia		m	TOTAL (CIRCUL 414	ATING	VOL	ВВ	L/STK	S	TK / N	IIIN	TOMS		
DRILL COLLAR	SIZE (")	L	LENGT	Н		Prod. or L		m	STO	ORAGE	TANKS	5	BB	BL / MIN	I GA	AL / M		CIRC T	ME	min
0	U		0	0		F 100. 01 L	.WIT @			0								ECD		
		MUD	PRO	PERTIE	S						_			N	IUD PF	ROP	ERTY SP	ECIFI	CATIONS	
SAMPLE FF	ROM												Mu	ıd Wt	8.9-9.0	0 Yld	l Pt	20-15	API Loss	<9
MUD TYPE								3KPO					ME	3T	<11	1 HP	HT Los 3@	250F	LGS	<3
TIME SAMP	LE TAKE	N														MU		ENTS		
FLOWLINE	TEMPER	ATURE	•			٥F	/ °C												nile perform	
TOTAL MEA	ASURED	DEPTH	(TM	ID)		Me	tres												osion inhibi Prepare to o	
WEIGHT						ppg	/ SG						muc	d tanks					n. Balance	
FUNNEL VIS	SCOSITY	(sec /	/ qt)	API		-								entory.	eomo o	hemi	cals to Wa	mberel	1 well	
RHEOLOGY	600:30	00 RPM	Л			°F/	°C						ııal	ιορυπ	JUINE C		cais io Wa	ıııneıdı	i WCII.	
RHEOLOGY	200 : 10	00 RPM	Л			°F/	°C						Turk	keys n	est wate	er use	ed : 250bbl	S		
RHEOLOGY	6:3	RPN	Л			°F/	°C													
PLASTIC VI	SCOSITY	cP(@			°F /	°C			-			1							
YIELD POIN	IT (lb	/ 100 ft	t ²)			°F /	°C													
GEL STREN					10sec/1										OPE	R A T	IONAL C		NTS PTM	
LOW SHEA				LSRV)									0) The
n K (lb/			`	,													t1331mVD		ıt 1637mVE ment plua	J. The
API FILTRA		1 ³ / 30	min.)									781	mVD.	WOC w	hile L	_/D excess	DP. R	H to tag TC	
HPHT FILTE						°F /	°С												asing. POC plug from 3	
API : HPHT				,		1 /									at repo			CITICITE	plug from c	JoinvD
pН	(Cano,	020	,																	
ALKALINITY	V MIID (Pm \																		
ALKALINITY	•		f / Mf	`\																
CHLORIDE			1 / IVII	,																
TOTAL HAR			CILIN	/ (ma	/1.)															
SULPHITE			CION	vi (ilig	/ L)								Wa	ater S	ource	Wa	ater bore2	2&3		
KCL / K2SO	` •	,											\vdash	MILID	4000	NI INIT	TINO (DD	I C/	CUMANA	ADV
KGL / K230 K +													-				TING (BB		SUMM	
PHPA (Ca	(mg/L))													D BUILT		FLUID LO	_	Start Vol	
		CADAC	ITV /	/mmh / 0/	' h.v. v.a.l\								Dri	II Wat	er		S.C.E.		Received	
METHYLEN		CAPAC											Che	emica	I	4	Discharg		Backload	0
BENTONITE					by vol)								Sui	mp/Se	aWat		Downhol	е 0	Built	254
OTHER PRO	DUUCIS	ADDEL)	(ppb / %	by vol)								Oth	ner Re	c'd	0	Tripping	0	Lost sub	0
-													Oth	ner Bu	ilt	0	Other		Lost srf	600
OIL		by Vol)																		
TOTAL WAT								0.0						TO	TAL N	/IUD	ON RIG	(bbl	s) : 414	
TOTAL SOL								-62.5												
SAND	(%	by Vol)																		
		PRO	DUC	T USAG						SOL	IDS C	ONTRO	DL E	QUIPI	MENT			Tir	ne Breako	down
Produ	ıct	UnitSi			Received		Close		уре					Hrs	OF		UF		alysis Item	
Water		1 bb		2475	0	250	2225	Desand		Cone Siz		Qty	0	0	0		0		ulating	2
Salt		25 Kg S	Sack	624	0	48	576	Desilte		Cone Siz	ze	Qty	0	0	0		0	Trip		6
Ancor 1 (20Lt)	<u> </u>	20 Lt	tr	16	0	4	12	Mud Cl		0		000		0	0		0		enting Job	
			_ T					Centrifu		Scomo	o DE-1	000				_		Othe	er	7
						-		Centrifu	<u> </u>					0	0	_	0			
									s Dryer					0	0		0			
								Degass		005.0	05::00	FURRE		0			NALYSIS			
									Shaker #1					8	alt %	0.0	HGS %			
								Shale S	Shaker #2	325X3	∠5x32	ox325		0			LGS % -62			
								1							orrected - olids %	62.5	Drilled -62 Solids%	2.5		
								1						0			Julius /0			+
								\vdash	CURREN	CV			ר וואם	COS	т	Т	CLIM		VE COSTS	\perp
										01										
]				AUD				φ1,2	29.63				\$63,40	J3.U9	
Rheochem	Engineer	r: Roni	Tang)			Of	fice: Po	erth		Т	elephoi	ne:	+61			Fax:	+61		

Report # 17 Total MD 1723 1723 to m 1723 Rig # 918 Total VD 1723 m Date 23/02/13 Daily Depth Drilled 0 m Spud Date 07/02/13 Interval Depth Drilled

RHEOCHE	М	Dai	iy Di		J IIC	port	Spu	id Date		07/02/13	Interv	al Dep	th Drille	ed		0	m
OPERATOR DrillSearch						CONTRACTOR			Ensign								
REPORT FOR Ray Miller/Don Castle							REPORT FOR			David Doherty							
WELL NA	ME AND No.							FIEL	D		LOC	ATIO	N		ST	ATE	
		Tib	or 1 {F	Rev 2}					ATP	539	Coo	per B	asin		Qu	eensland	
BHA	BIT TYPE		ET SIZE		DEPTHS	CASING	G	MUD V					CIRC	CULATI	ON D	ATA	
BIT SIZE (")	None	0 0	0 0	0 15.25	Riser Len	ath	m	HOLE VO	L M	UD INHOLE	PUMP	SIZE 9 I n	ahaa			ULATION RESS	psi
8.5 DRILL PIPE	TYPE	LENGTI			Conducto		7 m	414 Active Pits	s Re	414 eserve Pits			- % EFFIC	IENCY	SURF		
SIZE (")	TYPE		0	m	Surface (752 m	0		0	Emc	o F-800	97	'	TO E	BIT	0 min
DRILL PIPE SIZE (")	HW	LENGTI	⁻ Н 0				m	TOTAL (TING VOL	BBL	/STK	STK /	IVIIIV	вотто		0 min
DRILL COLLAR	SIZE (")	LENGT	H.		Intermedia			STO	414 DRAGE T	ANKS	BBI	/ MIN	GAL / N			IC TIME	min
0	0	0	0	m	Prod. or L	.NR @	m	010	0	711410	551	. / 1011114	G/IL/1	•	EC	D	
	MU	D PRO	PERTIES	S								MU	D PROF	PERTY	SPEC	IFICATION	S
SAMPLE FR	ОМ										Mud	d Wt	3.9-9.0 YI	d Pt	20-	15 API Loss	<9
MUD TYPE							3КРО				МВ	Т	<11 H F	PHT Los	3@25	OF LGS	<3
TIME SAMP	LE TAKEN												MU	JD CON	/MEN	TS	
FLOWLINE T	TEMPERATUI	RE			٥F	/ °C										hakers. 3 sac	
TOTAL MEA	SURED DEPT	гн (тм	ID)			tres	· ·				was	used fo	r Scomi a	nd 34 sa	acks Ba	arite was dam	ıage.
WEIGHT					ppg /	/ SG					Note						
	SCOSITY (se	c/at)	API		11-0				1		Tran	sfer out	all mud o	chemical	s from	Tibor 1 chem	nicals
	600:300 R				°F /	°C						ntory.	ale trancr	ort to M	ambar	al 1 well base	o on
	200 : 100 R				°F /	°C				 						and transport	
RHEOLOGY		PM			^o F /	°C				 						8 0007 23022	
PLASTIC VIS		P @			°F /												
YIELD POIN					°F /	°C											
	GTH (lb / 10			10000/1	г / I 0min/3			+ -									
			(I OD)()	10360/	1011111/3	OIIIIII							OPERA ^T	TIONAL	COM	IMENTS	
	RATE VISCO	J511 Y ((LSHV)													D to surface.	
n K (lb/1												s. Clea 2:00hrs		nks. Rig	release	e on 23 Febru	ary 201
	TE (cm ³ /3				0	0 -					_						
	RATE (cm ³ / 3)		°F/	°C											
	(Cake / 32nd	in.)															
pН																	
	MUD (Pm)								1								
	/ FILTRATE (Pf / Mf)														
CHLORIDE	(mg / L)																
TOTAL HAR	DNESS AS C	ALCIUN	√l (mg	/ L)									1				
SULPHITE	(mg / L)										Wa	ter So	urce W	ater bo	re 2&	3	
KCL / K2SO	4										ı	MUD A	CCOUN	ITING (BBLS) SUMI	MARY
K +	(mg / L)											FLUID			D LOSS		ol 414
PHPA (Ca	lc ppb)	-	-								Drill	Water		S.C.E.		0 Receive	
	E BLUE CAPA	ACITY ((ppb / %	by vol)													
BENTONITE				by vol)								mical		Disch		0 Backloa	_
	DUCTS ADD		* *	by vol)								ıp/Sea\		Down		0 Built	0
• · · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(PPS / A	o by 10.,							Othe	er Rec'	d (0 Trippi	ng	0 Lost su	_
OIL	(% by Vo))				-		-			Othe	er Built	: (Othe	r	₀ Lost sri	f 0
	ER (% by Vo					+	0.0										
	IDS (% by Vo						-62.5					TOT	AL MU	ON F	RIG (b	obls) : 414	٠
							-02.5										
SAND	(% by Vo		T 110 4 0	_					0011	DO CONTR	01.50	LUDIA	TNIT			T' D	
			T USAG			T			SOLI	DS CONTR				T	-+	Time Breal	kaown
Produ		itSize		Received		Close		ре	0 5:	1		lrs	OF	UF		Analysis Ite	
Barite		g Sack	1194	0	34	-354	Desand		Cone Size			0	0	0	(Other	24
SAPP	25 K	g Sack	38	0	3	0	Desilter		Cone Size	Qty		0	0	0			_
							Mud Cle		Ca	DE 1000		0	0	0			
							Centrifu		Scomo	DE-1000		^					-
							Centrifu	•				0	0	0			\perp
							Cuttings					0	0	0			\perp
							Degass		005: 00	Ev005::005			SOLIDS A				_
										5x325x325		Sa	t % 0.0	HGS %			
		-					Shale S	haker #2	325x32	5x325x325				LGS %			
						1	1					O Corre		Drilled	-62.5		
												- 500	1S % I	0-11-1-07	F		
												U	ds %	Solids%			
												0	JS %				
								CURREN	CY		DAILY	0 0 COST	JS %			ATIVE COST	S
								CURREN AUD	CY			0 0 COST	35 %			ATIVE COST 4,026.69	S

TIBOR 1: Deviation Surveys								
Magnetic Decl.:	7.36 °	Vertical Section Direction:	0.0 °	Calculate after tie-back depth?				
Ref. N/S:	0.0 m	Ref. E/W:	0.0 m	Tie-Back Depth (MD):				
_								

Comments: Teledrift Surveys taken every 3rd single drilled.


MD (m)	Incl.	Azimuth	T) (D)	Vert.						
	(°)	(°)	TVD (m)	Sect. (m)	+N/-S (m)	+E/-W (m)	Dog-leg (deg/30m)	Closure (m)	Day#	Tool
33.0	0.0	0.00							#7 (07 Feb 2013)	Teledrift
60.0	0.0	0.00							#8 (08 Feb 2013)	Teledrift
88.0	1.0	0.00							#8 (08 Feb 2013)	Teledrift
97.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
124.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
161.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
185.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
217.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
246.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
275.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
305.0	0.5	0.00							#8 (08 Feb 2013)	Teledrift
343.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
373.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
402.0	1.0	0.00							#9 (09 Feb 2013)	Teledrift
431.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
451.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
487.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
516.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
545.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
574.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
603.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
631.0	0.5	0.00							#9 (09 Feb 2013)	Teledrift
662.0	0.5	0.00							#10 (10 Feb 2013)	Teledrift
691.0	0.5	0.00							#10 (10 Feb 2013)	Teledrift
720.0	0.5	0.00							#10 (10 Feb 2013)	Teledrift
751.0	0.5	0.00							#10 (10 Feb 2013)	Teledrift
776.0	1.0	0.00							#13 (13 Feb 2013)	Teledrift
806.0	1.5	0.00							#13 (13 Feb 2013)	Teledrift
835.0	1.0	0.00							#13 (13 Feb 2013)	Teledrift
865.0	1.0	0.00							#13 (13 Feb 2013)	Teledrift
890.0	0.5	0.00							#13 (13 Feb 2013)	Teledrift
924.0	2.0	0.00							#13 (13 Feb 2013)	Teledrift
932.0	2.0	0.00							#13 (13 Feb 2013)	Teledrift
940.0	1.0	0.00							#14 (14 Feb 2013)	Teledrift
960.0	2.0	0.00							#14 (14 Feb 2013)	Teledrift

990.0	0.5	0.00				#14 (14 Feb 2013)	Teledrift
1,019.0	0.5	0.00				#14 (14 Feb 2013)	Teledrift
1,047.0	0.5	0.00				#14 (14 Feb 2013)	Teledrift
1,104.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift
1,133.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift
1,162.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift
1,192.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift
1,230.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift
1,250.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift
1,280.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift
1,297.0	0.5	0.00				#15 (15 Feb 2013)	Teledrift

Magnetic	Decl.:	7.36 °	Verti	cal Section	Direction:	0.0 °		Calc	alculate after tie-back depth?			
Ref. N/S:		0.0 m	Ref.	E/W:		0.0 m		Tie-l	Back Depth	(MD):		
Comments: Magnetic Single Shot survey taken every 150mRT.												
MD (m)	Incl. (°)	Azimuth (°)	TVD (m)	Vert. Sect. (m)	+N/-S (m)	+E/-W (m)	Dog-le (deg/30		Closure (m)	Day#		Tool
0.0	0.0	0.00	0.0		0.0	0.0				#7 (07 Feb 20	13)	
141.0	0.3	203.00	141.0	-0.340	-0.3	-0.1	0.064		0.4	#8 (08 Feb 20	13)	MagneticSS
305.0	0.8	241.00	305.0	-1.290	-1.3	-1.3	0.108		1.8	#8 (08 Feb 20	13)	MagneticSS
451.0	0.3	270.00	451.0	-1.784	-1.8	-2.6	0.114		3.1	#9 (09 Feb 20	13)	MagneticSS
631.0	0.5	154.00	631.0	-2.490	-2.5	-2.7	0.114		3.7	#9 (09 Feb 20	13)	MagneticSS
741.0	1.3	90.00	741.0	-2.922	-2.9	-1.3	0.319		3.2	#10 (10 Feb 20)13)	MagneticSS
890.0	1.8	110.00	889.9	-3.722	-3.7	2.6	0.147		4.6	#13 (13 Feb 20	013)	MagneticSS
985.0	1.8	118.00	984.9	-4.933	-4.9	5.4	0.079		7.3	#14 (14 Feb 20	013)	MagneticSS
1,062.0	1.0	100.00	1,061.8	-5.617	-5.6	7.1	0.352		9.0	#14 (14 Feb 20	013)	MagneticSS
1,158.0	0.3	98.00	1,157.8	-5.798	-5.8	8.2	0.219		10.0	#15 (15 Feb 20	013)	MagneticSS
1,300.0	0.5	25.00	1,299.8	-5.288	-5.3	8.8	0.106		10.3	#15 (15 Feb 20	013)	MagneticSS
1,388.0	0.8	17.00	1,387.8	-4.352	-4.4	9.1	0.107		10.1	#16 (16 Feb 20	013)	MagneticSS
1,712.0	1.5	210.00	1,711.8	-5.862	-5.9	7.7	0.212		9.7	#19 (19 Feb 20	013)	MagneticSS

	Standard No:				
Drillsearch	Revision No: 1	Revised	d By: Kirby Sayles		
Dill Sear Cli	Revision Date: 07/12/201	2	Date:	13/02/2013	
	Approved By: Kirby Sayles		Time:		
	LEA	K OFF TEST			
WELL: TIBOR	R-1 <u>RIG:</u>	ENSIGN 918	DATE:	13.02.2013	
CASING SIZE: 9.	625 (inch) DLS Ri	g Representative		Kevin Gordon	
A. MUD DENSITY I B. HOLE DEPTH: C. SHOE DEPTH: D. LEAK-OFF PRES E. EQUIVALENT DI LEAK-OFF PRES SHOE DEPTH (C F. MAXIMUM PRES G. VOLUME PUMP H. VOLUME REGA	SSURE (GRAPH): ENSITY: S. (D) (psi) + MUD DI C) (ft) x 0.052 SSURE RECORDED: ED:	ENSITY IN USE (A) (į		(ppg) (ft) (ft) (psi) (ppg) (EMW) (psi) (psi) (gals) (gals)	

Drillsearch

Oil and Gas Production and Exploration Level 16 / 55 Clarence Street Sydney NSW 2000

Cooper Basin Onshore

Tibor #1 (Oil Well)

Post Job Report

Prepared for Matthew Siegmann and Martik Berberian

5th March 2013

Revision: 1.0

Submitted by Ekkalak Wuthayavanich

HALLIBURTON

Friday, 5th March 2013

TO: Drillsearch

ATT: Matthew Siegmann and Martik Berberian

RE: Tibor #1 – Post Job Report Rev1.0

Dear Matthew, Martik

Please find attached a Post Job Report for Tibor #1–9-5/8" Surface Casing cement job and the P&A cement job.

Included are the following:

- 9-5/8" Surface Casing to ≈750m
 - Lead Slurry planned to be 11.8 ppg; TOC is at surface with 75% OH Excess.
 - Tail Slurry planned to be 15.8 ppg to 100m above the 9 5/8 with 75% OH Excess

Note Excess to Be Reviewed before the job. Amount of Cement to be requested from Drillsearch coman.

- Job Summary
 - Job Log
 - Key Performance Indicators
 - Customer Satisfaction Survey
- Job Charts.
- Plug and Abandonment
 - Plug #1 is planned to be 15.6 ppg slurry HTB Cement blend with 10% OH excess based on calliper data.
 - Plug #2 is planned to be 15.6 ppg slurry HTB Cement followed by 15.8 ppg slurry class "G" with 10% OH excess based on calliper data.
 - Plug #3 and 4 are planned to be 15.8 ppg slurry Class "G" with 10% OH excess based on calliper data

Note Excess to Be Reviewed before the job. Amount of Cement to be requested from Drillsearch co-

man.

- Job Summary
 - Job Log
 - Key Performance Indicators
 - Customer Satisfaction Survey
- Job Charts

Regards,

Ekkalak Wuthayavanich Technical Professional Cementing

Revision History

Rev. 0.0 Initial End of the well report

Rev 1.0 Updated with actual cement volume pumped.

Table of Contents

1.0	Proposed 9-5/8" Surface Casing							
2.0	9-5/8	3						
3.0	9-5/8" Job Charts							
4.0	Plug	7						
	4.1	P&A Plug #1 8.984532 " OH Section 1,637-1,480 mRT	7					
	4.2	Plug #1 Job Procedure						
	4.3	P&A Plug #2 8.881801" OH Section 1,331-1,164 mRT						
	4.4	Plug #2 Job Procedure						
	4.5	P&A Plug #3 9.741473" OH Section 781-691 mRT	14					
	4.6	Plug #3 Job Procedure						
	4.7	P&A Plug 4 Details – 9 5/8 in Casing (5-30 mRT)	17					
	4.8	Plug #4 Job Procedure	19					
5.0	Plug	and Abandonment Job Summary	20					
6.0	Plug	and Abandonment Job Charts	23					

1.0 Proposed 9-5/8" Surface Casing

JOB PARAMETERS

Casing measured depth: 755m BHST temperature: 54°C True vertical depth: 755m BHCT temperature: 41°C

Depth to top lead: Surface Drilling mud type: KCl+Polymer
Depth to top tail: 655m Drilling mud density: ≈8.90ppg

WELLBORE

Casing/Tubing

0-755m 9 5/8in 36ppf Casing (K-55 BTC)

Annulus

0-755m 12.25in open hole (75% excess)

SPACERS

Spacer - 40.0bbl Freshwater at 8.33ppg

Freshwater 42.00 gal/bbl (125m OH annular fill / 5min contact time)

Contact times are based on the displacement rate.

LEAD CEMENT - EconoCem™

Composition Properties

Adelaide Brighton Class G Surface density: 11.80 ppg
Bentonite 12.00 %BWOC Surface yield: 2.77 ft 3 /sk
HR-5 0.26 %BWOC Total mixing fluid: 16.61 gal/sk
Freshwater 16.61 gal/sk Thickening time (70 Bc): \approx 5:01

NF-6 0.125 gal/10bblMF

Note that %BWOC are based on a 94 lb sack

TAIL CEMENT - HalCem™

Composition Properties

VOLUME CALCULATIONS		
Lead Cement		
9 5/8in Casing / 12.25in hole volume	655 m x 0.1830 bbl/m	119.9 bbl
9 5/8in Casing / 12.25in hole excess	0.75 x 119.9 bbl	89.9 bbl
•	Total lead slurry volum	e =209.8 bbl
Quantity of lead cement	209.8 bbl x 5.6146 / 2.77 ft³/sk	425 sacks
Quantity of lead mix fluid	425 sacks x 16.61 gal/sk	168.1 bbl
Tail Cement		
9 5/8in Casing / 12.25in hole volume	100 m x 0.1830 bbl/m	18.3 bbl
9 5/8in Casing / 12.25in hole excess	0.75 x 18.3 bbl	13.7 bbl
Shoe track volume	12 m x 0.2536 bbl/m	3.0 bbl
	Total tail slurry volum	e =35.1 bbl
Quantity of tail cement	35.1 bbl x 5.6146 / 1.15 ft³/sk	171 sks
Quantity of tail mix fluid	171 sks x 5.08 gal/sk	20.7 bbl
Displacement		
9 5/8in Casing volume	738 m x 0.2536 bbl/m Total displacement volum	188.4 bbl e =188.4 bbl

The final job calculations are to be completed on location by cementer, based on actual well parameters. <u>All</u> calculations from slurry volumes to additive dosages & requirements must be verified by the independent calculations of the drilling rep.

PUMPING SCHEDULE & TIMES				
	Volume (bbl)	Rate (bbl/min)	Time (min)	
Make up lines	N/A	N/A	30	
Rig circulate 2 x Hole volume:	866.5	8.0	108	
CMT Unit pump Fresh Water + Test lines	40.0	8.0	5	
Release bottom plug:	N/A	N/A	5	
Mix & pump lead cement:	209.8	5.0	42	
Mix & pump tail cement:	35.1	4.0	9	
Release top plug + Flush Lines	N/A	N/A	10	
CMT Unit pump displacement:	188.4	8.0	24	

Total job time (including circulation): 233 min 3hr 53min Minimum lead cement thickening time (with 2hr safety factor): 205 min 3hr 25min Minimum tail cement thickening time (with 2hr safety factor): 163 min 2hr 43min

2.0 9-5/8" Job Summary

HAL		URT	'ON	CUSTOMER			ld/yy	End Date mm/dd/yy
	· · · · · · · · · · · · · · · · · · ·			DrillSearch		10-Feb-13		12-Feb-13
		Cemen	ting Services P	ost Job Repo	ort Su	mmary		
WELL Name & Number		RIG Name & No	mber	HES REP	HES REP			Р
Tibor #1		Ensign #18		Mark Dale	Mark Dale			l
JOB PURPOSE CODE				SALES ORDER No.	SALES ORDER No.		CUSTOMER PO#	
SURFACE CASING 7521			09002094	0900209425		0		
WELL CATEGORY	WELL TYPE		TECHNOLOGY	COUNTRY		BASE OF OPS		BDA
25 Production	01 OIL		01 None	Australia	Į.	Moomba		Perth

PERSONELL

SAP#	PERSONNEL	HOURS	SAP#	PERSONNEL	HOURS	SAP#	PERSONNEL	HOURS
413978	Stephan Vianelio	2	483810	Mark Dale	65	515629	Jesse Quinn	56
535418	Damien Boxall	65						
1				1				

EQUIPMENT

SAP#	PUMPING / MIXING	HOURS	SAP#	BULK/COMPRESSORS	HOURS	SAP#	VEHICLES/OTHER	HOURS
10047716	SKD 7116	65	10981407	Biii - YHI. 436	65	11816384	SY98CS - DOLLY	65
]	12023800	GEMMA - SY36DI	56	10942587	XIT-524 KENWORTH T900	56
						11534231	WAN544 - MACK BUNK TRUCK	65

FLOAT EQUIPMENT AND CASING EQUIPMENT

PN#	FLOAT EQUIPMENT	QTY	PN#	PLUGS	QTY	PN#	OTHER	QTY
	9 5/8 float shoe	1		9 5/8 top plug			9 5/8 centraliser	15
	9 5/8 float collar	1		9 6/8 bottom plug				
							1	

WELL PROFILE

WELL COMPONENT	SIZE	WEIGHT	GRADE	THREAD	TOP (MD)	END (MD)	END (TVD)	EXCESS	LENGTH
	(in)	(1991)	928 3086 38		(n)	(ft)	(ft)	%	(ft)
open hole	12 1/4							75%	2467.5
9 5/8 surface casing	9.625	36	k55	btc	0	2467.5	2467.5		
·									

HAI	LLIB	URT	ON	CUSTOMER DrillSearch	Start Date mm	/dd/yy	End Date mm/dd/yy 12-Feb-13	
		Cemen	ting Service	s Post Job Rep	ort Summary			
WELL Name & Number	11.7.3.47.1.27.1.14.27.14.1.14.1.14.1.14.1.14.	RIG Name & N	umber	HES REP	HES REP		P	
Tibor #1		Ensign #18		Mark Dale		Guy Holmes		
JOB PURPOSE CODE				SALES ORDER No.		CUSTOMER PO#		
SURFACE CASING 7521		0 900209	1425	0				
WELL CATEGORY	WELL TYPE		TECHNOLOGY	COUNTRY	BASE OF OPS		BDA	
25 Production	01 OIL		01 None	Australia	Moomba		Perth	

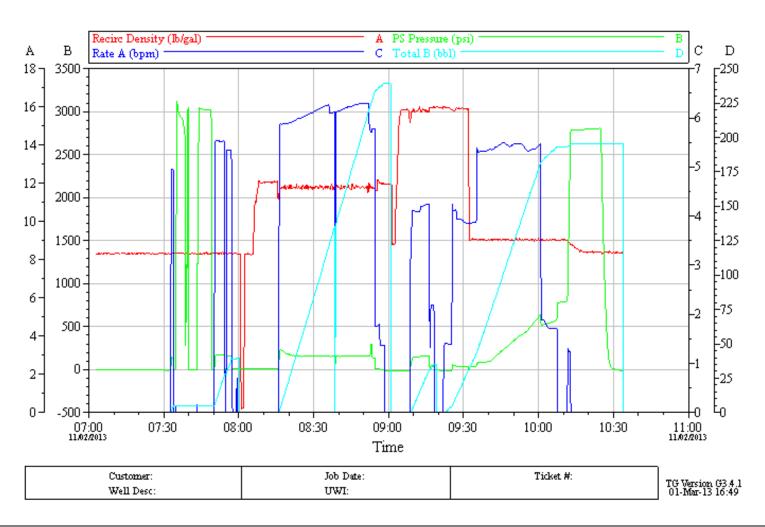
FLUID SUMMARY (Refer to Lab Reports for full details)

		[14.27			100	FLUID)	1000		(45.5)		
460		6.48	- 1 -	2	3	4	5	6	7.	- 8	9	10	11	12	
	DETAIL	UOM	Spacer	Fead	Tail	Displace									TOTAL
Ø	Volume	bbls	40	240	36	191									507
PROPERTIES	Density	ppg	8.33	11.80	15.80	8,33									NA
Ř	Yield	cuft/sk		2.76	1.16										NA
8	Water Requirement	gai/sk		18.56	5.09						İ				NA
•	Total Fluid Req	gai/sk		16.58	5.11			l							NA
CINT	Micromatrix	sk													0
ច	ABC Class 'G'	sk		423	175										598
0		bbls													0
H20		bbls			Ī										0
	Bentonite	lb		4,771				l					<u> </u>		4,771
⋠	HR-6	lb		103	15										118
CHEMICAL	nf-6	gal		1	1										2
품	Tuned Spacer III														0
															Ð

HALLIBURTON

CUSTOMER SATISFACTION SURVEY

Sales Order #:	0 900209425	Line item:	10
Customer:	DrillSearch	Job Type (BOM):	SURFACE CASING 7521
Customer	Guy Holmes	API / UWI: (Leave Blank if unknown)	
Well Name:	Tibor #1	Well Number:	
Well Type:	01 OIL	Well Country:	Australia
H2S Present:	No/Yes	Well State:	Perth


Dear Customer,

We hope that you were satisfied with the service quality of this job performed by Halliburton. It is the aim of our management and service personnel to deliver equipment and service of a standard unmatched in the service sector of the energy industry.

Please take the time to let us know if our performance met with your satisfaction. Please be as critical as possible to ensure we constantly improve our service. Your comments are of great value to us and are intended for the exclusive use of Halliburton.

CATEGORY	CUSTOMER SATISFACTION RESPONSE	
Survey Conducted Date	The date the survey was conducted	12/02/2013
Survey Interviewer	The survey interviewer is the person who initiated the survey.	Mark Dale
Customer Participation	Did the customer partipolpate in this survey? (Y/N)	
Customer Representative	Enter the Customer representative name	Guy Holmes
HSE	Was our HSE performance satisfactory? Circle Y or N	
Equipment	Were you sattsfied with our Equipment? Circle Y or N	
Personnel	Were you satisfied with our people? Circle Yor N	
Customer Comment		
CUSTOMER SIGNATURE		

3.0 9-5/8" Job Charts

4.0 Plug and Abandonment

4.1 P&A Plug #1 8.984532 " OH Section 1,637-1,480 mRT

JOB PARAMETERS

Plug bottom MD: BHST temperature: 120°C 1,637 mRT Plug bottom TVD: 1.637 mRT BHCT temperature: 96°C Plug top MD: **WBM** 1,480 mRT Drilling mud type: Plug length: 157 m Drilling mud density: ≈9.10ppg

Plug length with DP in: 168m

WELLBORE

Workstring

0-1,637mRT 4 ½ in 16.6 ppf tubing (ID= 3.826 in)

Annulus

0-1,637mRT 8.984532 in open hole (10% excess)

SPACERS

Spacer - Freshwater at 8.34ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 4.3 bbl behind to balance

(83 m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY - PlugCem™

Composition Properties

Adelaide Brighton Class G Surface density: 15.60 ppg SSA-1 35.0% BWOC Surface yield: 1.56 ft³/sk HR-12 0.17% BWOC Total mixing fluid: 6.62 gal/sk

CFR-3 0.30% BWOC Freshwater 6.62 gal/sk

NF-6 0.125 gal/10bblMF

Note that %BWOC are based on a 94 lb sack Note : HTB Blend = ABC "G" + 35% BWOC SSA-1

١	IOL	LINA		· A I		A T		NIC
п	VUL		ום ע	ÆL	CUL	-A I	U	CV

	٠.	_	_	_	4
ι.	.е	m	е	n	n

 8.984532 in hole volume
 157 m x 0.2573 bbl/m
 40.4 bbl

 8.984532 in hole excess
 0.10 x 40.4 bbl
 4.0 bbl

Slurry volume =44.4 bbl

Quantity of cement 44.4 bbl x 5.6146 / 1.56 ft³/sk 160 sacks Quantity of mix fluid 160 sacks x 6.62 gal/sk 25.2 bbl

Displacement

4 ½ in tubing volume 1,378 m x 0.0467 bbl/m 64.3 bbl

Total displacement volume =64.3 bbl

5

10

The final job calculations are to be completed on location by cementer, based on actual well parameters. All calculations from slurry volumes to additive dosages & requirements must be verified by the independent calculations of the drilling rep.

PUMPING SCHEDULE & TIMES Volume Rate Time (bbl/min) (min) (bbl) Make up lines & pressure test: N/A N/A 30 Circulate 1.5 x hole volume:: 650.9 6.0 108 Pump spacers ahead: 20.0 6.0 3 Mix & pump cement: 44.4 5.0 9 Pump spacers behind: 4.3 6.0 1 Pump displacement: 64.8 6.0 11 Pull workstring 152 m above TOC: 309m 9.1m/min 34 Note: The flow rate is to be slowed down to 1-2 BPM for the last 5 bbls of the displacement.

Total job time (including circulation): 211 min 3hr 31min Minimum cement thickening time (with 2hr safety factor): 190 min 3hr 10min

N/A

6.0

N/A

62.0

MINIMUM MATERIAL REQUIREMENTS

Spacer - Freshwater

Drop wiper ball:

Circulate workstring clean:

Freshwater 24.3 bbl

Cement

Adelaide Brighton Class G 7 MT(164 ft³)

 SSA-1
 5,264 lbs

 HR-12
 26 lbs

 CFR-3
 45 lbs

 Fresh Water
 25.2 bbl

 NF-6
 1 gal

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance. The final job calculations are to be completed by cementer, based on actual well parameters. All Calculations must be verified by the independent calculation of the Drillsearch Co-man on site.

4.2 Plug #1 Job Procedure

Note: Set firm base below the plug such as Fast Drill bridge plug or Hi-Vis Pill at depth for successful cement plug

Note: Prior to commencing the balance plug, drill pipe should be run to 1,637 m and the well circulated thoroughly (1.5 times hole volumes recommended) in order to adequately clean and to remove any debris that may be left prior to spotting cement plug.

- 1. Rig up cementing unit to pump down the drill pipe.
- 2. Pump 5.0 bbls freshwater spacer ahead to establish circulation.
- 3. Pressure test surface lines to 2,000 psi. Bleed off.
 - Note: Max pressure to be discussed with Drillsearch co-man.
- 4. Pump 15.0 bbls freshwater spacer ahead.
- 5. Mix and pump 44.4 bbls of 15.6ppg slurry on surface
- 6. Pump 4.3 bbl freshwater behind.
- 7. Displace with 64.3 bbls of displacement fluid to spot the balanced plug. (Under displaced by 0.5 bbls to aid dry POOH, **OR** as agreed by Company Representative onsite)

Note: The flow rate is to be slowed down to 1-2 BPM for the last 5 bbls of the displacement.

Note: re-calculate numbers above with actual string and actual well condition on location and double check with <u>Drillsearch co-man</u>.

- 8. Begin pulling drill pipe slowly (1 joint per minute) back to 152m above theoretical TOC and reverse circulate drill pipe clean.
- 9. Ensure that workstring clean before POOH

4.3 P&A Plug #2 8.881801" OH Section 1,331-1,164 mRT

JOB PARAMETERS

BHST temperature: 97°C Plug bottom MD: 1,331 mRT BHCT temperature: 78°C Plug bottom TVD: 1,331 mRT Plug top MD: 1,164 mRT Drilling mud type: **WBM** Plug length: 167 m Drilling mud density: ≈9.10ppg

Plug length with DP in: 179 m

WELLBORE

Workstring

0-1,331mRT $4 \frac{1}{2}$ in 16.6 ppf tubing (ID= 3.826 in)

Annulus

0-1,3311mRT 8.881801 in open hole (10% excess)

SPACERS

Spacer - Freshwater at 8.34ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 4.4 bbl behind to balance

(86 m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY - PlugCem™ 2a

Composition Properties

Adelaide Brighton Class G Surface density: 15.60 ppg SSA-1 35.00% BWOC Surface yield: 1.56 ft³/sk HR-12 0.17% BWOC Total mixing fluid: 6.62 gal/sk

CFR-3 0.30% BWOC Freshwater 6.62 gal/sk

NF-6 0.125 gal/10bblMF

Note that %BWOC are based on a 94 lb sack Note : HTB Blend = ABC "G" + 35% BWOC SSA-1

CEMENT SLURRY - PlugCem™ 2b

Composition Properties

Adelaide Brighton Class G Surface density: 15.80 ppg
HR-5 0.30% BWOC Surface yield: 1.16 ft³/sk
CFR-3 0.25% BWOC Total mixing fluid: 5.07 gal/sk

Freshwater 5.07 gal/sk

NF-6 0.125 gal/10bblMF

Note that %BWOC are based on a 94 lb sack

VOLUME CALCULATIONS		
Cement		
8.881801 in hole volume	167 m x 0.2514bbl/m	42.0 bbl
8.881801 in hole excess	0.10 x 42.0 bbl	4.2 bbl
	Slurry volum	e =46.2 bbl
Quantity of cement 2a (HTB Blend)	18.5 bbl x 5.6146 / 1.56 ft³/sk	67 sacks
Quantity of cement 2b (G Cement)	27.7 bbl x 5.6146/1.16 ft³/sk	134 sacks
Quantity of mix fluid 2a (HTB Blend) plug	67 sacks x 6.62 gal/sk	10.6 bbls
Quality of mix fluid 2b plug	134 sacks x 5.07 gal/sk	16.2 bbls
Displacement		
4 ½ in tubing volume	1,058 m x 0.0467 bbl/m	49.4 bbl
	Total displacement volum	e =49.4 bbl

The final job calculations are to be completed on location by cementer, based on actual well parameters. All calculations from slurry volumes to additive dosages & requirements must be verified by the independent calculations of the drilling rep.

PUMPING SCHEDULE & TIMES				
	Volume (bbl)	Rate (bbl/min)	Time (min)	
Make up lines & pressure test:	N/A	N/A	30	
Circulate 1.5 x hole volume::	516.4	6.0	86	
Pump spacers ahead:	20.0	6.0	3	
Mix & pump Cement 2a(HTB Blend)	18.5	5.0	4	
Mix & pump Cement 2b (G Cement)	27.7	5.0	6	
Pump spacers behind:	4.4	6.0	1	
Pump displacement:	49.4	6.0	8	
Pull workstring 152 m above TOC:	319m	9.1m/min	35	
Note: The flow rate is to be slowed down to 1-2 BP	M for the last 5 bl	ols of the displace	ment.	
Drop wiper ball:	N/A	N/A	5	
Circulate workstring clean:	47.0	6.0	8	

Total job time (including circulation): 185 min 3hr 05min Minimum cement thickening time (with 2hr safety factor): 186 min 3hr 06min

MINIMUM MATERIAL REQUIREMENTS

Spacer - Freshwater

Freshwater 28.1 bbl

Cement 2a (HTB Blend)

Adelaide Brighton Class G 3 MT(70 ft³)

 SSA-1
 2,204 lbs

 HR-12
 11 lbs

 CFR-3
 19 lbs

 Fresh Water
 10.6 bbl

 NF-6
 1 gal

Cement 2b (G Class)

Adelaide Brighton Class G 6 MT(141 ft³)

 HR-5
 38 lbs

 CFR-3
 31 lbs

 Fresh Water
 16.2 bbl

 NF-6
 1 gal

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance. The final job calculations are to be completed by cementer, based on actual well parameters. All Calculations must be verified by the independent calculation of the Drillsearch Co-man on site.

4.4 Plug #2 Job Procedure

Note: Set firm base below the plug such as Fast Drill bridge plug or Hi-Vis Pill at depth for successful cement plug

Note: Prior to commencing the balance plug, drill pipe should be run to 1,331 m and the well circulated thoroughly (1.5 times hole volumes recommended) in order to adequately clean and to remove any debris that may be left prior to spotting cement plug.

- 1. Rig up cementing unit to pump down the drill pipe.
- 2. Pump 5.0 bbls freshwater spacer ahead to establish circulation.
- 3. Pressure test surface lines to 2,000 psi. Bleed off.

Note: Max pressure to be discussed with Drillsearch co-man.

- 4. Pump 15.0 bbls freshwater spacer ahead.
- 5. Mix and pump 18.5 bbls slurry 2a (HTB Blend) of 15.6ppg slurry on surface
- 6. Mix and pump 27.2 bbls slurry 2b (G Class) of 15.8 ppg slurry on surface
- 7. Pump 4.4 bbl freshwater behind.
- 8. Displace with 49.4 bbls of displacement fluid to spot the balanced plug. (Under displaced by 0.5 bbls to aid dry POOH, **OR** as agreed by Company Representative onsite)

Note: The flow rate is to be slowed down to 1-2 BPM for the last 5 bbls of the displacement.

Note: re-calculate numbers above with actual string and actual well condition on location and double check with <u>Drillsearch co-man</u>.

- 9. Begin pulling drill pipe slowly (1 joint per minute) back to 152m above theoretical TOC and reverse circulate drill pipe clean.
- 10. Ensure that Workstring clean before POOH

4.5 P&A Plug #3 9.741473" OH Section 781-691 mRT

JOB PARAMETERS

Plug bottom MD: 781 mRT BHST temperature: 56°C Plug bottom TVD: 781 mRT BHCT temperature: 45°C Plug top MD: 691 mRT Drilling mud type: WBM Plug length: 90 m Drilling mud density: ≈9.10ppg

Plug length with DP in: 97 m

WELLBORE

Workstring

0-781mRT $4 \frac{1}{2}$ in 16.6 ppf tubing (ID= 3.826 in)

Annulus

0-750 mRT 9 5/8in 36ppf casing (8.921in ID) 750-781 mRT 9.741473 in open hole (20% excess)

SPACERS

Spacer - Freshwater at 8.34ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 4.9 bbl behind to balance

(56m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY - PlugCem™

Composition Properties

Adelaide Brighton Class G Surface density: 15.80 ppg
HR-5 0.09% BWOC Surface yield: 1.15 ft³/sk
Freshwater 5.08 gal/sk Total mixing fluid: 5.08 gal/sk

NF-6 0.125 gal/10bblMF

Note that %BWOC are based on a 94 lb sack

vali	IMIECA		ATIONS
VOL		LCUL	AIIUII

	٠.	_	_	_	4
ι.	.е	m	е	n	n

9 5/8in casing volume	59 m x 0.2536 bbl/m	15.0 bbl
9.741473 in hole volume	31 m x 0.3024 bbl/m	9.4 bbl
9.741473 in hole excess	0.20 x 9.4 bbl	1.9 bbl

Slurry volume =26.2 bbl

Quantity of cement 26.2 bbl x 5.6146 / 1.15 ft³/sk 128 sacks Quantity of mix fluid 128 sacks x 5.08 gal/sk 15.5 bbl

Displacement

4 $\frac{1}{2}$ in tubing volume 578 m x 0.0467 bbl/m 27.0 bbl

Total displacement volume = 27.0 bbl

The final job calculations are to be completed on location by cementer, based on actual well parameters. All calculations from slurry volumes to additive dosages & requirements must be verified by the independent calculations of the drilling rep.

PUMPING SCHEDULE & TIMES

	Volume	Rate	Time
	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1.5 x hole volume::	281.3	6.0	47
Pump spacers ahead:	20.0	6.0	3
Mix & pump cement:	26.2	5.0	5
Pump spacers behind:	4.9	6.0	1
Pump displacement:	27.0	6.0	4
Pull workstring 152 m above TOC:	242 m	9.1m/min	26
Note: The flow rate is to be slowed down to 1-2 BPN	I for the last 5 bl	bls of the displacer	ment.
Drop wiper ball:	N/A	N/A	5
Circulate workstring clean:	25.0	6.0	4

Total job time (including circulation): 125 min 2hr 05min Minimum cement thickening time (with 2hr safety factor): 165 min 2hr 45min

MINIMUM MATERIAL REQUIREMENTS

Spacer - Freshwater

Freshwater 24.9 bbl

Cement

Adelaide Brighton Class G 5 MT(117 ft³)

HR-5 11 lbs Fresh Water 15.5 bbl NF-6 1 gal

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance. The final job calculations are to be completed by cementer, based on actual well parameters. All Calculations must be verified by the independent calculation of the Drillsearch Co-man on site.

4.6 Plug #3 Job Procedure

Note: Set firm base below the plug such as Fast Drill bridge plug or Hi-Vis Pill at depth for successful cement plug

Note: Prior to commencing the balance plug, drill pipe should be run to 781 m and the well circulated thoroughly (1.5 times hole volumes recommended) in order to adequately clean and to remove any debris that may be left prior to spotting cement plug.

- 1. Rig up cementing unit to pump down the drill pipe.
- 2. Pump 5.0 bbls freshwater spacer ahead to establish circulation.
- 3. Pressure test surface lines to 2,000 psi. Bleed off.

Note: Max pressure to be discussed with Drillsearch co-man.

- 4. Pump 15.0 bbls freshwater spacer ahead.
- 5. Mix and pump 26.2 bbls of 15.8ppg slurry on surface
- 6. Pump 4.9 bbl freshwater behind.
- 7. Displace with 27.0 bbls of displacement fluid to spot the balanced plug. (Under displaced by 0.5 bbls to aid dry POOH, **OR** as agreed by Company Representative onsite)

Note: The flow rate is to be slowed down to 1-2 BPM for the last 5 bbls of the displacement.

Note: re-calculate numbers above with actual string and actual well condition on location and double check with Drillsearch co-man.

- 8. Begin pulling drill pipe slowly (1 joint per minute) back to 152m above theoretical TOC and reverse circulate drill pipe clean.
- 9. Ensure that workstring clean before POOH
- 10. WOC and tag cement plug to confirm cement is hard and in place.
- 11. Pressure test cement plug to ≈1,510 (To be discussed with Co-man at well site.) psi to confirm shoe cement is hard and in place (≈500 psi above leak off)

Note: WOC should be at least the time for the cement plug reach 500 psi or 3,000 psi for a KOP. Best results have been obtained by a mandatory 24 Hrs before disturbing the plug.

4.7 P&A Plug 4 Details – 9 5/8 in Casing (5-30 mRT)

JOB PARAMETERS

Plug bottom MD: 30 mRT BHST temperature: 33°C Plug bottom TVD: 30 mRT BHCT temperature: 27°C Plug top MD: 5 mRT Drilling mud type: **WBM** Plug length: 25 m Drilling mud density: ≈9.10ppg

Plug length with DP in: 27 m

WELLBORE

Workstring

0-30 mRT $4 \frac{1}{2}$ in 16.6 ppf tubing (ID= 3.826 in)

Annulus

0-30 mRT 9 5/8 in 36 ppf Casing (8.921in ID)

SPACERS

Spacer - Freshwater at 8.34ppg

Freshwater 42.00 gal/bbl 10.0bbl ahead and 0.1bbl behind to balance

(53m annular fill / 2min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY - PlugCem™

Composition Properties

Adelaide Brighton Class GSurface density:15.80 ppgFreshwater5.08 gal/skSurface yield:1.15 ft³/skNF-60.125 gal/10bblMFTotal mixing fluid:5.08 gal/sk

Note that %BWOC are based on a 94 lb sack

VOLUME CALCULATIONS

Cement

9 5/8in casing volume 25 m x 0.2536 bbl/m 6.3 bbl

Slurry volume =6.3 bbl

Quantity of cement 6.3 bbl x 5.6146 / 1.15 ft³/sk 31 sacks Quantity of mix fluid 31 sacks x 5.08 gal/sk 3.8 bbl

Displacement

4 ½ in tubing volume

Total displacement volume = --- bbl

The final job calculations are to be completed on location by cementer, based on actual well parameters. All calculations from slurry volumes to additive dosages & requirements must be verified by the independent calculations of the drilling rep.

PUMPING SCHEDULE & TIMES				
	Volume (bbl)	Rate (bbl/min)	Time (min)	
Make up lines & pressure test:	N/A	N/A	30	
Circulate 1.5 x hole volume::	10.6	6.0	2	
Pump spacers ahead:	10.0	6.0	2	
Mix & pump cement:	6.3	5.0	1	
Pump spacers behind:	0.1	6	-	
Pump displacement:	-	-	-	
Slowly Pull workstring to Surface and Flush lines	-	-	-	
Drop wiper ball:	N/A	N/A	-	
Circulate workstring clean:	20.0	6.0	3	

Total job time (including circulation): 38 min 0hr 38min Minimum cement thickening time (with 2hr safety factor): 158 min 2hr 38min

MINIMUM MATERIAL REQUIREMENTS

Spacer - Freshwater

Freshwater 10.1 bbl

Cement

Adelaide Brighton Class G 1 MT(23 ft³)

Fresh Water 3.8 bbl NF-6 1 gal

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance. The final job calculations are to be completed by cementer, based on actual well parameters. All Calculations must be verified by the independent calculation of the Drillsearch Co-man on site.

4.8 Plug #4 Job Procedure

Note: Set firm base below the plug such as Fast Drill bridge plug or Hi-Vis Pill at depth for successful cement plug

Note: Prior to commencing the balance plug, drill pipe should be run to 30 m and the well circulated thoroughly (1.5 times hole volumes recommended) in order to adequately clean and to remove any debris that may be left prior to spotting cement plug.

- 1. Rig up cementing unit to pump down the drill pipe.
- 2. Pump 5.0 bbls freshwater spacer ahead to establish circulation.
- 3. Pressure test surface lines to 1,500 psi. Bleed off.

Note: Max pressure to be discussed with Drillsearch co-man.

- 4. Pump 5.0 bbls freshwater spacer ahead.
- 5. Mix and pump 6.3 bbls of 15.8ppg slurry on surface
- 6. Pump 0.1 bbl freshwater behind.
- 7. Begin pulling drill pipe slowly (1 joint per minute) back to Surface and flush lines.
- 8. Pump Fresh Water through Workstrings , ensure that workstrings are clean.
- 9. WOC should be at least the time for the cement plug reach 500 psi or 3,000 psi for a KOP. Best results have been obtained by a mandatory 24 Hrs before disturbing the plug.

5.0 Plug and Abandonment Job Summary

		CUSTOMER	Start Date mm/	dd/yy	End Date mm/dd/yy	
	mimini	JETON	Drillsearch	20-Feb-13		24-Feb-13
		Cementing Service	es Post Job Rep	ort Summary		
WELL Name & Number		RIG Name & Number	HES REP	HES REP		EP
Tibor#1		Ensign # 918	H.Klingberg		R.Miller	
JOB PURPOSE CODE			SALES ORDER No.		CUSTOMER PO	O#
PLUG TO ABANDON 7528			0 9CO	231392	0	
WELL CATEGORY	WELL TYPE	TECHNOLOGY	COUNTRY	BASE OF OPS		BDA
03 Wildcat	01 OIL	0	Australia	Moomba		Perth

PERSONELL

SAP#	PERSONNEL .	HOURS	SAP#	PERSONNEL	HOURS	SAP#	PERSONNEL	HOURS
373336	Brendan Harding	4		Haydn Klingberg	108	496370	Clint Rawson	108

EQUIPMENT

SAP#	PUMPING / MIXING	HOURS	SAP#	BULK/COMPRESSORS	HOURS	SAP#	VEHICLES/OTHER	HOURS
11709008	Elite 3 - Diablo	108	11261210	1210 - SY41BB	108	10942587	XIT-524 KENWORTH T900	108
			12107178	JANET - SY88DM	108	11061441	SY88AP DOLLY	108
						11991431	MACK SY07FQ	108

FLOAT EQUIPMENT AND CASING EQUIPMENT

								QTY
	FLOAT FOUIPMENT	OTY PN#	OFFICE STREET		OTY I	PN#	OTHER	
PN#								
				fill Classic Confedence are rand abosents				

WELL PROFILE

WELL COMPONENT	SIZE (in)	WEIGHT (ppl)	GRADE	THREAD	END (MD) (A)	END (TVD) (R)	EXCESS %	LENGTH (ft)

HALLIBURTON				customer Drillsearch			yy End Date mm/dd/yy 24-Feb-13	
		Cemen	ting Services Po	st Job Report S	ummary			
WELL Name & Number RIG Name & Number			HES REP		CUSTOMER RE	P		
Tibor # 1		Ensign # 918	3	H.Klingberg R.Miller				
JOB PURPOSE CODE				SALES ORDER No.		CUSTOMER PO	#	
PLUG TO ABANDON 75	28			0 9002313	92	0		
WELL CATEGORY	WELL TYPE		TECHNOLOGY	COUNTRY	BASE OF OPS		BDA	
03 Wildcat 01 OIL 0		0	Australia	Moomba		Perth		

FLUID SUMMARY (Refer to Lab Reports for full details)

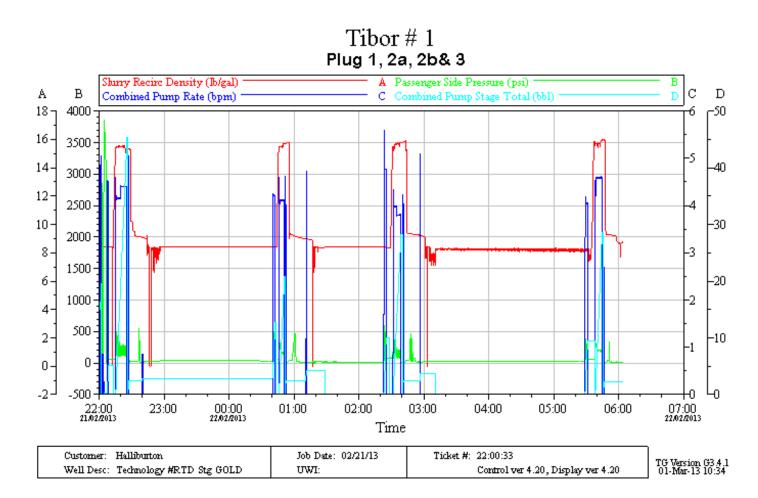
]							FLUID)					
	A STATE OF THE STA		1	2	3	4	- 5	∴ 6	7	8	9	10	11	12	Constitution of the Consti
	DETAIL	UOM	Plug #1	Plug # 2a	Plug # 2b	Plug#3	Plug # 4								TOTAL
Ø	Volume	bbls	44	19	28	26	6								123
PROPERTIES	Density	ppg	15.60	15.60	15.80	15.80	16								NA
ij.	Yield	cuft/sk	1.56	1.56	1.16	1.16	1						<u> </u>		NA
ē	Water Requirement	gal/sk	6.62	6.62	5.07	5.07	5								NA
•	Total Fluid Req	gal/sk													NA
Ę	ABC Class 'G'	sk													0
១	НТВ	sk	160	67	134	128	31								520
Q		bbis													0
H20		bbls													0
	HR-12	lb	26	11											37
	CFR-3L	[b	45	19	31										95
CHEMICAL	HR-5	lb			38	11									49
	NF-6	gal/	1'	1	1	1									3
															0

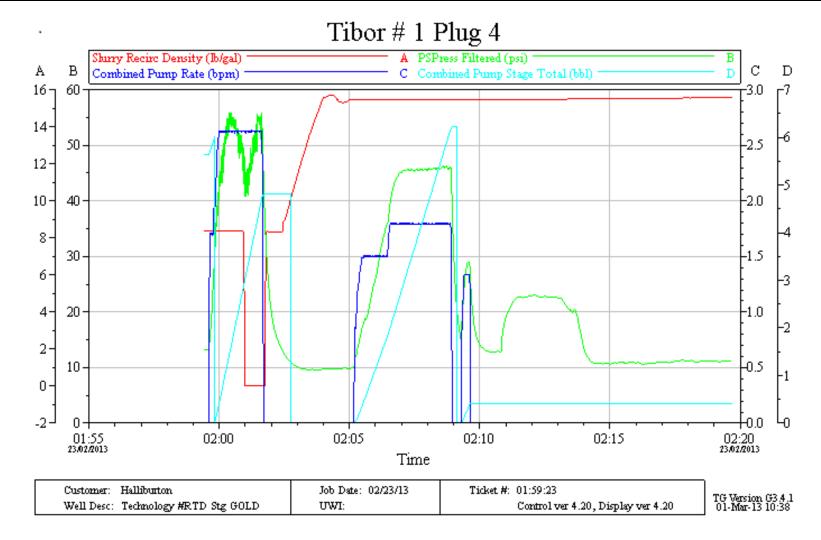
HALLIBURTON

CUSTOMER SATISFACTION SURVEY

OUTOUR CATIONACTION PERSONNE

Sales Order#:	0900231302	Line Item:	10
Customer:	Drillsearch	Job Type (BOM):	PLUG TO ABANDON 7528
Customer	R.Miller	API / UWI: (Leave Blank if unknown)	
Well Name:	Tibor # 1	Well Number:	
Well Type:	01 OIL	Well Country:	Australia
H2S Present:	No/Yes	Well State:	Perth


Dear Customer,


We hope that you were satisfied with the service quality of this job performed by Halliburton. It is the aim of our management and service personnel to deliver equipment and service of a standard unmatched in the service sector of the energy industry.

Please take the time to let us know if our performance met with your satisfaction. Please be as critical as possible to ensure we constantly improve our service. Your comments are of great value to us and are intended for the exclusive use of Halliburton.

Survey Conducted Date	The date the survey was conducted	20/02/2013
Survey Interviewer	The survey interviewer is the person who initiated the survey.	H.Klingberg
Customer Participation	Did the customer partipolpate in this survey? (Y/N)	
Customer Representative	Enter the Customer representative name	R.Miller
(SE	Was our HSE performance satisfactory? Circle Y or N	~
Equipment	Were you satisfied with our Equipment? Circle Y or N	V,
Personnel	Were you satisfied with our people? Circle Y or N	/
Customer Comment		

6.0 Plug and Abandonment Job Charts

BAKER PERFORMANCE AND DULL GRADING REPORT

Bit #	1RR1				
Customer	Drillsearch	Location	Tibor-1	Rig	Ensign 918
Bit Type	12 ¼" FC519	Serial No.	7032698	Date Run	7-Feb-13

BIT PE	RFORMANCE
Depth Out	754 mRT
Meterage	743.3 m
Hours (drilling)	53.75 hrs
KREV	213
ROP	13.85 m/hr
WOB	2 / 6 (3.5avg)
RPM	60 / 126 (95 avg)
Drive System	Kelly / Rotary
Inc / Azi – Start	0.0°
Inc / Azi – End	0.5°
Mud Weight	8.8 / 8.9ppg
Nozzles/TFA	7 x 14/32" / 1.052in²
Flowrate	550-600gpm (575avg)
SPP	850 (avg)
HSI	1.02
Mud Type	WBM
Formation	Winton / Mackunda
Lithology	Silts/Sands/Clays
	Coal/Cemented-
	Sands/Carbonate Stringers

Dull Grade	I	0	DC	L	В	G	OC	RP
Rig	1	1	WT	Α	Χ	I	ER	TD

Customer	Drillsearch	Location	Tibor-1	Rig	Ensign
Bit Type	12 ¼" FC519	Serial No.	7032698	Date Run	7-Feb-13

Comments Good drilling performance through 743.7m 12-1/4" drilling section. (Total hours run on Triclops-1 and Tibor-1 = 124.25 - Total meterage drilled = 1496.8m)..

Good penetration rates through top formations while control drilling to hold inclination. Carbonate, cemented sand and coal stringers encountered throughout run resulting in reduced penetration rate in parts. Green dull with minimum wear. Minor erosion and tiger stripes to bit body indicate formation – matrix contact due to high depth of cut.

Bit inguage and recommended for re-run.

Blade #1

Blade #2

12-Dec-12 Drillsearch – Triclops #1 v.01-00

[Type a quote from the document or the summary of an interesting point. You can position the text box anywhere in the document. Use the Drawing Tools tab to change the formatting of the pull quote text box.]

Blade #4 Blade #5 Blade #3

BAKER PERFORMANCE AND DULL GRADING REPORT

Customer	Drillsearch	Location	Tibor-1	Rig	Ensign-918
Bit Type	8 ½" Q505F	Serial No.	7143496	Date Run	13-02-2013

BIT PE	ERFORMANCE
Depth Out	1482m
Footage	603m
Hours (drilling)	
KREV	
ROP (On Bottom)	
WOB	0-20klbs
RPM (Total)	40-120
Drive System	Kelly Rotary
Inc - Start	-
Inc – End	-
Mud Weight	9ррд
Nozzles/TFA	7x11/32"
Flowrate	400gpm
SPP	4000-6000
HSI	1.41
Mud Type	WBM
Formation	Alladu/Toolbuc/Wallumbilla
Lithology	Siltstone /
	Sandstone/Dolomite
Recommendation	Run QD505X PDC

Dull Grade	- 1	0	DC	L	В	G	OC	RP
Rig								
HCC	1	2	CT	S	Х	1	WT	TQ

Customer	Drillsearch	Location	Tibor-1	Rig	Ensign-918
Bit Type	8 ½" Q505F	Serial No.	7143496	Date Run	13-02-2013

Comments

8 ½" Q505F drilled from casing shoe to 1482m. Bit pulled due to erratic torque assuming bit damage. Bit pulled relatively green, slightly under gauge. Drilled through non-rotating float collar. Compared to Q505F ran on Triclops-1 offset, which drilled a rotating collar, this may account for some gauge cutter damage observed below.

Damaged cutters in the shoulder

Bit pulled for intermitted torque. Bit graded under guage.

BAKER PERFORMANCE AND DULL GRADING REPORT

Bit #	3				
Customer	Drillsearch	Location	Tibor-1	Rig	Ensign 918
Bit Type	DP505X	Serial No.	7143509	Date Run	17-Feb-13

BIT PE	ERFORMANCE
Depth Out	1723
Meterage	237
Hours (drilling)	15.5
KREV	69
ROP	15 – 25m/hr (Avg 15.29)
WOB	15 – 20Kips
RPM	75 - 90
Drive System	Kelly-Rotary
Inc / Azi – Start	1°
Inc / Azi – End	1.75°
Mud Weight	9.3ppg
Nozzles/TFA	7 x 11/32"/
Flowrate	400gpm
SPP	1150psi
HSI	1.41 HP/ IN ²
Mud Type	WBM
Formation	Adori/ Birkhead/ Hutton
Lithology	Sandstone/ Sand/ Sandstone

Dull Grade	_	0	DC	L	В	G	OC	RP
Rig	1	1	CT	Α	Χ	l	RR	TD

Customer	Drillsearch	Location	Tibor-1	Rig	Ensign 918
Bit Type	DP505X	Serial No.	7143509	Date Run	17-Feb-13

Comments Good drilling performance from 1486m to 1723m TD. (Total hours = 15.5 - Total meterage drilled = 237m). Good penetration rates through Sandstone & sand formations. Green dull with minimum wear. Bit inguage and recommended for re-run.

: Spud mud

Last Survey (MDRT/TVDRT) : 33.0 m /

: Inc. 0.00 $^{\circ}$ Az 0.00 $^{\circ}$

Survey Deviation

Date: 07 Feb 2013		(associated DDR #	7)			
		W	ell Details			
Depth MDBRT	:34.0 m	Report Period	:00:00 - 24:00	Date	:07 Feb 2013	
Depth TVDBRT	:34.0 m	Last Csg Size	:	24hr Progress	:23.3 m	
Depth TVDSS	:-106.15 m	Last Csg Shoe MD	:	Report Start Depth	:8.6 m	
RT - GL	:5.15 m	Last Csg Shoe TVD) :	Report End Depth	:50.0 m	
Ground Level	: 135.0 m	FIT / LOT	:/	Days since Spud	: 0.29	
RT - Hanger	:	Liner (MDRT/TVDR	T) :/	Rig	:Ensign 918	
Hole Size	: 12.250 in		.,	Mud Weight	:8.80 ppg	

Tibor-1 Drilling

Geology 24hr Operations Summary					
24hr Summary: Completed rig up and and preparations to commence drilling. Spud Tibor-1 at 19:00 on February 7, 2013					
	Commenced drilling 12.25" surface hole from 8.6 mMDRT and continued to 34.0 mMDRT				
24hr Forward Plan:	Continue drilling 12.25" hole to section TD and +/- 753.0 mMDRT.				

Mud Type

	Formation Tops								
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)	
Winton Formation	5.0	5.0	-135.15	8.6	8.6	-131.55	3.6 Low		Surface
Mackunda Formation	615.0	615.0	474.85						
Allaru Mudstone	700.0	700.0	559.85						
Toolebuc Formation	929.0	929.0	788.85						
Wallumbilla Formation	975.0	975.0	834.85						
Cadna-Owie Formation	1215.0	1215.0	1074.85						
Murta Formation	1286.0	1286.0	1145.85						
Namur Sandstone	1316.0	1316.0	1175.85						
Westbourne Formation	1412.0	1412.0	1271.85						
Adori Sandstone	1482.0	1482.0	1341.85						
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638.0	1638.0	1497.85						

			Lithol	ogy Sı	ummary						
Internal m MDRT	ROP (m/h)				Li	thology C	omments				
8.6 - 30.0	Min :3.00	Lithology Su	ummary	Inter	bedded CL	AYSTONE	and ARG	LLACEOU	S SANDS	ΓONE	
	Avg :18.00 Max :45.00	/g :18.00 Lithology Description		bloc carb ARG trans	YSTONE: National Nati	calcareous detritus. JS SANDS ble, fine to erical, abur	, trace very TONE: dar very fine g	y fine arena k yellow or rained, sul aceous ma	range to veorounded trix, weak	terial, trace ry light grey to angular,	y, trace well
		Gas & Show	s Comment	s Nil							
		ROP Comm	ents								
30.0 - 50.0	Min :15.00 Avg :36.00 Max :27.00	Lithology St		CLA	SILLACEOU YSTONE SILLACEOU						
		Gas & Shows Comments ROP Comments		roun argil fragi fluor CLA brow grad	friable to occasionally firm, very fine to minor fine grained,, subangular to rounded, moderatelywell sorted, subspherical to subelongated, 50% argillaceous matrix supported, occasional weak siliceous cement, trace lithic fragments, trace carbonaceous material, nil visible porosity, no hydrocarbon fluorescence. CLAYSTONE: medium dark grey to commonly dark greenish grey, minor brownish grey, soft to firm, subblocky, silty in part, commonly arenaceous, grading to Argillaceous Sandstone in part, trace carbonaceous detritus. Nil						
<u> </u>		<u> </u>	Gas	s Sum	mary						
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	8.6 - 50.0	0.0									
			Genei	ral Cor	nments						
				Commer	nts						
			06:00) Hrs I	Indate						
Depth (MDRT):	99.0m	06:00 Hrs Update									
Progress Since Midnight: 65.0m											
Operation Summary:		5" surface hole a	t 99.0 mMDF	RT.							
ROP Summary:											
Formation Summary: Winton Formation											
ithology Summary:	Interbedded	CLAYSTONE ar	nd SANDSTO	DNE.							

(Nights) -

(Days) - Alan Wrightstone

	<u>Tibor-1 Drilling</u>	
Date: 08 Feb 2013	DAILY GEOLOGY REPORT NUMBER: 2	(associated DDR # 8)

	Well Details							
Depth MDBRT	:331.0 m	Report Period	:00:00 - 24:00	Date	:08 Feb 2013			
Depth TVDBRT	: 331.0 m	Last Csg Size	:	24hr Progress	: 295.0 m			
Depth TVDSS	: 190.85 m	Last Csg Shoe MD	:	Report Start Depth	:50.0 m			
RT - GL	: 5.15 m	Last Csg Shoe TVD	:	Report End Depth	: 380.0 m			
Ground Level	: 135.0 m	FIT / LOT	:/	Days since Spud	: 1.29			
RT - Hanger	:	Liner (MDRT/TVDRT)	:/	Rig	:Ensign 918			
Hole Size	: 12.250 in			Mud Weight	: 8.80 ppg			
Last Survey (MDRT/TVDRT)	: 305.0 m /			Mud Type	: Spud mud			
Survey Deviation	: Inc. 0.70 °							
	Az 241.00 °							

Geology 24hr Operations Summary				
24hr Summary:	Drilled 12-1/4" surface hole from 50.0 to 331.0 mMDRT taking surveys every three joints.			
24hr Forward Plan:	Continue drilling 12-1/4" surface hole to section TD at +/- 753 mMDRT.			

Formation Tops									
Formation	Prognosed			Actual			Diff.	Thickness	Pick Criteria
	MDRT	TVDRT	TVDSS	MDRT	TVDRT	TVDSS	+/- TVD	TVD	
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	
Winton Formation	5.0	5.0	-135.15	8.6	8.6	-131.55	3.6 Low		Surface
Mackunda Formation	615.0	615.0	474.85						
Allaru Mudstone	700.0	700.0	559.85						
Toolebuc Formation	929.0	929.0	788.85						
Wallumbilla Formation	975.0	975.0	834.85						
Cadna-Owie Formation	1215.0	1215.0	1074.85						
Murta Formation	1286.0	1286.0	1145.85						
Namur Sandstone	1316.0	1316.0	1175.85						
Westbourne Formation	1412.0	1412.0	1271.85						
Adori Sandstone	1482.0	1482.0	1341.85						
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638.0	1638.0	1497.85						

		Litholog	y Summary
Internal m MDRT	ROP (m/h)		Lithology Comments
50.0 - 110.0	Min :5.40 Avg :36.40 Max :93.90	Lithology Summary Lithology Description	SANDSTONE with occasional ARGILLACEOUS SILTONE laminations. ARGILLACEOUS SANDSTONE: medium dark grey to dark greenish grey, friable to occasionally firm, very fine to minor fine grained,, subangular to rounded, moderatelywell sorted, subspherical to subelongated, 50%
			argillaceous matrix supported, occasional weak siliceous cement, trace lithic fragments, trace carbonaceous material, nil visible porosity, no hydrocarbon fluorescence. ARGILLACEOUS SILTSTONE: light grey to light greenish grey, firm, subblocky, trace calcareous, minor clay material, occasioanl very fine to minor fine sand.
		Gas & Shows Comments	
		ROP Comments	
110.0 - 170.0	Min :9.90 Avg :24.10	Lithology Summary	Massive CLAYSTONE with a thin ARGILLACEOUS LIMESTONE lamination at 150.0 mMDRT.
Max :29.60	Lithology Description	CLAYSTONE: light grey to common light greenish grey, minor light brownish grey, soft to rarely firm, subblocky, silty in part, trace lithic specks, trace very fine grained loose quartz, non-calcareous. ARGILLACEOUS LIMESTONE: mudstone, brownish grey to olive grey, firm to commonly moderately hard, blocky to subblocky, silty in part, commonly argillaceous, trace carbonaceous specks.	
		Gas & Shows Comments	
		ROP Comments	
170.0 - 210.0	Min :3.20	Lithology Summary	Massive ARGILLACEOUS SANDSTONE
	Avg :20.90 Max :28.70	Lithology Description	ARGILLACEOUS SANDSTONE: light grey to very light green grey, light olive grey in part, friable, fine to dominantly very fine, sub-angular to angular, well sorted, sub-spherical, abundant very light grey argillaceous matrix, minor weak siliceous cement, trace lithic fragments, trace brownish black carbonaceous specks, very poor visible porosity, no hydrocarbon fluorescence
		Gas & Shows Comments	Salabana oposite, 1017 poor 1101810 por 501,1,110 117 a. coal. 2011 illustration
		ROP Comments	
210.0 - 380.0	Min :3.20 Avg :26.50	Lithology Summary	Interbedded ARGILLACEOUS SILTSTONE and ARGILLACEOUS SANDSTONE which grades to SANDSTONE near base of the section.
Max :34.70		Lithology Description	ARGILLACEOUS SANDSTONE: light grey to very light green grey, trace light olive grey, friable, silt sized to fine grained, minor medium grained, , subangular to angular, well sorted, subspherical, abundant very light grey argillaceous matrix, trace weak siliceous cement, trace lithic fragments, trace brownish black carbonaceous specks and microlaminations, rare micromicaceous specks, nil to very poor visible porosity, no hydrocarbon fluorescence. ARGILLACEOUS SILTSTONE: very light grey to light greenish grey, minor light brownish grey, soft to rare firm, abundant argillaceous material, trace brownish black carbonaceous specks, grading to SILTY CLAYSTONE in part.
			2.5 S.aok carbonacocao opocko, grading to off i off tro i off in part.
		Gas & Shows Comments	

	Gas Summary										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	50.0 - 110.0	0.0	0								
Background	110.0 - 170.0	0.0	0								
Background	170.0 - 210.0	0.0	0								
Background	210.0 - 328.0	0.0	0								
Background	328.0 - 380.0	3.0	750	3	1						

	General Comments					
	Comments					
06:00 Hrs Update						
Depth (MDRT):	13.0m					
Progress Since Midnight:	314.0m					
Operation Summary:	Drilled 12-1/4" surface hole from 331.0 to 413.0 mMDRT.					
ROP Summary:	Steady around 25 m/hr.					
Formation Summary:	Winton Formation					
Lithology Summary:	Argillaceous Siltstone and Argillaceous Sandstone					
Gas Summary:	First appearance of background gas from 329.0 mMDRT.					
	Wellsite Geologist(s)					
	(Days) - Alan Wrightstone (Nights) -					

	<u>Tibor-1 Drilling</u>	
Date: 09 Feb 2013	DAILY GEOLOGY REPORT NUMBER: 3	(associated DDR # 9)

Well Details							
Depth MDBRT	:655.0 m	Report Period	:00:00 - 24:00	Date	:09 Feb 2013		
Depth TVDBRT	: 655.0 m	Last Csg Size	:	24hr Progress	: 324.0 m		
Depth TVDSS	: 514.85 m	Last Csg Shoe MD	:	Report Start Depth	: 331.0 m		
RT - GL	: 5.15 m	Last Csq Shoe TVD	:	Report End Depth	: 710.0 m		
Ground Level	: 135.0 m	FIT / LOT	:/	Days since Spud	: 2.29		
RT - Hanger	:	Liner (MDRT/TVDRT)	:/	Rig	:Ensign 918		
Hole Size	: 12.250 in	,		Mud Weight	:8.80 ppg		
Last Survey (MDRT/TVDRT)	:631.0 m / 631.0 m			Mud Type	:Spud mud		
Survey Deviation	: Inc. 0.50 °						
	Az 154.00 °						

Geology 24hr Operations Summary				
24hr Summary:	Drilled 12-1/4" surface hole from 331.0 to 655.0 mMDRT taking regular surveys.			
24hr Forward Plan:	Drill to section TD, POOH, rig up and run 9-5/8" casing.			

	Formation Tops								
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria
	MDRT	TVDRT	TVDSS	MDRT	TVDRT	TVDSS	+/- TVD	TVD	
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.85	18 Low	0.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85						
Toolebuc Formation	929.0	929.0	788.85						
Wallumbilla Formation	975.0	975.0	834.85						
Cadna-Owie Formation	1215.0	1215.0	1074.85						
Murta Formation	1286.0	1286.0	1145.85						
Namur Sandstone	1316.0	1316.0	1175.85						
Westbourne Formation	1412.0	1412.0	1271.85						
Adori Sandstone	1482.0	1482.0	1341.85						
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638.0	1638.0	1497.85						

	Lithology Summary							
Internal m MDRT	ROP (m/h)		Lithology Comments					
380.0 - 480.0	Min :2.60 Avg :25.60 Max :34.90	Lithology Summary Lithology Description Gas & Shows Comments	Interbedded SILTY CLAYSTONE and SANDSTONE SILTY CLAYSTONE: brownish grey to medium grey, trace light grey to light brownish grey, soft to minor firm, commonly silty in part, trace brownish black carbonaceous specks. SANDSTONE: generally loose, very light grey to medium grey,common translucent, very fine to fine, subangular to subrounded, well sorted, subspherical, minor firm and friable, occasional argillaceous matrix, minor moderate calcareous cement, occasional weak siliceous cement, minor green grey lithics, trace brownish black carbonaceous material, poor visible porosity, no hydrocarbon fluorescence. Generally 7-10 units background with occasional minor peaks (max 39 units at					
			435.0 mMDRT)					
400.0 500.0	Min JE 00	ROP Comments	Mostly steady around 25 m/hr with occasional harder stringers.					
480.0 - 530.0 Min :5.20 Avg :27.50 Max :34.20		Lithology Summary Lithology Description	Massive CLAYSTONE with minor SANDSTONE interbeds near base CLAYSTONE: brownish grey to medium dark grey, minor medium grey, soft to predominantly firm, trace silty in part, moderately calcareous in part, trace brownish black carbonaceous specks, trace very fine grained loose quartz. SANDSTONE: friable to commonly moderately hard, very light grey to medium grey, translucent, light greenish grey, very fine to fine, subangular to subrounded, well sorted, subspherical, trace argillaceous matrix, common moderate calcareous cement, minor weak siliceous cement, minor green grey lithics, minor brownish black carbonaceous material, trace loose medium grained quartz, nil to very poor visible porosity, no hydrocarbon fluorescence.					
		Gas & Shows Comments	Background variable between 5 - 10 units.					
		ROP Comments	Steady drilling at 27.5 m/hr.					
530.0 - 610.0	Min :4.90 Avg :27.60 Max :35.60	Lithology Summary Lithology Description	Interbedded SILTSTONE and SANDSTONE SILTSTONE: medium light grey to greyish brown, minor very light grey, soft to firm, trace moderately hard, subblocky, minor very fine quartz grains, 10% lithics, micromcaceous in part,, non-calcareous, trace very fine carbonaceous detritus, rare fine coally laminations. SANDSTONE: friable to commonly moderately hard, very light grey to medium grey, translucent, light greenish grey, very fine to fine, subangular to subrounded, well sorted, subspherical, trace argillaceous matrix, common moderate calcareous cement, minor weak siliceous cement, minor green grey lithics, minor brownish black carbonaceous material, nil to very poor visible porosity, no hydrocarbon fluorescence.					
		Gas & Shows Comments	Background variable between 5 - 15 units with occasional minor peaks (max 42 units at 547.0 mMDRT).					
		ROP Comments	Steady with occasional stringers.					
610.0 - 710.0 Min :4.70 Avg :26.10 Max :56.00		Lithology Summary Lithology Description	SILTSTONE with minor SANDSTONE laminations that decrease with depth SILTSTONE: medium light grey to greyish brown, minor very light grey, trace brownish black, soft to firm, minor moderately hard, subblocky to occasionally blocky, minor very fine quartz grains, 10% lithics,micromcaceous in part,, non-calcareous, occasional very fine carbonaceous detritus, rare fine coally laminations. SANDSTONE: friable to commonly moderately hard, very light grey to medium grey, translucent, light greenish grey, very fine to fine, trace medium grained, subangular to subrounded, moderately well sorted, subspherical, trace argillaceous matrix, common moderate to strong calcareous cement, minor weak siliceous cement, minor green grey lithics, minor brownish black carbonaceous material, nil to very poor visible porosity, no hydrocarbon fluorescence.					
		0 0 01 0						
		Gas & Shows Comments	Background variable between 5 - 15 units.					

	Gas Summary										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	380.0 - 480.0	9.0	2,050	10	1	1	1	0	0	0	0
Peak	428.0	32.0	6,875	8	5	2	1	1	0	0	0
Peak	435.0	39.0	8,649	74	7	3	2	1	0	0	0
Peak	443.0	34.0	7,559	55	11	7	3	2	1	0	0
Background	480.0 - 530.0	10.0	2,400	20	15	7	4	3	1	0	0
Background	530.0 - 610.0	10.0	2,500	35	10	7	1	2	1	0	0
Peak	548.0	42.0	8,793	124	18	15	2	4	1	0	0
Background	610.0 - 710.0	10.0	2,500	40	20	10	3	2	1	0	0

Comments

06:00 Hrs Update				
Depth (MDRT):	0.0m			
Progress Since Midnight:	Om Control of the Con			
Operation Summary:	rilled 12-1/4" surface hole from 655.0 to 750.0 mMDRT.			
ROP Summary:	Steady around 25 m/hr.			
Formation Summary:	Mackunda Formation			
Lithology Summary:	Siltstone with minor Sandstone			
Gas Summary:	Background 10 - 15 units.			

Wellsite Geologist(s)

(Days) - Alan Wrightstone (Nights) -

	<u>Tibor-</u>	<u>1 Drilling</u>		
	(associated DDR # 10)			
	Well	Details		
:754.0 m	Report Period	:00:00 - 24:00	Date	: 10 Feb 2013
:754.0 m	Last Csg Size	:	24hr Progress	:99.0 m
: 613.85 m	Last Csg Shoe MD	:	Report Start Depth	: 655.0 m
:5.15 m	Last Csg Shoe TVD	:	Report End Depth	: 754.0 m
: 135.0 m	FIT / LOT	:/	Days since Spud	: 3.29
:	Liner (MDRT/TVDRT)	:/	Rig	:Ensign 918
: 12.250 in			Mud Weight	:8.80 ppg
:751.0 m / 741.0 m			Mud Type	:Spud mud
: Inc. 0.50 °				
Az 0.00 °				
	:754.0 m :613.85 m :5.15 m :135.0 m : :12.250 in :751.0 m / 741.0 m :Inc. 0.50 °	### DAILY GEOLOGY Well	DAILY GEOLOGY REPORT NUMBER: 4	Well Details

Geology 24hr Operations Summary				
24hr Summary: Drilled 12-1/4" surface hole to 754.0 mMDRT (section TD). Circulated hole clean and spotted HiVis pill				
	bottom. POOH to surface and rigged up to run 9-5/8" casing. Commenced running casing.			
24hr Forward Plan:	Rig up cement unit and cement casing. Install and pressure test BOPS.			

	Formation Tops								
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.85	18 Low	0.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85						
Toolebuc Formation	929.0	929.0	788.85						
Wallumbilla Formation	975.0	975.0	834.85						
Cadna-Owie Formation	1215.0	1215.0	1074.85						
Murta Formation	1286.0	1286.0	1145.85						
Namur Sandstone	1316.0	1316.0	1175.85						
Westbourne Formation	1412.0	1412.0	1271.85						
Adori Sandstone	1482.0	1482.0	1341.85						
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638.0	1638.0	1497.85						

	Lithology Summary							
Internal m MDRT	ROP (m/h)		Lithology Comments					
710.0 - 754.0	Min :7.70 Avg :26.90	Lithology Summary	SILTSTONE with minor SANDSTONE laminations and a thin DOLOMITE stringer as the base of the section.					
	Max :33.20	Lithology Description	SILTSTONE: medium light grey to greyish brown, occasional very light grey, soft to firm, common moderately hard, subblocky to occasionally blocky, minor very fine quartz grains, 10% lithics, non-calcareous, occasional very fine carbonaceous detritus, rare fine coally laminations. SANDSTONE:moderately hard, occasionally firm and friable, very light grey to medium grey, translucent, light greenish grey, very fine to fine, trace medium grained, subangular to subrounded, moderately well sorted, subspherical, trace argillaceous matrix, common moderate to strong calcareous cement, minor weak siliceous cement, trace brownish black carbonaceous material, nil to very poor visible porosity, no hydrocarbon fluorescence. DOLOMITE: olive grey to brown grey, very hard, subfissile, crypto- to microcrystalline, trace very finebrownish black carbonaceous specks.					
		Gas & Shows Comments	Constant between 10 - 20 units, no peaks observed.					
		ROP Comments	Steady at around 27 m/hr.					

	Gas Summary										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	710.0 - 754.0	13.0	2,600	90	75	23	8	3	1	0	0

	General Comments						
	Comments						
	06:00 Hrs Update						
Depth (MDRT):	54.0m						
Progress Since Midnight:	0.0m						
Operation Summary:	Run casing to 746.0 mMDRT, wash to bottom. Fix faulty cellar pump.						
ROP Summary:	No drilling done.						
Formation Summary:	Mackunda Formation						
Lithology Summary:	SILTSTONE with minor SANDSTONE laminations that decrease with depth.						
Gas Summary:	No gas observed.						
	Wellsite Geologist(s)						
	(Days) - Alan Wrightstone (Nights) -						

				Tibor-1 D	rilling				
Date: 11 Feb 2013			DAILY GE	OLOGY REP	ORT NUMBE	R: 5		(assoc	ciated DDR # 11)
				Well Det	ails				
Depth MDBRT	:754.0 m	:754.0 m Report Period :00:00 - 24:00 Date				:11 Feb	:11 Feb 2013		
Depth TVDBRT	:754.0 m		Last Csg Size	:9.0	325 in		nr Progress	:	
Depth TVDSS	: 613.85 r	n	Last Csg Sho	e MD : 75	0.9 m	Re	port Start Dept	h :655.0 m	1
RT - GL	:5.15 m		Last Csg Shoe	TVD :75	0.9 m		port End Depth	1 :754.0 m	1
Ground Level	: 135.0 m		FIT / LOT	:/			ys since Spud	:4.29	
RT - Hanger	:		Liner (MDRT/T	VDRT) :/		Rig		: Ensign	
Hole Size	: 12.250 ii	1					d Weight	:8.80 pp	g
Last Survey (MDRT/TVDF	•	1				Mu	d Type	: Spud m	ud
Survey Deviation	: Inc. 0.50	1							
	Az 0.00	0							
			Geology 2	24hr Opera	tions Sum	mary			
24hr Summary:							e hole clean un		
				<u> </u>			ng equipment ar		
24hr Forward Plan:			-		•	-	sembly. Run in		ement and 3m
		new t	formation, perfo	rm LOT. Com	mence drilling	g 8-1/2" produ	ction hole section	on.	
				Formation	Tops				
Formation		Prognose	d		Actual		Diff.	Thickness	Pick Criteria
	MDRT	TVDRT	TVDSS	MDRT	TVDRT	TVDSS	+/- TVD	TVD	
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.85	18 Low	0.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85						
Toolebuc Formation	929.0	929.0	788.85						
Wallumbilla Formation	975.0	975.0	834.85						
Cadna-Owie Formation	1215.0	1215.0	1074.85						
Murta Formation	1286.0	1286.0	1145.85						
Namur Sandstone	1316.0	1316.0	1175.85						
Westbourne Formation	1412.0	1412.0	1271.85						
Adori Sandstone	1482.0	1482.0	1341.85						
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638.0	1638.0	1497.85						
			G	eneral Co	nments				
				Comme	nts				
			(06:00 Hrs l	Jpdate				
Depth (MDRT):	754.0m								
Progress Since Midnight									
Operation Summary:	Complete	mplete nippling up BOPs, pressure test BOPs. Leak in choke manifold, re-grease and re-test. Continued testing BOPs (all							

SILTSTONE with minor SANDSTONE laminations that decrease with depth.

(Days) - Alan Wrightstone

Wellsite Geologist(s)

(Nights) -

ROP Summary:

Gas Summary:

Formation Summary:

Lithology Summary:

tests good).

Nil

No drilling done.

Mackunda formation

		<u>Tibor-</u>	1 Drilling		
Date: 12 Feb 2013		DAILY GEOLOGY	REPORT NUMBER: 6		(associated DDR # 12)
		Well	Details		
Depth TVDBRT Depth TVDSS RT - GL Ground Level RT - Hanger Hole Size Last Survey (MDRT/TVDRT)	:754.0 m :754.0 m :613.85 m :5.15 m :135.0 m : :8.500 in :751.0 m / 741.0 m :Inc. 0.50 ° Az 0.00 °	Report Period Last Csg Size Last Csg Shoe MD Last Csg Shoe TVD FIT / LOT Liner (MDRT/TVDRT)	: 00:00 - 24:00 : 9.625 in : 750.9 m : 750.9 m :/ 16.64 ppg :/	Date 24hr Progress Report Start Depth Report End Depth Days since Spud Rig Mud Weight Mud Type	: 12 Feb 2013 : : 655.0 m : 754.0 m : 5.29 : Ensign 918 : 8.90 ppg : KCL/PHB/POL mud
24hr Summary:			perations Summary		ke manifold and re-test. L/O

	Geology 24th Operations Summary							
24hr Summary:	N/U up flow and flare lines. M/U test plug and test BOPs. Re-greasae leaky choke manifold and re-test. L/O							
	test plu and M/U test cup, test BOPs. Leaking at wellhead/casing connection. Re-seat cup and re-test, good							
	test. RIH and set wear bushing, slipped and cut drilling line. M/U 8-1/2" production drilling BHA and RIH. Ta							
	TOC at 736.7 mMDRT.Drill cement, float, shoe and rathole to 754.0 mMDRT.							
24hr Forward Plan:	d Plan: Drill 3m new formation, perform LOT. Commence drilling 8-1/2" production hole.							
	Formation Tops							

	Formation Tops								
Formation		Prognosed			Actual			Thickness	Pick Criteria
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.85	18 Low	0.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85						
Toolebuc Formation	929.0	929.0	788.85						
Wallumbilla Formation	975.0	975.0	834.85						
Cadna-Owie Formation	1215.0	1215.0	1074.85						
Murta Formation	1286.0	1286.0	1145.85						
Namur Sandstone	1316.0	1316.0	1175.85						
Westbourne Formation	1412.0	1412.0	1271.85						
Adori Sandstone	1482.0	1482.0	1341.85						
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638 0	1638 0	1497 85						

General Comments Comments

	06:00 Hrs Update
Depth (MDRT):	769.0m
Progress Since Midnight:	15.0m
Operation Summary:	Drilled 3m new formation to 757.0 mMDRT. Perform LOT (result = 16.7 ppg EMW). Drilled new hole to 769.0 mMDRT.
ROP Summary:	Steady at 15-20 m/hr.
Formation Summary:	Mackunda Formation
Lithology Summary:	Siltstone
Gas Summary:	Low, around 3-5 units.

Wellsite Ge	eologist(s)	
(Days) - Alan Wrightstone	(Nights) -	

Az 0.00 °

Date: 13 Feb 2013			(associated DDR # 13)		
		Well	Details		
Depth MDBRT	:933.0 m	Report Period	:00:00 - 24:00	Date	:13 Feb 2013
Depth TVDBRT	:933.0 m	Last Csg Size	: 9.625 in	24hr Progress	: 186.0 m
Depth TVDSS	:792.85 m	Last Csg Shoe MD	:750.9 m	Report Start Depth	: 754.0 m
RT - GL	: 5.15 m	Last Csq Shoe TVD	:750.9 m	Report End Depth	: 940.0 m
Ground Level	: 135.0 m	FIT / LOT	:/ 16.64 ppg	Days since Spud	: 6.29
RT - Hanger	:	Liner (MDRT/TVDRT)	:/	Rig	:Ensign 918
Hole Size	: 8.500 in			Mud Weight	:8.90 ppg
Last Survey (MDRT/TVDRT)	:932.0 m / 889.9 m			Mud Type	: KCL/PHB/POL mud
Survey Deviation	: Inc. 2.00 $^{\circ}$				

Tibor-1 Drilling

Geology 24hr Operations Summary						
24hr Summary:	Drill 3m new formaiton to 757.0 mMDRT, circulate hole for LOT. Perform LOT (16.6 EMW). Drilled 8-1/2" production hole from 757.0 to 933.0 mMDRT surveying reguarly to monitor inclination.					
24hr Forward Plan:	Drill 8-1/2" production hole to +/- 1400.0 mMDRT, perform wiper trip to shoe, continue drilling well TD at 1738.0 mMDRT.					

	Formation Tops									
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria	
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)		
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface	
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.85	18 Low	117.0	Lithology/ROP	
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.85	50 Low	0.0	Lithology	
Toolebuc Formation	929.0	929.0	788.85							
Wallumbilla Formation	975.0	975.0	834.85							
Cadna-Owie Formation	1215.0	1215.0	1074.85							
Murta Formation	1286.0	1286.0	1145.85							
Namur Sandstone	1316.0	1316.0	1175.85							
Westbourne Formation	1412.0	1412.0	1271.85							
Adori Sandstone	1482.0	1482.0	1341.85							
Birkhead Formation	1541.0	1541.0	1400.85							
Hutton Sandstone	1638.0	1638.0	1497.85							

		Litholog	gy Summary				
nternal m MDRT	ROP (m/h)		Lithology Comments				
754.0 - 790.0	Min :3.60 Avg :13.10 Max :19.60	Lithology Summary Lithology Description	SILTSTONE with trace SANDSTONE laminations SILTSTONE: olive grey to greyish brown, minor medium to medium light gre soft to firm, minor moderately hard, subblocky to occasionally blocky, weakly calcareous, trace very fine quartz grains, 10% lithics,				
			trace SANDSTONE: firm and friable, very light grey to medium grey, translucent, light greenish grey, very fine to fine, subangular to subrounded, moderately well sorted, subspherical, trace argillaceous matrix, common moderate to strong calcareous cement, nil to very poor visible porosity, no hydrocarbon fluorescence.				
		Gas & Shows Comments	Around 5-9 units throughout the interval, no peaks seen.				
		ROP Comments	Generally steady at 17 m/hr with occasional thin hard setions.				
790.0 - 830.0	Min :3.80 Avg :19.40	Lithology Summary Lithology Description	Massive SILTSTONE with trace thin LIMESTONE laminations. SILTSTONE: medium dark grey, trace brownish grey to olive grey, firm to				
Max :33.50			moderately hard, subblocky to occasionally blocky, weakly carcalreous, occasionally argillaceous in part. LIMESTONE: mudstone, yellowish grey, soft, subblocky, commonly argillaceous.				
		Gas & Shows Comments	Consistently 5-7 units throughout the interval, no peaks seen.				
		ROP Comments	Steady around 20 m/hr, occasional slow stringers.				
830.0 - 940.0	Min :1.50	Lithology Summary	Massive SILTSTONE with occasional LIMESTONE stringers.				
	Avg :17.00 Max :34.90	Lithology Description	SILTSTONE: medium dark grey, minor brownish grey to olive grey, firm to moderately hard, subblocky to occasionally blocky, weakly carcalreous, occasionally argillaceous in part. LIMESTONE: mudstone, yellowish grey to occasionally very light grey, soft, subblocky, commonly argillaceous.				
		Gas & Shows Comments					
		ROP Comments	Generall steady around 17 m/hr, but decreased slowly with depth. From 933 mMDRT WOB was reduced to control inclination (increased from 1 to 2 deg) This caused a drop in average ROP to around 5-10 m/hr near base of the section (from 933.0 mMDRT).				
		Gas	Summary				

	Gas Summary										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	754.0 - 790.0	8.0	1,200	54	48	10	6	2	1	0	0
Background	790.0 - 830.0	6.0	870	50	48	14	9	2	1	0	0
Background	830.0 - 866.0	6.0	850	54	65	16	15	2	1	0	0
Background	866.0 - 940.0	20.0	1,750	180	350	80	160	40	30	0	0

Comments

06:00 Hrs Update						
Depth (MDRT):	963.0m					
Progress Since Midnight:	30.0m					
Operation Summary:	Drilled 8-1/2" production hole from 933.0 to 963.0 mMDRT.					
ROP Summary:	Around 5-10 m/hr. Has been controlled due to concerns over inclination since 933.0 mMDRT.					
Formation Summary:	Allaru Formation					
Lithology Summary:	SILTSTONE with traces of LIMESTONE.					
Gas Summary:	Steady around 20 units.					

Wellsite Geologist(s)

(Days) - Alan Wrightstone

(Nights) -

		<u>Tibor-</u>	<u>1 Drilling</u>						
Date: 14 Feb 2013		DAILY GEOLOGY	REPORT NUMBER: 8		(associated DDR # 14)				
Well Details									
Depth MDBRT	:1,100.0 m	Report Period	:00:00 - 24:00	Date	:14 Feb 2013				
Depth TVDBRT Depth TVDSS	: 1,100.0 m : 959.85 m	Last Csg Size Last Csg Shoe MD	: 9.625 in : 750.9 m	24hr Progress Report Start Depth	: 167.0 m : 933.0 m				
RT - GL	:5.15 m	Last Csg Shoe TVD	:750.9 m	Report End Depth	: 1,120.0 m				
Ground Level	: 135.0 m	FIT / LOT	:/ 16.64 ppg	Days since Spud	:7.29				
RT - Hanger	: .0.500 to	Liner (MDRT/TVDRT)	:/	Rig	: Ensign 918				
Hole Size Last Survey (MDRT/TVDRT)	: 8.500 in : 1,062.0 m /			Mud Weight Mud Type	:9.10 ppg :KCL/PHB/POL mud				
Survey Deviation	1,061.8 m : Inc. 1.00 ° Az 100.00 °								

Geology 24hr Operations Summary						
24hr Summary: Drilled 8-1/2" production hole from 933.0 to 1100.0 mMDRT controlling drilling parameters to aid						
	directional control (limit inclination buildup).					
24hr Forward Plan:	Drill 8-1/2" hole to 1400.0 mMDRT, wiper trip to shoe, continue drilling to well TD at +/- 1738.0 mMDRT.					
Formation Tops						

	Formation Tops									
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria	
	MDRT	TVDRT	TVDSS	MDRT	TVDRT	TVDSS	+/- TVD	TVD		
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)		
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface	
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.8300000	18 Low	117.0	Lithology/ROP	
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.82	50 Low	219.9	Lithology	
Toolebuc Formation	929.0	929.0	788.85	970.0	969.9	829.74	40.9 Low	70.0	Lithology	
Wallumbilla Formation	975.0	975.0	834.85	1040.0	1039.9	899.7500000	64.9 Low	0.0	Lithology	
Cadna-Owie Formation	1215.0	1215.0	1074.85							
Murta Formation	1286.0	1286.0	1145.85							
Namur Sandstone	1316.0	1316.0	1175.85							
Westbourne Formation	1412.0	1412.0	1271.85							
Adori Sandstone	1482.0	1482.0	1341.85							
Birkhead Formation	1541.0	1541.0	1400.85							
Hutton Sandstone	1638.0	1638.0	1497.85							

		Litholog	gy Summary
Internal m MDRT	ROP (m/h)		Lithology Comments
940.0 - 970.0	Min :2.00 Avg :8.50 Max :18.50	Lithology Summary Lithology Description	Massive SILTSTONE with occasional thin LIMESTONE stringers. SILTSTONE: medium dark grey to dark grey, oocasional greyish black to olive black, firm to moderately hard in part, subblocky to subfissile, commmonly argillaceous, moderately calcareous. LIMESTONE: mudstone, yellowish grey to occasionally very light grey, soft,
		Gas & Shows Comments ROP Comments	subblocky, commonly argillaceous. Averaging 25 units with a peak of 62 units at 970.0 mMDRT. Mostly variable between 5 and 10 m/hr.
970.0 - 1,040.0 Min :2.00 Avg :11.80 Max :23.80		Lithology Summary Lithology Description	SILTSTONE with SILTY SANDSTONE interbeds. SILTSTONE: greyish black to olive black, minor medium dark grey to dark grey, firm to moderately hard in part, subblocky to subfissile, commmonly argillaceous, moderately calcareous, trace soft, white calcareous material. SILTY SANDSTONE: friable to dominantly hard, translucent to very light grey, very fine to minor fine, common silt-sized, moderately well sorted, subangular to subrounded, subspherical, trace quartz silt matrix, minor argillaceous matrix, weak calcareous cement, rare to minor very fine grained glauconite,
		Gas & Shows Comments ROP Comments	trace fine grained black lithics, no visible porosity, no hydrocarbon fluorescence. Commonly around 15 - 20 units but baseline was elevated to 30 units between 970.0 and 979.0 mMDRT. A peak of 81 units was recorded at 977.5 mMDRT. Mainly around 15 m/hr with occasional slower sections.
1,040.0 - 1,078.5	Min :2.30 Avg :23.30	Lithology Summary	Massive SILTSTONE with occasional SANDSTONE interbeds and minor thin LIMESTONE laminations near base of the interval.
	Max :35.40	Lithology Description	SILTSTONE: medium grey to olive grey, trace greyish black to olive black,, firm to rare moderately hard, subblocky to subfissile, argillaceous in part, arenaceous in part, moderately calcareous, trace loose very fine grained quartz. SANDSTONE: predominantly loose, occasionally firm and friable, translucent to very light grey, very fine to minor fine, trace silt-sized, moderately well sorted, subangular to subrounded, subspherical, rare quartz silt matrix, trace argillaceous matrix, weak calcareous cement, minor very fine grained glauconite, trace fine grained black lithics, no visible porosity, no hydrocarbon fluorescence. LIMESTONE: mudstone, white to very light grey, hard, blocky, occasional dark microlaminations.
		Gas & Shows Comments ROP Comments	Consistently between 15 and 20 units throughout the section without any peaks being seen. Initially around 15 - 20 m/hr and increased gradually to 30 m/hr but the end of
1,078.5 - 1,120.0	Min :2.90 Avg :14.00	Lithology Summary	Interbedded SANDSTONE and SILTSTONE with occasional thin LIMESTONE laminations.
	Max :29.90	Lithology Description	SILTSTONE: medium grey to olive grey, trace greyish black to olive black,, firm to rare moderately hard, subblocky to subfissile, argillaceous in part, arenaceous in part, moderately calcareous, trace loose very fine grained quartz. SANDSTONE: loose, common firm and friable, translucent to very light grey, very fine to fine, moderately well sorted, subangular to subrounded, subspherical, rare quartz silt matrix, trace argillaceous matrix, minor calcareous cement, minor very fine grained glauconite, trace carbonaceous specks, no visible porosity, no hydrocarbon fluorescence. LIMESTONE: mudstone, white to very light grey, minor very light brown, firm to commonly hard, blocky, occasional dark microlaminations, slightly dolomitic in part.
		Gas & Shows Comments	Variable between 15 and 30 untis without any significant peaks being seen.
		ROP Comments	Steady around 10 - 12 m/hr.

	Gas Summary										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	940.0 - 970.0	25.0	1,840	210	430	100	200	55	45	0	0
Background	970.0 - 1,040.0	15.0	1,280	110	190	40	90	25	25	0	0
Peak	970.0	62.0	4,980	580	1,100	230	490	120	100	0	0
Peak	977.5	81.0	8,700	840	1,275	200	460	90	80	0	0
Background	1,040.0 - 1,078.5	18.0	1,985	150	210	40	90	20	15	0	0
Background	1,078.5 - 1,120.0	17.0	1,885	150	220	45	100	20	20	0	0

Comments

06:00 Hrs Update							
Depth (MDRT):	1,135.0m						
Progress Since Midnight:	35.0m						
Operation Summary:	Drilled 8-1/2" production hole from 1100.0 to 1135.0 mMDRT.						
ROP Summary:	Around 5-10 m/hr. Has been controlled due to concerns over inclination since 933.0 mMDRT.						
Formation Summary:	Wallumbilla Formation						
Lithology Summary:	SILTSTONE and SANDSTONE interbeds with occasional LIMESTONE stringers.						
Gas Summary:	Steady between 5-10 units.						

Wellsite Geolo	ogist(s)
(Days) - Alan Wrightstone	(Nights) -

	<u>Tibor-1 Drilling</u>	
Date: 15 Feb 2013	DAILY GEOLOGY REPORT NUMBER: 9	(associated DDR # 15)
	Well Details	

Well Details												
Depth MDBRT	:1,338.0 m	Report Period	:00:00 - 24:00	Date	:15 Feb 2013							
Depth TVDBRT	: 1,338.0 m	Last Csg Size	: 9.625 in	24hr Progress	: 238.0 m							
Depth TVDSS	: 1,197.85 m	Last Csg Shoe MD	:750.9 m	Report Start Depth	: 1,100.0 m							
RT - GL	: 5.15 m	Last Csq Shoe TVD	:750.9 m	Report End Depth	: 1,356.0 m							
Ground Level	: 135.0 m	FIT / LOT	:/ 16.64 ppg	Days since Spud	: 8.29							
RT - Hanger	:	Liner (MDRT/TVDRT)	:/	Rig	:Ensign 918							
Hole Size	: 8.500 in			Mud Weight	:9.00 ppg							
Last Survey (MDRT/TVDRT)	: 1,300.0 m /			Mud Type	: KCL/PHB/POL mud							
	1,299.8 m											
Survey Deviation	: Inc. 0.50 °											
	Az 25.00 °											

Geology 24hr Operations Summary									
24hr Summary:	Drilled 8-1/2" production hole from 1100.0 to 1338.0 mMDRT, taking survery as programmed.								
24hr Forward Plan:	Wiper trip to shoe, continue drilling to well TD at +/- 1738.0 mMDRT.								

				Formation	Tops				
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.8300000	18 Low	117.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.82	50 Low	161.9	Lithology
Toolebuc Formation	929.0	929.0	788.85	912.0	911.9	771.75	17.1 High	58.0	Lithology
Wallumbilla Formation	975.0	975.0	834.85	970.0	969.9	829.75	5.1 High	245.0	Lithology
Cadna-Owie Formation	1215.0	1215.0	1074.85	1215.0	1214.9	1074.75	0.1 High	66.0	Lithology
Murta Formation	1286.0	1286.0	1145.85	1281.0	1280.9	1140.75	5.1 High	33.0	Lithology
Namur Sandstone	1316.0	1316.0	1175.85	1314.0	1313.9	1173.75	2.1 High	0.0	Lithology
Westbourne Formation	1412.0	1412.0	1271.85						
Adori Sandstone	1482.0	1482.0	1341.85						
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638.0	1638.0	1497.85						

		Litholoç	gy Summary						
Internal m MDRT	ROP (m/h)		Lithology Comments						
1,120.0 - 1,215.0	Min :3.30 Avg :17.60	Lithology Summary	Interbedded SILTSTONE and SANDSTONE with minor LIMESTONE laminations at base.						
	Max :33.30	Lithology Description	SILTSTONE: greyish black to olive black, minor dark grey, minor medium grey, moderately hard to predominantly very hard, commonly brittle, rare firm, subblocky to occasionally subfissile, argillaceous in part, commonly arenaceous in part, weakly calcareous in part, trace loose medium grained white calcite, trace disseminated pyrite. SANDSTONE: firm to moderately hard aggregates, ocassionally friable, translucent to very light grey, very fine to fine, moderately well sorted, subangular to subrounded, subspherical, occasional quartz silt matrix, minor calcareous cement, minor very fine grained glauconite, trace carbonaceous specks, rare light brownish grey dolomite, nil to very poor visible porosity, no hydrocarbon fluorescence. LIMESTONE: mudstone, white to very light brown, soft to crumbly, subblocky, common brown argillaceous microlaminations, slightly dolomitic, trace loose						
		Gas & Shows Comments	medium to coarse calcite grains. Background of 25 units increasing to 50 units in relation to increasing ROP.						
		ROP Comments	Average ROP 12m/hr to 1184 mMDRT, increased WOB giving average F of 25m/hr.						
1,215.0 - 1,266.0	Min :3.60 Avg :24.70	Lithology Summary	Interbedded SANDSTONE and SILTSTONE with SILTSTONE decreasing with depth.						
	Max :33.40	Lithology Description	SANDSTONE: friable to loose, minor hard very well cemented aggregates, translucent to very light grey, minor dark yellowish brown, very fine to lower fine grained, moderately well sorted, subangular to subrounded, subspherical, rarely silty in part, occasional light grey argillaceous matrix, strong calcareous-dolomitic cement, rare fine grained white and reddish brown lithics and feldspar fragments, trace glauconite, nil to very poor visible porosity, no hydrocarbon fluorescence. ARENACEOUS SILTSTONE: dark grey to medium grey, common greyish black to olive black, moderately hard to predominantly very hard, commonly brittle, subblocky to minor subfissile, commonly arenaceous in part grading to ARENACEOUS SILTSTONE, non to weakly calcareous in part, trace loose medium grained white calcite.						
		Gas & Shows Comments	Steady 28 units background, starting to increase from 1258 mMDRT to 47 units at base.						
		ROP Comments	Mainly steady at 25m/hr						
1,266.0 - 1,281.0	Min :8.00 Avg :24.90	Lithology Summary Lithology Description	Massive SANDSTONE. SANDSTONE: medium dark grey to greyish black, slightly hard to very hard,						
	Max :32.40		sub-blocky to blocky, very fine to lower very fine grained, common silt, well sorted, sub-angular to sub-rounded, sub-elongate to sub-spherical, grading to ARENACEOUS SILTSTONE, common medium dark grey, hard, upper very fine-grained cuttings, common strong calcareous-dolomitic cement in medium dark grey cuttings, argillaceous cement in greyish black cuttings, common black coal grains in greyish black cuttings, common K-feldspar grains in medium dark grey cuttings, medium dark grey cuttings indicate fine clean sand lamillae with poor visible porosity, nil to poor visible porosity in greyish black cuttings, no hydrocarbon fluorescence.						
		Gas & Shows Comments	Steady 45-50 units with a peak at 1272.5 mMDRT						
		ROP Comments	Decreasing from 27m/hr to 18m/hr with depth.						

		Litholog	y Summary						
Internal m MDRT	ROP (m/h)		Lithology Comments						
1,281.0 - 1,314.0	Min :11.30 Avg :23.10 Max :34.10	Lithology Summary Lithology Description	Dominantly SANDSTONE with minor interbedded SILTSTONE. SANDSTONE: medium light grey, slightly hard, sub-block to blocky, rare medium to lower very fine, dominantly fine to lower-fine grained, rare coarse shattered quartz grains/mineral vein fragments, moderately sorted, sub-angular, sub-spherical to sub-elongate, cement variable, weak calcareous-dolomitic cement in places grading to strong siliceous cement, common K-feldspar, common kaolin, nil to poor visible porosity, nil hydrocarbon fluorescence. ARENACEOUS SILTSTONE: greyish black, slightly hard, brittle, blocky in places, sub-fissile in places, argillaceous matrix, arenaceous, weak dolomitic cement, rare k-feldspar, rare coal grains.						
		Gas & Shows Comments ROP Comments	80 units background, gradual decrease after peak at 1290 mMDRT Relatively steady with slower interval near base.						
1,314.0 - 1,356.0	Min :5.70 Avg :17.90	Lithology Summary	Dominantly SANDSTONES with occasional ARENACEOUS SILTSTONE interbeds.						
	Max :29.40	Lithology Description	SANDSTONE: translucent loose grains, coarse to very fine, very poorly sorted, angular, sub-elongate to elongate, weak siliceous cement, rare lithic fragments, rare K-feldspar grains, moderate inferred porosity, no hydrocarbon fluorescence. ARENACEOUS SILTSTONE: dark grey, firm, sub-blocky, crumbly, common black carbonaceous grains, common K-feldspar.						
		Gas & Shows Comments ROP Comments	Initial background of 55 units, decreasing to 30 units with depth. Marginally faster in the upper sections of the interval.						

	Gas Summary													
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm			
Background	1,120.0 - 1,215.0	28.0	4,300	360	374	68	123	27	23	0	0			
Background	1,215.0 - 1,266.0	28.0	3,670	276	285	61	141	42	42	0	0			
Peak	1,242.5	46.4	5,194	450	506	114	246	73	66	0	0			
Background	1,266.0 - 1,281.0	50.0	5,780	549	579	130	290	93	84	0	0			
Peak	1,272.5	83.9	9,637	944	1,023	239	535	174	159	0	0			
Background	1,281.0 - 1,314.0	71.0	8,390	815	830	206	431	158	132	0	0			
Background	1,314.0 - 1,356.0	40.0	5,392	403	265	49	116	45	47	0	0			

Comments

Updated formation tops for Toolebuc and Wallumbilla in Formations Table.

	06:00 Hrs Update								
Depth (MDRT):	1,357.0m								
Progress Since Midnight:	19.0m								
Operation Summary: Drilled ahead with 8 1/2" BHA, performed wiper trip to shoe.									
ROP Summary:	Steady 16m/hr								
Formation Summary:	Lower NAMUR FORMATION								
Lithology Summary:	SANDSTONE								
Gas Summary:	Steady 30 units.								

Wellsite Geologist(s) (Days) - Alan Wrightstone (Nights) -

	<u>Tibor-1 Drilling</u>												
Date: 16 Feb 2013		DAILY GEOLOGY	REPORT NUMBER: 10		(associated DDR # 16)								
Well Details													
Depth MDBRT	:1,473.0 m	Report Period	:00:00 - 24:00	Date	:16 Feb 2013								
Depth TVDBRT	: 1,473.0 m	Last Csg Size	:9.625 in	24hr Progress	: 135.0 m								
Depth TVDSS	: 1,332.85 m	Last Csg Shoe MD	:750.9 m	Report Start Depth	: 1,338.0 m								
RT - GL	:5.15 m	Last Csg Shoe TVD	:750.9 m	Report End Depth	: 1,473.0 m								
Ground Level	: 135.0 m	FIT / LOT	:/ 16.64 ppg	Days since Spud	: 9.29								
RT - Hanger	:	Liner (MDRT/TVDRT)	110	Rig	:Ensign 918								
Hole Size	:8.500 in	,		Mud Weight	: 9.00 ppg								
Last Survey (MDRT/TVDRT)	:1,388.0 m/			Mud Type	: KCL/PHB/POL mud								
	1,387.8 m												
Survey Deviation	: Inc. 0.80 °												
	Az 17.00 °												

Geology 24hr Operations Summary								
24hr Summary:	Drilled ahead with 8 1/2" BHA to 1463 mMDRT (kelly-down), p/u to ream, encountered tight spot at 1457 mMDRT, worked string, encountered tight spot at 1451 mMDRT while reaming, worked string up, RIH and							
	tagged top of 8m MD of fill, reamed down through fill, pumped pill, reamed to bottom, reamed last pipe three							
	times before making connection and drilled ahead.							
24hr Forward Plan:	Drill ahead with 8 1/2" BHA.							

	Formation Tops													
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria					
	MDRT	TVDRT TVDSS		MDRT	MDRT TVDRT		+/- TVD	TVD						
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)						
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface					
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.8300000	18 Low	117.0	Lithology/ROP					
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.82	50 Low	161.9	Lithology					
Toolebuc Formation	929.0	929.0	788.85	912.0	911.9	771.75	17.1 High	58.0	Lithology					
Wallumbilla Formation	975.0	975.0	834.85	970.0	969.9	829.75	5.1 High	245.0	Lithology					
Cadna-Owie Formation	1215.0	1215.0	1074.85	1215.0	1214.9	1074.75	0.1 High	66.0	Lithology					
Murta Formation	1286.0	1286.0	1145.85	1281.0	1280.9	1140.75	5.1 High	33.0	Lithology					
Namur Sandstone	1316.0	1316.0	1175.85	1314.0	1313.9	1173.75	2.1 High	101.0	Lithology					
Westbourne Formation	1412.0	1412.0	1271.85	1415.0	1414.9	1274.75	2.9 Low	44.9	ROP					
Adori Sandstone	1482.0	1482.0	1341.85	1460.0	1459.8	1319.65	22.2 High	0.0	ROP/Lithology					
Birkhead Formation	1541.0	1541.0	1400.85											
Hutton Sandstone	1638.0	1638.0	1497.85											

		Litholog	gy Summary
Internal m MDRT	ROP (m/h)		Lithology Comments
1,356.0 - 1,380.0	Min :6.10 Avg :16.50	Lithology Summary	SANDSTONES with rare ARENACEOUS SILTSTONE beds decreasing with depth.
	Max :25.20	Lithology Description	SANDSTONE: loose, translucent to very light grey, very fine to medium grained, subrounded to rarely subangular, very well sorted, moderate sphericity, trace weak siliceous cement, trace fine grained calcite, fair to good inferred porosity, no fluoresence. SILTSTONE: dark grey to greyish black, firm to occasionally moderately hard, blocky, very finely arenaceous, carbonaceous, noon-calcareous, trace micromicaceous in part.
		Gas & Shows Comments	Remains consistent.
		ROP Comments	Relatively consistent through interval.
1,380.0 - 1,386.0	Min :16.70	Lithology Summary	Massive SANDSTONE.
Avg :21.10 Max :25.50		Lithology Description	SANDSTONE: loose to common friable aggregates, translucent to very light grey (50%), brownish black to greyish black (50%), very fine to lower medium grained, subrounded to rarely subangular, very well sorted, moderate sphericity, trace fractured grains, occasional weak siliceous cement, trace very light grey argillaceous matrix, very silty where brownish black to greyish black grading to ARENACEOUS SILTSTONE, trace fine grained calcite, trace very fine grained black lithics/carbonaceous specks, trace pyritic cement, poor visual porosity, trace dull yellow pinpoint fluorescence, bluish white crush cut, thick yellowish white residue ring.
		Gas & Shows Comments	Rising background with single good gas peak, lack of lighter gas compounds
			infer a heavy residual hydrocarbon.
		ROP Comments	Remains consistent, increases at end of interval.
1,386.0 - 1,415.0	Min :3.90 Avg :13.00 Max :25.60	Lithology Summary Lithology Description	Massive SANDSTONE, becomes fine and better sorted with depth. SANDSTONE: loose, translucent to very light grey, very fine to medium grained, subrounded to rarely subangular, very well sorted, moderate sphericity, trace weak siliceous cement, trace fine grained calcite, fair to good inferred porosity, no fluoresence.
		Gas & Shows Comments	Single high peak at top of interval before dropping down to lower background that shown in previous interval.
		ROP Comments	Initial ROP decreases quickly and remains consistent through interval.
1,415.0 - 1,460.0	Min :5.20 Avg :17.40	Lithology Summary	SANDSTONES with minor ARENACEOUS SILTSTONE beds becoming absent with depth.
	Max :28.40	Lithology Description	SANDSTONE: firm to friable, translucent to very light grey, very fine to medium grained, rare lower coarse grained, subrounded to rarely subangular, moderately well sorted, moderate sphericity, trace weak siliceous cement, minor fine grained calcite, poor to fair inferred porosity, no fluoresence. SILTSTONE: dark yellowish brown to yellowish brown, minor greyish black to brownish black, firm to minor moderately hard, subblocky to rarely subfissile, commonly arenaceous grading to ARENACEOUS SILTSTONE in part, micromicaceous in part, non-calcareous.
		Gas & Shows Comments	Background increases from previous interval. Single peak at 1445.5 mMDRT lack of lighter compounds infers heavy residual hydrocarbons.
		ROP Comments	Slight increase through centre of interval.
1,460.0 - 1,476.0	Min :4.30 Avg :7.90 Max :13.40	Lithology Summary Lithology Description	Massive SANDSTONE SANDSTONE: translucent, loose, fine sand cuttings slightly firm, brittle, platy, very fine to medium, rare lower coarse grains, sub-rounbded to rarely sub-angular, sub-elongate, fines sub-spherical, moderately sorted, weak silicious cement, common K-feldspar grains, poor to fair inferred porosity, trace dull yellow/green patchy fluorescence, very pale bluish white crush cut, thin pale blue/white residue ring.
		Gas & Shows Comments	Cuttings with non-mineral fluorencence rare. Background gas drops below previous interval.
		ROP Comments	Consistent through interval.

	Oil Shows																			
	Basic Details							Oil Stain Details												
Depth From (m)	Depth To (m)	Thickness (m)	Formation	Lithology	MW Over Balance	Increase in ROP into Show Interval		Show Lithology With Fluor	White Light: Amount of Stain	White Light: Stain Colour	White Light: Cut Colour	White Light: Amount of Residue	Fluor Colour	Fluor Distrib	Fluor Intensity	Dominant Cut Fluor	HC Residue Spot Dish	HC Odour	Oil Scum in Mud	Show Rate (Category)
1,380.0	1,383.0	3.00	Namur Sandstone	Sandstone	Nil	None	5% or less	Trace	Nil	Nil	Nil	Nil	Yellow	Pin Point	Dull	Crush	Thick Ring	None	None	-
1,470.0	1,473.0	3.00	Adori Sandstone	Sandstone	Nil	None	5% or less	Trace	Nil	Nil	Nil	Nil	Yellow	Patchy	Dull	Crush	Nil	None	None	-

	Gas Summary Cas Summary										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	1,356.0 - 1,380.0	27.0	3,760	266	182	40	81	34	35	0	0
Background	1,380.0 - 1,386.0	50.0	5,722	617	520	118	225	89	70	0	0
Peak	1,384.5	150.0	15,043	2,149	1,967	465	893	335	243	0	0
Background	1,386.0 - 1,415.0	23.0	1,878	230	266	73	163	76	70	0	0
Peak	1,387.5	180.0	16,458	2,542	2,451	611	1,191	485	357	0	0
Background	1,415.0 - 1,460.0	24.0	2,633	218	180	54	112	67	58	0	0
Peak	1,426.5	48.0	7,367	525	388	109	210	117	99	0	0
Peak	1,435.5	82.6	7,092	911	831	247	474	249	188	0	0
Peak	1,445.0	114.2	10,179	1,262	1,183	376	753	433	335	0	0
Background	1,460.0 - 1,476.0	17.0	1,707	123	99	31	68	45	45	0	0

Comments

Potential wash-out of hole, base at 1463 mMDRT, more wash-outs likely in Westbourne and Adori Formations.

06:00 Hrs Update					
Depth (MDRT):	1,482.0m				
Progress Since Midnight:	9.0m				
Operation Summary:	Drilling ahead with 8 1/2" BHA.				
ROP Summary:	Steady 16m/hr				
Formation Summary:	Upper Adori Formation.				
Lithology Summary:	Massive clean SANDSTONE				
Gas Summary:	Generally remaining low. Unusually low C1 compared to heavier compounds infers traces of heavy/residual hydrocarbon.				

Wellsite Geologist(s)

(Days) - Alan Wrightstone (Nights) - Craig Bunting

		<u>Tibor-</u>	-1 Drilling				
Date: 17 Feb 2013	(associated DDR # 17)						
Well Details							
Depth MDBRT Depth TVDBRT Depth TVDSS RT - GL Ground Level RT - Hanger Hole Size Last Survey (MDRT/TVDR'	:1,486.0 m :1,485.9 m :1,345.75 m :5.15 m :135.0 m : :8.500 in T) :1,388.0 m / 1,387.8 m :Inc. 0.80 ° Az 17.00 °	Report Period Last Csg Size Last Csg Shoe MD Last Csg Shoe TVD FIT / LOT Liner (MDRT/TVDRT)	: 00:00 - 24:00 : 9.625 in : 750.9 m : 750.9 m : / 16.64 ppg : /	Date 24hr Progress Report Start Depth Report End Depth Days since Spud Rig Mud Weight Mud Type	: 17 Feb 2013 : 13.0 m : 1,476.0 m : 1,495.0 m : 10.29 : Ensign 918 : 9.30 ppg : KCL/PHB/POL mud		

Geology 24hr Operations Summary						
24hr Summary: Drill ahead to 1486.5 mMDRT, experienced problems picking up at connections, POOH to surface, bit 1/						
under-gauge on lower 2/3, in-gauge at shoulders, some damage to teeth, RIH w/ new bit, reamed do						
	7 joints and drilled remaining 4m MDRT to next connection, mud loss on trip in-line with former trips, drilled					
	ahead with 8 1/2" BHA.					
24hr Forward Plan:	Drill ahead with 8 1/2" BHA.					

Formation Tops									
Formation		Prognosed			Actual			Thickness	Pick Criteria
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.8300000	18 Low	117.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.82	50 Low	161.9	Lithology
Toolebuc Formation	929.0	929.0	788.85	912.0	911.9	771.75	17.1 High	58.0	Lithology
Wallumbilla Formation	975.0	975.0	834.85	970.0	969.9	829.75	5.1 High	245.0	Lithology
Cadna-Owie Formation	1215.0	1215.0	1074.85	1215.0	1214.9	1074.75	0.1 High	66.0	Lithology
Murta Formation	1286.0	1286.0	1145.85	1281.0	1280.9	1140.75	5.1 High	33.0	Lithology
Namur Sandstone	1316.0	1316.0	1175.85	1314.0	1313.9	1173.75	2.1 High	101.0	Lithology
Westbourne Formation	1412.0	1412.0	1271.85	1415.0	1414.9	1274.75	2.9 Low	44.9	ROP
Adori Sandstone	1482.0	1482.0	1341.85	1460.0	1459.8	1319.65	22.2 High	0.0	ROP/Lithology
Birkhead Formation	1541.0	1541.0	1400.85						
Hutton Sandstone	1638.0	1638.0	1497.85						

	Lithology Summary					
Internal m MDRT	ROP (m/h)		Lithology Comments			
1,476.0 - 1,495.0	Min :3.00 Avg :6.20 Max :9.70	Lithology Summary Lithology Description	Massive SANDSTONES with rare ARENACEOUS SILTSTONE stringers. This interval ends at end of bit-run. SANDSTONE: translucent, loose, fine sand cuttings slightly firm, brittle, platy,			
		Elitiology Description	very fine, rare lower coarse grains, sub-rounbded, sub-spherical becoming angular, sub-elongate with depth, well sorted, weak silicious cement becoming variably cemented with depth weak to strong, common K-feldspar grains, occasional kaolinite matrix, abundant fine carbonaceous grains in 1482-1485mMDRT sample, poor to fair inferred porosity, rare mineral fluorescence.			
		Gas & Shows Comments	Gas levels remain low.			
		ROP Comments	ROP remains consistent.			

	Gas Summary										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
	•••	Onico	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII		PPIII	PP
Background	1,476.0 - 1,495.0	10.8	1,064	98	86	26	53	31	27	0	0

Comments

* Potential wash-out of hole, base at 1463 mMDRT, more wash-outs likely in Westbourne and Adori Formations.

 * Increased mud weight from 9.0 to 9.3 ppg at 1482.0 mMDRT before drilling ahead.

06:00 Hrs Update					
Depth (MDRT):	1,509.0m				
Progress Since Midnight:	23.0m				
Operation Summary:	illed ahead with 8 1/2" BHA.				
ROP Summary:	Steady 7m/hr				
Formation Summary:	Continuing through the Adori Formation.				
Lithology Summary:	Massive SANDSTONE continues.				
Gas Summary:	Gas levels drop to a new background at 1473 mMDRT. There is also a relative reduction in the C3-C5 fraction compared to the C1 and C2 from 1473 downwards which likely represents a fluid boundary.				

Wellsite Geologist(s)					
(Days) - Alan Wrightstone	(Nights) - Craig Bunting				

	<u>Tibor-1 Drilling</u>	
Date: 18 Feb 2013	DAILY GEOLOGY REPORT NUMBER: 12	(associated DDR # 18)

Well Details						
Depth MDBRT	:1,723.0 m	Report Period	:00:00 - 24:00	Date	:18 Feb 2013	
Depth TVDBRT	: 1,723.0 m	Last Csg Size	:9.625 in	24hr Progress	: 237.0 m	
Depth TVDSS	: 1,582.85 m	Last Csg Shoe MD	:750.9 m	Report Start Depth	: 1,495.0 m	
RT - GL	: 5.15 m	Last Csg Shoe TVD	:750.9 m	Report End Depth	: 1,723.0 m	
Ground Level	: 135.0 m	FIT / LOT	:/ 16.64 ppg	Days since Spud	: 11.29	
RT - Hanger	:	Liner (MDRT/TVDRT)	:/	Rig	:Ensign 918	
Hole Size	: 8.500 in	,		Mud Weight	: 9.30 ppg	
Last Survey (MDRT/TVDRT)	: 1,712.0 m /			Mud Type	: KCL/PHB/POL mud	
	1,711.8 m					
Survey Deviation	: Inc. 1.50 °					
	Az 210.00 °					

Geology 24hr Operations Summary				
24hr Summary: Drill ahead with 8 1/2" BHA to 1723mMDRT (TD), circulated hole clean.				
24hr Forward Plan:	Wiper trip, POOH, prepare for wireline logging programme.			

	Formation Tops								
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.83	18 Low	117.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.82	50 Low	161.9	Lithology
Toolebuc Formation	929.0	929.0	788.85	912.0	911.9	771.75	17.1 High	58.0	Lithology
Wallumbilla Formation	975.0	975.0	834.85	970.0	969.9	829.75	5.1 High	245.0	Lithology
Cadna-Owie Formation	1215.0	1215.0	1074.85	1215.0	1214.9	1074.75	0.1 High	66.0	Lithology
Murta Formation	1286.0	1286.0	1145.85	1281.0	1280.9	1140.75	5.1 High	33.0	Lithology
Namur Sandstone	1316.0	1316.0	1175.85	1314.0	1313.9	1173.75	2.1 High	101.0	Lithology
Westbourne Formation	1412.0	1412.0	1271.85	1415.0	1414.9	1274.75	2.9 Low	44.9	ROP
Adori Sandstone	1482.0	1482.0	1341.85	1460.0	1459.8	1319.65	22.2 High	66.0	ROP/Lithology
Birkhead Formation	1541.0	1541.0	1400.85	1526.0	1525.8	1385.65	15.2 High	97.0	Lithology
Hutton Sandstone	1638.0	1638.0	1497.85	1623.0	1622.8	1482.65	15.2 High	0.0	Lithology/ROP

		Litholog	y Summary
Internal m MDRT	ROP (m/h)		Lithology Comments
1,495.0 - 1,526.0	Min :5.00 Avg :9.30 Max :14.10	Lithology Summary Lithology Description	Massive SANDSTONE continuation of the Adori Formation. SANDSTONE: translucent, slightly hard to hard, crumbly to brittle, commonly loose sand, sub-blocky, occasionally medium to fine, moderately to well sorted, angular, sub-elongate, white kaolinite infill in places, variable weak to strong siliceous cement, rare K-feldspar, poor to fair porosity, rare mineral fluorescence.
		Gas & Shows Comments	Gas remains at a low level.
		ROP Comments	Consistent through the interval.
1,526.0 - 1,590.0	Min :7.30 Avg :34.40	Lithology Summary	Top of Birkhead Formation, dominantly SANDSTONE with common ARENACEOUS SILTSTONES decreasing with depth near base.
		Lithology Description	SANDSTONE: predominantly as loose, common firm to friable aggreagates, translucent to very light grey, upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous cement, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light brownish grey sticky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: olive black - brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence.
		Gas & Shows Comments	Gas maintains the background from the preceding interval up until 1540mMDRT whereupon the background increases slightly and increasing
		ROP Comments	further in the centre of the interval. Generally increases slightly though the interval.
1,590.0 - 1,623.0	Min :15.20 Avg :22.70 Max :30.40	Lithology Summary	SANDSTONES with minor ARENACEOUS SILTSTONES quickly becoming mostly ARENACEOUS SILTSTONE, common SANDSTONES and traces of COAL with depth.
		Lithology Description	SANDSTONE: friable to commonly firm aggreagates, translucent to very light grey, lower medium to upper fine, occasional very fine, moderately well sorted, subrounded to subangular, subelongate, minor white kaolinite infill in places, occasional weak siliceous cement, trace quartz overgrowths, minor calcareous cement, minor calcite infill, common fine grained black carbonaceous grains/ specks in matrix, minor light greyish brown sticky clay washing out during sample preparation, in 1599-1602 sample only: poor inferred porosity, spotty dull yellowish white fluorescence, very dull yellowish white crush cut, pale yellowish white thin residue ring. ARENACEOUS SILTSTONE: olive black - brownish black, brownisg grey to dark yellowish brown, firm to moderately hard, bsubblocky to blocky, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with trace white calcite lamination/veins, micromicaceous in part, trace very carbonaceous and grading to SILTY COAL, no fluorenscence. COAL: brownish black, very hard, blocky, subvitreous, lightly argillaceous in part.
		Gas & Shows Comments	After initial peaks gas background remains consistent.
		ROP Comments	Initially slows, increases towards base.

	Lithology Summary							
Internal m MDRT	ROP (m/h)		Lithology Comments					
1,623.0 - 1,723.0	Min :11.60	Lithology Summary	Top Hutton Formation is immediate massive SANDSTONES continuing to TD.					
	Avg :33.00 Max :22.60	Lithology Description	SANDSTONE: loose, translucent to very light grey, coarse to lower very fine, repeating cycles of upper very coarse to lower very fine sand becoming coarse to lower very fine over c.10m MD intervals from 1686 to TD, common coarse re -worked shattered quartz, occasionally subrounded to angular, sub-spherical to elongate, poorly sorted, trace quartz overgrowths, grain supported, trace light brownish grey clay wasing out during sample preparation, in samples 1686-1689mMDRT and 1710-1713MMDRT only trace dull yellow/green patchy fluorescence, very pale bluish white crush cut, thin pale blue/white residue ring, rare mineral fluorescence in other samples.					
		Gas & Shows Comments	Gas levels increase slightly at 1671mMDRT. At this depth the fluid signature changes to infer a slightly heavier hydrocarbon signature but not the water-saturation zone. As gas levels are generally low the signature is not clear.					
		ROP Comments	Generally consistent.					

Oil Shows																				
	Basic Details						Oil Stain Details													
Depth From (m)	Depth To (m)	Thickness (m)	Formation	Lithology	MW Over Balance	Increase in ROP into Show Interval		Show Lithology With Fluor	White Light: Amount of Stain	White Light: Stain Colour	White Light: Cut Colour	White Light: Amount of Residue	Fluor Colour	Fluor Distrib		Dominant Cut Fluor		HC Odour	Oil Scum in Mud	Show Rate (Category)
1,677.0	1,680.0	3.00	Hutton Sandstone	Sandstone	Nil	None	5% or less	Trace	Nil	Nil	Nil	Nil	Yellow	Spotted	Faint	Crush	Thin Ring	None	None	-
1,686.0	1,689.0	3.00	Hutton Sandstone	Sandstone	Nil	None	5% or less	Trace	Nil	Nil	Nil	Nil	Yellow	Spotted	Faint	Crush	Thin Ring	None	None	-

	Gas Summary Control of the Control o										
Gas Type	Depth m	Total Gas Units	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	CO2 ppm	H2S ppm
Background	1,495.0 - 1,526.0	13.8	1,337	144	130	39	76	41	31	0	0
Background	1,526.0 - 1,590.0	28.7	3,293	325	238	53	128	54	52	0	0
Peak	1,541.0	213.6	15,421	2,232	2,507	813	1,812	809	726	0	0
Peak	1,559.0	73.9	8,201	1,039	778	159	376	129	120	0	0
Peak	1,562.0	80.2	8,820	1,144	880	189	433	155	143	0	0
Background	1,590.0 - 1,623.0	42.7	5,647	475	281	70	127	67	55	0	0
Peak	1,591.0	137.9	14,078	2,009	1,606	397	804	338	265	0	0
Peak	1,593.5	142.9	14,234	2,143	1,750	430	867	355	276	0	0
Background	1,623.0 - 1,723.0	42.3	6,096	466	242	56	100	55	43	0	0
Peak	1,636.0	67.0	8,660	894	572	143	238	118	81	0	0
Peak	1,641.5	67.0	8,660	894	572	143	238	118	81	0	0
Peak	1,674.5	87.9	9,488	1,184	910	247	426	208	138	0	0
Peak	1,677.5	76.4	9,544	933	934	155	298	134	104	0	0
Peak	1,692.0	72.4	9,337	979	572	122	231	104	80	0	0
Peak	1,721.0	71.0	9,041	939	526	112	210	98	76	0	0

Comments

* Worked tight spots POOH at 1421mMDRT and 1432mMDRT.

06:00 Hrs Update							
Depth (MDRT):	1,723.0m						
Progress Since Midnight:	0.0m						
Operation Summary:	Continued to circulate hole clean, POOH to 1365, RIH to TD, POOH.						
ROP Summary:	Relatively consistent, slightly faster through the base of the Birkhead Formation						
Formation Summary:	SANDSTONE and ARENACEOUS SILTSTONE in Birkhead Formation and massive SANDSTONE in Hutton Formation.						
Lithology Summary:	MOSTLTY SANDSTONE with ARENACEOUS SILTSTONE						
Gas Summary:	Generally low levels consistent with increase in mud weight, some peaks.						

Wellsite G	eologist(s)	
(Days) - Alan Wrightstone	(Nights) - Craig Bunting	

		<u>Tibor-</u>	<u>1 Drilling</u>					
Date: 19 Feb 2013	Date: 19 Feb 2013 DAILY GEOLOGY REPORT NUMBER: 13 (associated DDR # 19)							
Well Details								
Depth MDBRT	:1,723.0 m	Report Period	:00:00 - 24:00	Date	: 19 Feb 2013			
Depth TVDBRT Depth TVDSS	: 1,723.0 m : 1,582.85 m	Last Csg Size Last Csg Shoe MD	: 9.625 in : 750.9 m	24hr Progress Report Start Depth	: 0.0 m : 1,723.0 m			
RT - GL Ground Level	:5.15 m :135.0 m	Last Csg Shoe TVD	: 750.9 m	Report End Depth Days since Spud	:1,723.0 m :12.29			
RT - Hanger	:	Liner (MDRT/TVDRT)	:/ 16.64 ppg :/	Rig	:Ensign 918			
Hole Size Last Survey (MDRT/TVDRT)	: 8.500 in : 1,712.0 m /			Mud Weight Mud Type	: 9.30 ppg : KCL/PHB/POL mud			
Survey Deviation	1,711.8 m : Inc. 1.50 ° Az 210.00 °							

	Geology 24hr Operations Summary
24hr Summary:	Continued circulating while confirming 1723mMDRT as TD, flow-check: static, POOH on wiper trip to
	1365mMDRT working tight spots at 1423mMDRT and 1421mMDRT until clear, RIH to bottom, washed down
	the last 10mMD, ran survey, POOH to surface, clear drill-floor and rig up for wireline logging, PJSM w/
	Schlumberger WL crew, rig up and test Run#1 tool string, RIH w/ Run#1 and log as per programme, POOH,
	lay out WL tools, m/u Run#2, no function test performed on MAST tool pre-run, WL witness asked for
	function test- MAST tool found to not be working correctly, POOH, run internal diagnostics, recalibrate tool,
	function test- tool working, RIH w/ Run#2.
24hr Forward Plan:	Continue to RIH and log w/ Run#2, R/D Run#2, R/U Run#3 and perform VSI checkshots as per programme.

	Formation Tops								
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria
	MDRT (m)	TVDRT (m)	TVDSS (m)	MDRT (m)	TVDRT (m)	TVDSS (m)	+/- TVD (m)	TVD (m)	
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.83	18 Low	117.0	Lithology/ROP
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.82	50 Low	161.9	Lithology
Toolebuc Formation	929.0	929.0	788.85	912.0	911.9	771.75	17.1 High	58.0	Lithology
Wallumbilla Formation	975.0	975.0	834.85	970.0	969.9	829.75	5.1 High	245.0	Lithology
Cadna-Owie Formation	1215.0	1215.0	1074.85	1215.0	1214.9	1074.75	0.1 High	66.0	Lithology
Murta Formation	1286.0	1286.0	1145.85	1281.0	1280.9	1140.75	5.1 High	33.0	Lithology
Namur Sandstone	1316.0	1316.0	1175.85	1314.0	1313.9	1173.75	2.1 High	101.0	Lithology
Westbourne Formation	1412.0	1412.0	1271.85	1415.0	1414.9	1274.75	2.9 Low	43.9	ROP
Adori Sandstone	1482.0	1482.0	1341.85	1460.0	1458.8	1318.65	23.2 High	67.0	ROP/Lithology
Birkhead Formation	1541.0	1541.0	1400.85	1526.0	1525.8	1385.65	15.2 High	97.0	Lithology
Hutton Sandstone	1638.0	1638.0	1497.85	1623.0	1622.8	1482.65	15.2 High	0.0	Lithology/ROP

Comments

Field Wireline Log Formation top picks (mMDRT):

Toolebuc Formation: 950.0 m Wallumbilla Formation: 978 m Cadna Owie Formation: 1209 m

Murta Member: 1290 m

Namur Sandstone Member: 1315.8 m Westbourne Formation: 1408.0 m Adori Sandstone: 1456.0 m Birkhead Formation: 1526.0 m Hutton Sandstone: 1622.0 m Loggers TD: 1723.5 m

06:00 Hrs Update						
Depth (MDRT):	1,723.0m					
Progress Since Midnight:	0.0m					
Operation Summary: Continued to RIH w/ Run#2, tagged bottom, logged hole, L/O WL tools.						
ROP Summary:						
Formation Summary:						
Lithology Summary:						
Gas Summary:						

	Wellsite Geologist(s)
(Days) - Alan Wriç	ghtstone (Nights) - Craig Bunting

		<u>Tibor</u>	-1 Drilling		
Date: 20 Feb 2013	(associated DDR # 20)				
		Wel	l Details		
Depth MDBRT	:1,723.0 m	Report Period	:00:00 - 24:00	Date	:20 Feb 2013
Depth TVDBRT	:1,723.0 m	Last Csg Size	: 9.625 in	24hr Progress	: 0.0 m
Depth TVDSS	: 1,582.85 m	Last Csg Shoe MD	:750.9 m	Report Start Depth	: 1,723.0 m
RT - GL	:5.15 m	Last Csq Shoe TVD	:750.9 m	Report End Depth	: 1,723.0 m
Ground Level	: 135.0 m	FIT / LOT	:/ 16.64 ppg	Days since Spud	: 13.29
RT - Hanger	:	Liner (MDRT/TVDRT)	110	Rig	:Ensign 918
Hole Size	:8.500 in			Mud Weight	: 9.30 ppg
Last Survey (MDRT/TVDRT)	:1,712.0 m/			Mud Type	: KCL/PHB/POL mud
	1,711.8 m				
Survey Deviation	: Inc. 1.50 °				

Geology 24hr Operations Summary							
24hr Summary:	Continued logging up with run #2 (PPC-MAST-GPIT), laid out tools at surface, picked up and ran in hole with						
	run #3 (Checkshots). Picked up and took seismic data, laid out tools at surface and rigged down all wireline						
	equipment. Ran in hole and laid out all BHA components. Picked up 2-7/8" cement stinger and ran into the						
	hole to first plug depth (1638.0 mMDRT). Circulated hole while waiting on cement truck to arrive.						
24hr Forward Plan:	Plug and abandon well with four cement plugs, prepare for rig move and handover to next contractor.						

Formation Tops													
Formation		Prognosed			Actual		Diff.	Thickness	Pick Criteria				
	MDRT	TVDRT	TVDSS	MDRT	TVDRT	TVDSS	+/- TVD	TVD (m)					
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	` '					
Winton Formation	5.0	5.0	-135.15	10.7	10.7	-129.45	5.7 Low	622.3	Surface				
Mackunda Formation	615.0	615.0	474.85	633.0	633.0	492.83	18 Low	117.0	Lithology/ROP				
Allaru Mudstone	700.0	700.0	559.85	750.0	750.0	609.82	50 Low	161.9	Lithology				
Toolebuc Formation	929.0	929.0	788.85	912.0	911.9	771.75	17.1 High	58.0	Lithology				
Wallumbilla Formation	975.0	975.0	834.85	970.0	969.9	829.75	5.1 High	245.0	Lithology				
Cadna-Owie Formation	1215.0	1215.0	1074.85	1215.0	1214.9	1074.75	0.1 High	66.0	Lithology				
Murta Formation	1286.0	1286.0	1145.85	1281.0	1280.9	1140.75	5.1 High	33.0	Lithology				
Namur Sandstone	1316.0	1316.0	1175.85	1314.0	1313.9	1173.75	2.1 High	101.0	Lithology				
Westbourne Formation	1412.0	1412.0	1271.85	1415.0	1414.9	1274.75	2.9 Low	43.9	ROP				
Adori Sandstone	1482.0	1482.0	1341.85	1460.0	1458.8	1318.65	23.2 High	67.0	ROP/Lithology				
Birkhead Formation	1541.0	1541.0	1400.85	1526.0	1525.8	1385.65	15.2 High	97.0	Lithology				
Hutton Sandstone	1638.0	1638.0	1497.85	1623.0	1622.8	1482.65	15.2 High	0.0	Lithology/ROP				

Comments

Field Wireline Log Formation top picks (mMDRT):

Az 210.00 $^{\circ}$

Toolebuc Formation: 950.0 m Wallumbilla Formation: 978 m Cadna Owie Formation: 1209 m Murta Member: 1290 m

Namur Sandstone Member: 1315.8 m Westbourne Formation: 1408.0 m Adori Sandstone: 1456.0 m Birkhead Formation: 1526.0 m Hutton Sandstone: 1622.0 m Loggers TD: 1723.5 m

Wireline Suite1:

Run 1: EDTC-SP-PPC-HNGS-HGNS-PEX-HRLA-ADT

Run 2: EDTC-MAST-PPC-FMI Run 3: Checkshots-GR

This is the final DGR for Tibor-1

	06:00 Hrs Update									
Depth (MDRT):	1,723.0m									
Progress Since Midnight:	0.0m									
Operation Summary:	Circulating the hole while waiting on cement truck to arrive.									
ROP Summary:	No new formation drilled.									
Formation Summary:	Hutton Formation									
Lithology Summary:	Sandstone									
Gas Summary:	Trip gas from 1638. 0mMDRT: 67 units									

Wellsite	e Geologist(s)
(Days) - Alan Wrightstone	(Nights) - Craig Bunting

Appendix 8 – Composite Log

Provided electronically on CD

March												Tibor-1 Cuttings Descriptions	
Marchanes												LITHOLOGY: colour, hardness, fracture and texture, grain size, sorting, angularity, sphericity, matrix,	
10			CLYST %	SLTST %	SST %	COAL %	LST %	DOL %	META %	VOLC %	CMT%	Description	Comments
August	10	20	70		30							fine arenaceous material, trace carbonaceous detritus.	
10	20	30	80		20								
1.0	20	40	100										
10												detritus.	
10	40	50	100									ARGILLACFOLIS SANDSTONF: medium dark grev to dark greenish grev. friable to occasionally firm, very	
March 100 10	50	60	100									fine to minor fine grained,, subangular to rounded, moderatelywell sorted, subspherical to subelongated, 50 argillaceous matrix supported, occasional weak siliceous cement, trace lithic fragments, trace carbonaceous	\$
Page Page	60	70		40	60							material, occasioanl very fine to minor fine sand. ARGILLACEOUS	у
	70	80		10	90							predominantly medium, subangular to angular, minor subrounded, moderately well sorted, subspherical to	n
Mathematical Conference Mathematical Con	80	90		5	95							SANDSTONE: generally as above but less loose quartz (trace). ARGILLACEOU	
100 100 70 20 10 10 10 10 10 10 1	90	100		30	70								
10												SANDSTONE: as above.	
	100	110		70	30								
100 100	110	120	100									subblocky, silty in part, trace lithic specks, trace very fine grained loose quartz, non-calcareous.	
100 100	120	130	100									CLAYSTONE: generally as above but trace light brownish grey and no loose quartz grains.	
100 100	130	140	100									CLAYSTONE: as above.	
100 100	140	150	95	5								LIMESTONE: mudstone, brownish grey to olive grey, firm to commonly moderately hard, blocky to subblock	
CAPSTONE IN SOCIAL	150	160	100									CLAYSTONE: medium grey, greenish grey to predominantly dark greenish grey, soft to minor firm, subbloc	
MINISTRUCTURE SANCTIVE. Sale days to tray year, page, but the page of the pa													
1970 1980 1990	160	170	100									ARGILLACEOUS SANDSTONE: light grey to very light green grey, light olive grey in part, friable, fine to	
150 150	170	180			100							dominantly very fine, sub-angular to angular, well sorted, sub-spherical, abundant very light grey argillaceo matrix, minor weak siliceous cement, trace lithic fragments, trace brownish black carbonaceous specks, ver	us V
100	180	190			100								
100	190	200			100							ARGILLACEOUS SANDSTONE: generally as above, slightly silty in part.	
ARGULACIOUS SANCSTORE way yet grow to left growership yet, sold for growing they consider from yet sold to receive the sold sold to the sold sold sold sold sold sold sold sold	200	210			100							fine, subangular to subrounded, moderately well sorted, subspherical, trace argillaceous matrix, minor weak	
ARCHALCOUS SANDSTONE is above. ARCHALCOUS SANDSTONE is a box. 210	220		30	70							ARGILLACEOUS SILTSTONE: very light grey to light greenish grey, trace light brownish grey, soft to		
ARGULACEOUS SETSTONE as above ARGULACEOUS SETSTONE as abov												ARGILLACEOUS SILTSTONE: as above but overall becoming firmer.	
ARCILLACECUS SILTSTONE: as above. ARCILLACECUS SILTSTONE: as a	220	230		50	50							ARGILLACEOUS SILTSTONE: as above.	
250 250 30 70	230	240		20	80							, ,	
ARGILLACEOUS SANDSTONE as above.	240	250		30	70							ARGILLACEOUS SANDSTONE: as above,rare brownish black coal detritus.	
ARGILLACEOUS SANDSTONE: as above. ARGILLACEOUS SANDSTONE: as a	250	260		30	70								
270	260	270		50	50							ARGILLACEOUS SILTSTONE: as above. ARGILLACEOUS SANDSTONE: as above.	
ARGILACEOUS SILTSTONE: as above. ARGILACEOUS SANDSTONE as above. ARG	270	280		40	60							fine grained, minor medium grained, , subangular to angular, well sorted, subspherical, abundant very light	
ARGILLACEOUS SILTSTONE: as above. sity firmer in part.	280	290		50	50							ARGILLACEOUS SILTSTONE: as above.	
ARGILLACEOUS SILTSTONE: as above. ARGILLACEOUS SANDSTONE: as above. ARGILLACEOUS SILTSTONE: as a												ARGILLACEOUS SILTSTONE: as above.	
ARGILLACEOUS SILTSTONE: as above. ARGILLACEOUS SILTSTONE: as above. ARGILLACEOUS SANDSTONE: as above. SANDSTONE: SANDST	290	300		40								ARGILLACEOUS SILTSTONE: as above.	
320 320 40 60 ARGILLACEOUS SANDSTONE: as above but slightly more loose grained.	300	310		60	40							ARGILLACEOUS SANDSTONE: as above, trace disseminated pyrite.	
320 330 20 80 ARGILLACEOUS SILTSTONE: as above.	310	320		40	60							ARGILLACEOUS SANDSTONE: as above but slightly more loose grained.	
340 340 10 90	320	330		20	80								
350 350 40 60 SANDSTONE: as above, slightly more argillaceous matrix.	330	340		10	90							SANDSTONE: loose, very light grey to light green grey, medium grey,minor translucent, friable, very fine to	
ARGILLACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTO	340	350		40	60							ARGILLACEOUS SILTSTONE: as above.	
ARGILLACEOUS SILTSTONE: as above. SANDSTONE: as above, predominantly friable. ARGILLACEOUS SILTSTONE: as above. SANDSTONE: as above, predominantly friable. ARGILLACEOUS SILTSTONE: as above. SANDSTONE: as above, predominantly friable. ARGILLACEOUS SILTSTONE: as above. SANDSTONE: as above, predominantly friable. SILTY CLAYSTONE: brownish grey to medium grey, trace light grey to light brownish grey, soft to minor firm, commonly slitly in part, trace brownish black carbonaceous specks. SANDSTONE: generally loose, very light grey to medium grey, common translucent, very fine to fine, SILTY CLAYSTONE: as above. SANDSTONE: as above, rarely friable SILTY CLAYSTONE: as above. SANDSTONE: as above. SILTY CLAYSTONE: as above.												ARGILLACEOUS SILTSTONE: as above.	
ARGILLACEOUS SILTSTONE: as above. SANDSTONE: SANDSTONE: SILTY CLAYSTONE: brownish grey to medium grey, trace light grey to light brownish grey, soft to minor firm, commonly silly in part, trace brownish black carbonaceous specks. SANDSTONE: generally loose, very tey to medium grey, trace light grey to light brownish grey, soft to minor firm, commonly silly in part, trace brownish black carbonaceous specks. SANDSTONE: generally loose, very tey to medium grey, common translucent, very fine to fine, SILTY CLAYSTONE: as above. SANDSTONE: as above, trace very hard and very well cemented with calcareous cement. SILTY CLAYSTONE: as above. SANDSTONE: as above. SILTY CLAYSTONE: has above. SANDSTONE: as above. SANDSTONE: as above. SILTY CLAYSTONE: has above. SANDSTONE: as above. SANDSTONE: as above. SILTY CLAYSTONE: has above. SANDSTONE: as above. SANDSTONE: as above. SILTY CLAYSTONE: has above. SILTY CLAYSTONE: has above. SILTY CLAYSTONE: has above. SILTY CLAYSTONE: has above. SILTY CLAYSTONE: as above. SILTY CLAYSTONE: as above. SILTY CLAYSTONE: as above. SILTY CLAYSTONE: has above.												ARGILLACEOUS SILTSTONE: as above.	
370 380 50 50	360	370		30	70								
380 390 30 70	370	380		50	50							SANDSTONE: as above, increased amount of argillaceous matrix, grading to ARGILLACEOUS SANDSTONE.	
SILTY CLAYSTONE: as above. SANDSTONE: as	380	390	30		70			L				commonly silty in part, trace brownish black carbonaceous specks. SANDSTONE: generally loose, very light grey to medium grey,common translucent, very fine to fine,	т,
400 410 30 70 SANDSTONE: as above, trace very hard and very well cemented with calcareous cement. 410 420 50 50 SILTY CLAYSTONE: as above. 420 430 80 20 SILTY CLAYSTONE: as above. 430 440 100 TR SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS SANDSTONE: as above. 440 450 100 SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE: as above.	390	400	40		60								
410 420 50 50 SANDSTONE: as above. 420 430 80 20 SILTY CLAYSTONE: as above. 430 440 100 TR SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS SANDSTONE in part SANDSTONE: as above. 440 450 100 SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE: as above. SILTY CLAYSTONE: as above. SILTY CLAYSTONE: as above.	400	410	30		70								
420 430 80 20 SILTY CLAYSTONE: as above. SANDSTONE: as above. SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS SANDSTONE in part. SANDSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS SANDSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE in part. SILTY CLAYSTONE: as above.	410	420	50		50							SANDSTONE: as above.	
430 440 100 TR SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS SANDSTONE in part. SANDSTONE in part. SANDSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE in part. SILTY CLAYSTONE: as above.												SILTY CLAYSTONE: as above.	
430 440 100 TR SANDSTONE: in part. SANDSTONE: as above. SILTY CLAYSTONE in part. 440 450 100 SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS CLAYSTONE in part. SILTY CLAYSTONE: as above.	420	430										SILTY CLAYSTONE: as above, common silt sized to very fine grained quartz, graing to ARENACEOUS	
440 450 100 CLAYSTONE in part. SILTY CLAYSTONE: as above.	430	440	100		TR							SANDSTONE in part SANDSTONE: as above.	
	440	450	100									CLAYSTONE in part.	
450 460 20 80 SANDSTONE: as above, comonly friable.	450	460	20		80								

		- 1					ı — ı	 		SILTY CLAYSTONE: brownish grey to medium grey, trace light grey to light brownish grey, soft to minor fi	ts.
460	470	10		90						SILTY CLAYS UNCF. Drownish grey to meaturn grey, trace light grey to light brownish grey, sort to minor in decreasingly silty in part, trace brownish black carbonaceous specks. SANDSTONE: friable to commonly moderately hard, very light grey to medium grey, translucent, light SILTY CLAYSTONE: as above.	m,
470	480	40		60						SANDSTONE: as above. CLAYSTONE: brownish grey to medium dark grey, minor medium grey, soft to predominantly firm, trace sil	y
490	490 500	100		TR						In part, moderately calcareous in part, trace brownish black carbonaceous specks, trace very fine grained loose quartz. CLAYSTONE: as above.	
500	510	100								CLAYSTONE: as above.	
510	520	60		40						SANDSTONE: as above. CLAYSTONE: as above, silty grading to SILTY CLAYSTONE.	
520	530	30		70						SANDSTONE: as above. SIL CLAYSTONE: as above.	Υ
530	540		40	60						SILTSTONE: medium light grey to greyish brown, minor very light grey, soft to firm, trace moderately hard, subblocky, minor very fine quartz grains, 10% lithics, micromcaceous in part, non-calcareous, trace very file carbonaceous detritus, rare fine coally laminations.	е
540	550		20	80						SILTSTONE: as above. SANDSTONE: as above.	
550	560		30	70						SILTSTONE: as above. SANDSTONE: as above.	
560	570		20	80						SILTSTONE: as above. SANDSTONE: as above.	
570	580		40	60						SILTSTONE: as above, becoming softer and more argillaceous in part, grading to ARGILLACEOUS SILTSTONE. SANDSTONE: above.	as
580	590		50	50						SILTSTONE: as above, trace disseminated pyrite. SANDSTONE: as above.	
590	600		50	50						SILTSTONE: as above. SANDSTONE: as above.	
600	610		10	90						SILTSTONE: as above. SANDSTONE: as above.	
610	620		70	30						SILTSTONE: as above, occasionally blocky. SANDSTONE: as above.	
620	630		50	50						SILTSTONE: as above SANDSTONE: as above.	
630	640		70	30						SILTSTONE: medium light grey to greyish brown, minor very light grey, trace brownish black, soft to firm, minor moderately hard, subblocky to occasionally blocky, minor very fine quartz grains, 10%	Mackunda Formation picked from cuttings and ROP at 633.0 m.
640	650		90	10						lithics,micromcaceous in part., non-calcareous, occasional very fine carbonaceous detritus, rare fine coally SILTSTONE: as above SANDSTONE: as above.	1
650	660		70	30						SILTSTONE: as above but overall becoming firmer. SANDSTONE: as above.	
660	670		80	20						SILTSTONE: as above SANDSTONE: as above	
										SILTSTONE: medium light grey to greyish brown, occasional very light grey,soft to firm, common moderate	
670	680		90	10						hard, subblocky to occasionally blocky, minor very fine quartz grains, 10% lithics, non-calcareous, occasion very fine carbonaceous detritus, rare fine coally laminations. SILTSTONE: as above	EII
680	690		95	5						SANDSTONE: as above. SILTSTONE: as above, trace very light grey.	
690	700		100	TR						SANDSTONE: as above. SILTSTONE: as above.	
700	710		100	TR						SANDSTONE: as above. SILTSTONE: as above, argillaceous grading to SILTY CLAYSTONE.	
710	720		90	10						SANDSTONE:moderately hard, occasionally firm and friable, very light grey to medium grey, translucent, li greenish grey, very fine to fine, trace medium grained, subangular to subrounded, moderately well sorted, SILTSTONE: as above.	ght
720	730		100	TR						SANDSTONE: as above. SILTSTONE: as above, weakly calcareous in part.	
730	740		100	TR						SANDSTONE: as above. SILTSTONE: as above.	
740	750		90	10						SANDSTONE: as above. SILTSTONE: as above.	12-1/4" section TD at 754.0 mMDRT
750	754		90	10		TR				SANDSTONE: as above. DOLOMITE: clive grey to brown grey, very hard, subfissile, crypto- to micro-crystalline, trace very fine SILTSTONE: as above.	Allaru Formation picked from cuttings at 750.0 m.
754	760		95	5		TR				SANDSTONE: as above. SILTSTONE: olive grey to greyish brown, minor medium to medium light grey, soft to firm, minor moderately	
760	770		95	5						hard, subblocky to occasionally blocky, weakly calcareous, trace very fine quartz grains, 10% lithics, trace SANDSTONE: firm and friable, very light grey to medium grey, translucent, light greenish grey, very fine to SILTSTONE: as above.	
770	780		90	10						SIL IS I ONE: as above. SANDSTONE: as above. SILTSTONE: as above.	
780	790		100	TR						SIL IS I ONE: as above. SAINDSTONE: as above. SILTSTONE: as above.	
790	800		100	TR	TR					SANDSTONE: as above. mudstone, yellowish grey, soft, subblocky, commonly argillaceous.	:
800	810		100	TR	TR					SILTSTONE: as above. SANDSTONE: as above. LIMESTON as above. LIMESTON	:
810	820		100	TR	TR					SILTSTONE: as above. SANDSTONE: as above. LIMESTON as above.	:
820	830		100							SILTSTONE: as above but becoming more argillaceous	
830	840		100		TR					SILTSTONE: medium dark grey, trace brownish grey to olive grey, firm to moderately hard, subblocky yo occasionally blocky, weakly carcalreous, occasionally argillaceous in part. LIMESTONE: as above.	
840	850		100			_	LĪ		_	SILTSTONE: as above.	
850	860		100						_	SILTSTONE: as above.	
860	870		100							SILTSTONE: as above.	
870	880		100							SILTSTONE: as above, slightly more bownish grey	
880	890		100		TR					SILTSTONE: medium dark grey, minor brownish grey to olive grey, firm to moderately hard, subblocky yo occasionally blocky, weakly carcalreous, occasionally argillaceous in part. LIMESTONE: mudstone, yellowi grey to occasionally very light grey, soft, subblocky, commonly argillaceous.	sh
890	900		100		TR					SILTSTONE: as above, trace disseminated pyrite. LIMESTONE: as above.	
900	910		100		TR					SILTSTONE: as above. LIMESTON as above	E:
910	920		100		TR					SILTSTONE: as above. LIMESTON as above	Foolebuc Formation picked from cuttings at 912.0 m
<u> </u>							ш			I	I

920	930	100		TR			SILTSTONE: as above. LIMESTON as above.	E:
							SILTSTONE: as above. LIMESTON	E:
930	940	100		TR			as above	
940	950	100		TR			SILTSTONE: as above. LIMESTON as above.	E:
950	960	100					SILTSTONE: medium dark grey to dark grey, oocasional greyish black to olive black, firm to moderately ha in part, subblocky to subfissile, commmonly argillaceous, moderately calcareous.	d
930	900	100					SILTSTONE: as above.	
960	970	100					SILIO I SILL. da dastio.	
970	980	100					SILTSTONE: greyish black to olive black, minor medium dark grey to dark grey, firm to moderately hard in part, subblocky to subfissile, commmonly argillaceous, moderately calcareous, trace soft, white calcareous	Wallumbilla Formation picked from cuttings at 1040.0 m.
							material. SILTSTONE: as above. SIL	TY
980	990	70	30				SANDSTONE: friable to dominantly hard, translucent to very light grey, very fine to minor fine, common silt sized, moderately well sorted, subangular to subrounded, subspherical, trace quartz silt matrix, minor	
990	1000	50	50				SILTSTONE: as above. SILTY SANDSTONE: as above.	
4000	4040		40				SILTSTONE: as above.	
1000	1010	90	10				SILTY SANDSTONE: as above, trace loose medium to coarse grained calcite. SILTSTONE: as above.	
1010	1020	90	10				SILTY SANDSTONE: as above.	
1020	1030	95	5				SILTSTONE: as above. SILTY SANDSTONE: as above.	
							SILTSTONE: medium grey to olive grey, trace greyish black to olive black,, firm to rare moderately hard,	
1030	1040	10	90				subblocky to subfissile, argillaceous in part, arenaceous in part, moderately calcareous, trace loose very fin grained quartz.	e
1040	1050	95	5				SILTSTONE: as above. SANDSTONE: as above.	
							SILTSTONE: as above.	
1050	1060	95	5	TR			SANDSTONE: as above. LIMESTOR mudstone, white to very light grey, hard, blocky, occasional dark microlaminations.	IE:
1060	1070	100	TR	TR			SILTSTONE: as above. SANDSTONE: as above. LIMESTON as above.	Æ:
1070	1080	100	TR	TR			as above. SILTSTONE: as above. SANDSTONE: as above. LIMESTOR	√F·
10/0	1000	100	ıĸ	ıĸ		_	SANUSTONE: as above. SILTSTONE: as above.	·
1080	1090	30	70	TR			SILTSTONE: as above. SANDSTONE: as above, but predominantly firm to moderately hard aggregates, milnor loose grains. LIMESTONE: as above.	
1090	1100	20	80	TR		1	SILTSTONE: as above. SANDSTONE: loose, common firm and friable, translucent to very light grey, very fine to fine, moderately w	nell
1030	_100	_5	55		\vdash	-	sorted, subangular to subrounded, subspherical, rare quartz silt matrix, trace argillaceous matrix, minor SILTSTONE: as above.	
1100	1110	30	70	TR			SANDSTONE: as above. LIMESTONE: mudstone, white to very light grey, minor very light brown, firm to commonly hard, blocky,	
1110	1120	50	50				SILTSTONE: as above. SANDSTONE: as above, but predominantly firm to moderately hard aggregates, minor loose grains, trace	
							siliceous cement, slightly more glauconite in matrix. SILTSTONE: as above.	
1120	1130	70	30				SANDSTONE: as above.	
1130	1140	80	20				SILTSTONE: as above. SANDSTONE: as above.	
4440	4450		20				SILTSTONE: as above. SANDSTONE: as above.	
1140	1150	80	20				SANUSTONE: as above. SILTSTONE: greyish black to olive black, minor dark grey, moderately hard to occasionally very hard, minor	
1150	1160	70	30				firm, subblocky to subfissile, argillaceous in part, commonly arenaceous in part, weakly calcareous in part, trace loose very fine grained quartz. SANDSTO	le:
1160	1170	80	20				SILTSTONE: as above. SANDSTONE: as above.	
							SILTSTONE: as above.	
1170	1180	70	30				SANDSTONE: as above.	
1180	1190	60	40				SILTSTONE: as above, trace disseminated pyrite. SANDSTONE: as above, most aggregates very hard, common white fine grained lithics.	
							SILTSTONE: greyish black to olive black, minor dark grey, minor medium grey, moderately hard to	
1190	1200						predominantly very hard, commonly brittle, rare firm, subblocky to occasionally subfissile, argillaceous in paccommonly arenaceous in part, weakly calcareous in part, trace loose medium grained white calcite, trace	rt,
1200	1203	95	5				SILTSTONE: as above. SANDSTONE: as above, increased silt matrix, grading to SILTY SANDSTONE	
1203	1206	100	TR				SILTSTONE: as above. SILTY SANDSTONE: as above.	
1203	1206	100	IK				SILTSTONE: as above. SILTSTONE: as above.	
1206	1209	80	15	5			SILTY SANDSTONE: as above. LIMESTONE: mudstone, white to very light brown, soft to crumbly, subblocky, common brown argillaceous	
1209	1212	20	80	TR			SILTSTONE: as above. SILTY SANDSTONE: as above.	
1203	-414	0	50	""	\vdash	+	LIMESTONE: as above. SILTSTONE: as above.	
1212	1215	30	70				SILTY SANDSTONE: as above.	
							SILTSTONE: dark grey to medium grey, common greyish black to olive black, moderately hard to predominantly very hard, commonly brittle, subblocky to trace subfissile, trace argillaceous in part, commo	Cadna Owie Formation picked from cuttings at 1215 by.
1215	1218	10	90				arenaceous in part grading to ARENACEOUS SILTSTONE, weakly calcareous in part, trace loose medium grained white calcite.	
	-						SANDSTONE: hard to very hard, commonly loose, translucent to very light grey, very fine to lower fine grained, moderately well sorted, subangular to subrounded, subspherical, trace silty in part, strong calcared dolomitic cement, rare white lithic and feldspar fragments, trace glauconite, nil to very poor visible porosity,	ous- no
1218	1221	10	90		+	+	dolomitic certient, rare writte littlic and reliaspar fragments, trace glauconitie, fill to very poor visible porosity, hydrocarbon fluorescence ARENACEOUS SILTSTONE: as above.	·
1218	1221	40	60		\vdash	+	SANDSTONE: as above, less very hard and more friable aggregate ARENACEOUS SILTSTONE: as above.	
1224	1227	20	80			+	SANDSTONE: as above, minor medium grainec ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	
1227	1230	20	80				ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	_
						\top	ARENACEOUS SILTSTONE: dark grey to medium grey, common greyish black to olive black, moderately hard to predominantly very hard, commonly brittle, subblocky to minor subfissile, commonly arenaceous in	
1230	1233	30	70				part grading to ARENACEOUS SILTSTONE, non to weakly calcareous in part, trace loose medium grained white calcite.	
1233	1236	10	90			\top	SANDSTONE: as above, trace reddish brown fine grained lithics ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, predominantly friable to occasionally firm, minor moderately hard aggregates,	
					\vdash	+	occasionally loose grains ARENACEOUS SILTSTONE: as above.	
1236	1239	5	95				SANDSTONE: friable to loose, minor hard very well cemented aggregates, translucent to very light grey, minor dark yellowish brown, very fine to lower fine grained, moderately well sorted, subangular to subround	
1230	1239	Э	30				subspherical, rarely silty in part, occasional light grey argillaceous matrix, strong calcareous-dolomitic ceme rare fine grained white and reddish brown lithics and feldspar fragments, trace glauconite, nil to very poor	nt,
1239	1242	TR	100		\vdash	+	visible porosity, no hydrocarbon fluorescence. ARENACEOUS SILTSTONE: as above.	
1242	1245	5	95			+	SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, less aggregated	
1245	1248	TR	100			\top	SANDSTONE: as above, less aggregated ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	
1248	1251	TR	100				ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	
1251	1254	TR	100			$\Box \Box$	ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	
1254	1257		100				ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	

1257	1260									SANDSTONE: friable, minor hard very well cemented aggregates, translucent to very light grey, minor dar yellowish brown, very fine to lower fine grained, moderately well sorted, subangular to subrounded, subspherical, rarely silly in part, occasional light per yangiliacous matrix, strong calacreous-dolomitic cem	
1237	1200									rare fine grained white lithics and feldspar fragments, trace glauconite, nil to very poor visible porosity, no hydrocarbon fluorescence.	
1260 1263	1263 1266			00						SANDSTONE: as above. SANDSTONE: as above.	
										SANDSTONE: friable, trace firm aggregates, translucent to very light grey, common dark yellowish brown t light brownish grey, very fine to lower very fine grained, commonly silt-sized grained, moderately well sorte	d,
1266	1269		:	00						subangular to subrounded, subspherical, silty where dark yellowish brown to light brownish grey, grading to AERNACEOUS SILTSTONE, occasional light grey argillaceous matrix, common strong calcareous-dolomit	
										cement, rare fine grained white and black lithics, rare glauconite, nil to very poor visible porosity, no hydrocarbon fluorescence	
1269 1272	1272 1275			00						SANDSTONE: as above. SANDSTONE: as above.	
1275	1278		- :	00						SANDSTONE: as above. SANDSTONE: medium dark grey to greyish black, slightly hard to very hard, sub-blocky to blocky, very fin	e e
										to lower very fine grained, common silt, well sorted, sub-angular to sub-rounded, sub-elongate to sub- spherical, grading to ARENACEOUS SILTSTONE, common medium dark grey, hard, upper very fine-grain	
1278	1281		:	00						cuttings, common strong calcareous-dolomitic cement in medium dark grey cuttings, argillaceous cement in greyish black cuttings, common black coal grains in greyish black cuttings, common K-feldspar grains in	
										medium dark grey cuttings, medium dark grey cuttings indicate fine clean sand lamillae with poor visible porosity, nil to poor visible porosity in greyish black cuttings, no hydrocarbon fluorescence.	
										ARENACEOUS SILTSTONE: greyish black, slightly hard, brittle, blocky in places, sub-fissile in places,	Murta Formation picked from cuttings at 1281 m.
1281	1284	9	90	10						argillaceous matrix, arenaceous, weak dolomitic cement, rare k-feldspar, rare coal grains. SANDSTONE: medium dark grey, lower very fine, as abov	,
1284 1287	1287 1290			10 20						ARENACEOUS SILTSTONE and SANDSTONE as above ARENACEOUS SILTSTONE and SANDSTONE as above	
										ARENACEOUS SILTSTONE: greyish black, slightly hard, brittle, blocky in places, sub-fissile in places, argillaceous matrix, arenaceous, weak dolomitic cement, rare k-feldspar, rare coal grain§ANDSTONE:	Sand starting to become coarser, more angular and le well sorted with depth
1290	1293		30	20						medium light grey, slightly hard, sub-block to blocky, rare medium to lower very fine, dominantly fine to low fine grained, rare coarse shattered quartz grains/mineral vein fragments, moderately sorted, sub-angular, s	
1230	1233		50							spherical to sub-elongate, cement variable, weak calcareous-dolomitic cement in places grading to strong siliceous cement, common K-feldspar, common kaolin, nil to poor visible porosity, nil hydrocarbon	
										fluorescence.	
										ARENACEOUS SILTSTONE: greyish black, slightly hard, brittle, blocky in places, sub-fissile in places, argillaceous matrix, arenaceous, weak dolomitic cement, rare k-feldspar, rare coal grain§ANDSTONE: medium grey to transparent grains, slightly hard, sub-blocky, brittle, very coarse shattered quartz to fine, ve	
1293	1296	5	50	50						medium grey to transparent grains, siigniiy nard, sub-blocky, brittie, very coarse shattered quartz to line, ve poorly sorted, angular, sub-elongate, strong siliceous cement, common fused silica, common K-feldspar grains, poor to moderate visible porosity, nil hydrocarbon fluorescence.	
1296	1299	-	20	80					-	ARENACEOUS SILTSTONE: as above, SANDSTONE: as above, rarely coarse to very fine, moderate to	Sand becoming finer with depth
1296	1302			90					1	weak cement. ARENACEOUS SILTSTONE: as above, SANDSTONE: as above, rarely medium, to very finedominantly	
		+	-	-					1	very fine, moderate to weak cement SANDSTONE: medium grey to transparent grains, slightly hard, sub-blocky, brittle, dominantly loose sand,	
1302	1305		:	00						commonly coarse to lower very fine, dominantly very fine, poorly to moderately sorted, sub-angular, sub- spherical, coarse grains angular, sub-elongate, strong siliceous cement, common fused silica, common K- feldspar grains, poor to moderate visible porosity, nil hydrocarbon fluorescence.	
			4	+						RENACEOUS SILTSTONE: olive black, firm, slightly hard in places, sub-blocky in places, sub-fissile in	
1305	1308		90	10						places, commonly friable, argillaceous matrix, arenaceous, argillaceous cement, rare k-feldspar, rare black carbonaceous grains. SANDSTONE: medium light grey, slightly hard, sub-blocky, fine to lower very fine,	
1305	1306		90	10						moderately sorted, angular, sub-spherical to sub-elongate, moderate siliceous cement, common K-feldspar common kaolin infill, nil to poor visible porosity, nil hydrocarbon fluorescence.	
										SANDSTONE: medium light grey, slightly hard, sub-blocky, fine to lower very fine, moderately sorted,	
1308	1311		-	00						angular, sub-spherical to sub-elongate, moderate siliceous cement, common K-feldspar, common kaolin in nil to poor visible porosity, nil hydrocarbon fluorescenc	
1311	1314	1	10	90						SANDSTONE: as above. ARENACEOUS SILTSTONE: greyish black, slightly hard, brittle, blocky in places sub-fissile in places, argillaceous matrix, arenaceous, weak dolomitic cement, rare k-feldspar, rare coal gra	
1314	1317			00						SANDSTONE: translucent loose grains, coarse to very fine, very poorly sorted, angular, sub-elongate to elongate, weak siliceous cement, rare lithic fragments, rare K-feldspar grains, moderate inferred porosity, r	Namur Formation picked from cuttings at 1314 m.
1317	1320			00						hydrocarbon fluorescence SANDSTONE: as above	
1320	1323		-	00						SANDSTONE: as above SANDSTONE: translucent loose grains, coarse to fine, poorly sorted, sub-angular to angular, sub-spherical	Siltstone changes (slightly shaley in places)
1323	1326	1	10	90						sub-elongate, weak siliceous cement, rare lithic fragments, rare K-feldspar grains, moderate inferred poros 10% pin-point pale green/yellow mineral fluorescence in sandstones. SILTSTONE: dark grey, rare olive bit	ity,
										cuttings, firm, sub-blocky, sub-fissile where olive black, crumbly, rarely arenaceous to commonly argillaceo	us.
										SANDSTONE: translucent loose grains, very coarse to very fine, very poorly sorted, angular, sub-spherical sub-elongate, weak siliceous cement, rare lithic fragments, rare K-feldspar grains, moderate inferred poros	Siltstone becomes arenaceous, not shaley iy,
1326	1329	3	30	70						rare fine sandstone cuttings showing pale green/yellow mineral fluorescence, no visible cut fluorescence. ARENACEOUS SILTSTONE: dark grey, firm, sub-blocky, crumbly, common black carbonaceous grains,	
										common K-feldspar. SANDSTONE: as above, traces pin-point pale green/yellow mineral fluorescence in sandstones.	
1329	1332		50	50						ARENACEOUS SILTSTONE: as above SANDSTONE: translucent loose grains, very coarse to fine, very poorly sorted, angula60% shattered	
1332	1335	4	50	40						quartz, sub-spherical to sub-elongate, weak siliceous cement, rare lithic fragments, rare K-feldspar grains, moderate inferred porosity, rare fine sandstone cuttings showing pale green/yellow mineral fluorescence, n	Φ
1332	1333	,	50	+0						visible cut fluorescence . ARENACEOUS SILTSTONE: dark grey, firm, su blocky, crumbly, common black carbonaceous grains, common K-feldspar.	b-
1335	1338			00						SANDSTONE: translucent loose grains, coarse to fine, poorly sorted, sub-angular, sub-spherical to sub-	Sand becomes slightly better sorted
										elongate, weak silicoous cement, rare lithic fragments, rare K-feldspar grains, moderate inferred porosity, abundant pin-point pale green/yellow mineral fluorescenct SANDSTONE: as above medium to fine grained, traces pin-point pale green/yellow mineral fluorescence	
1338	1341		- 1	00						SANDSTONE: translucent loose grains, rarely medium to lower very fine, very poorly sorted, angular, sub-	
1341	1344		20	30						spherical to sub-elongate, weak siliceous cement, rare lithic fragments, rare K-feldspar grains, poor inferred porosity, rare fine sandstone cuttings showing pale green/yellow mineral fluorescence, no visible cut	
1541	1344	1	20	50						fluorescence . ARENACEOUS SILTSTONE: dark grey, firm sub-blocky, crumbly, common black carbonaceous grains, common K-feldspar.	
1344	1347	1	20	80						SANDSTONE: as above, ARENACEOU	\$
1347	1350			90						SILTSTONE: as above SANDSTONE: as above. ARENACEOU SILTSTONE: dark grey, firm, sub-blocky, crumbly, common black carbonaceous grains, common K-feldspc	
134/	2330	- '	-~							SANDSTONE: translucent loose grains, rarely coarse to lower very fine, very poorly sorted, angular, sub-	
1350	1353		10	90						spherical to sub-elongate, weak siliceous cement, rare lithic fragments, rare K-feldspar grains, poor inferrer porosity, rare fine sandstone cuttings showing pale green/yellow mineral fluorescence, no visible cut	
1330	1333		īŪ							fluorescence . ARENACEOUS SILTSTONE: dark grey, firm sub-blocky, crumbly, common black carbonaceous grains, common K-feldspar.	
1353	1356			00				1		SANDSTONE: as above	
1356	1359	1	10	90						SANDSTONE: occasional dark yellowish brown to light brownish grey which appears as hard aggregates. SILTSTONE: dark grey to greyish black, firm to occasionally moderately hard, blocky, very finely arenaceous	s,
		_	_	\perp				\perp		carbonaceous, noon-calcareous, trace micromicaceous in part. SANDSTONE: loose, translucent to very light grey, very fine to medium grained, subrounded to rarely	
1359	1362		5	95						SANUS LONE: loose, translucent to very light grey, very fine to meanium grained, subrounded to rarely subangular, very well sorted, moderate sphericity, trace weak siliceous cement, trace fine grained calcite, f to good inferred porosity, no fluoresence.	air
1200	1205		re.	00	-					SILTSTONE: as above. SANDSTONE: as above.	
1362	1365 1368		-	00				+	1	SILTSTONE: as above. SANDSTONE: as above.	
1368	1371		:	00						SILTSTONE: as above. SANDSTONE: as above.	
1371 1374	1374 1377			00	+				-	SANDSTONE: as above. SANDSTONE: as above.	
1377	1380			00						SANDSTONE: as above. SANDSTONE: loose to common friable aggregates, translucent to very light grey (50%), brownish black to	
										greyish black (50%), very fine to lower medium grained, subrounded to rarely subangular, very well sorted, moderate sphericity, trace fractured grains, occasional weak siliceous cement, trace very light grey	
1380	1383			00						argillaceous matrix, very silty where brownish black to greyish black grading to ARENACEOUS SILTSTON trace fine grained calcite, trace very fine grained black lithics/carbonaceous specks, trace pyritic cement, p	or
				\perp						visual porosity, trace dull yellow pinpoint fluorescence, bluish white crush cut, thick yellowish white residue ring.	
1383	1386		_ :	00				\perp		SANDSTONE: as above, brownish black to greyish black (90%), translucent to very light grey (10%), very poor visual porosity, no fluoresence SANDSTONE: loose translucent to very light grey year, fine to medium grained subrounded to graphy.	
1386	1389		:	00						SANDSTONE: loose, translucent to very light grey, very fine to medium grained, subrounded to rarely subangular, very well sorted, moderate sphericity, trace weak siliceous cement, trace fine grained calcite, f to good inferred porosity, no fluoresence.	air
1389 1392	1392 1395			00						to good interted porosity, no incoresence. SANDSTONE: as above. SANDSTONE: as above.	
1395	1398			00						SANDSTONE: as above.	
1398 1401	1401 1404		- 1	00				1		SANDSTONE: as above, slightly more carbonaceous detritus, rare mica. SANDSTONE: as above.	
	1407	T	T	00		1 -	ıΤ		1 -	SANDSTONE: as above.	
1404 1407	1410			00						SANDSTONE: as above.	

1985 1986 1987						$\overline{}$					
1										subangular, very well sorted, moderate sphericity, trace fractured grains, trace weak siliceous cement,	Westbourne Formation picked from ROP at 1415 m.
18	1413	1416	5	95						SILTSTONE: greyish black to brownish black, minor dark yellowish brown, firm to occasionally moderately	
1.5										micromicaceous in part, non-calcareous	
1965 1976	1416	1419	TR	100						SANDSTONE: as above.	
1962 1968 1978 1989	1419	1422	TR	100							
1975 1976	1422	1425	TR	100							
1985 1986 1987	1425	1428	5	95						SANDSTONE: as above.	
1.5										SANDSTONE: as above.	
1982 1982 1983 1984 1985	1428	1431	10	90						moderately hard, subblocky to rarely subfissile, commonly arenaceous grading to ARENACEOUS	
March 1975 1976										SANDSTONE: firm to friable, translucent to very light grey, very fine to medium grained, rare lower coarse	
140	1431	1434	20	80							ts
1.00										ARENACEOUS SILTSTONE: as above.	
Page	1434	1437	5	95							
140	1/137	1440	10	90						SANDSTONE: as above, but predominantly as firm to friable aggregates with weak siliceous cement and a	
March 1.5 1.	1437	1440	10							as above.	
1.5 1.5	1440	1443	20	80						SILTSTONE: as above.	
1.	1443	1446	5	95						SILTSTONE: as above, slightly more micromicaceous overa	
	1446	1449	TR	100						SILTSTONE: as above.	
March 1965	1449	1452	TR	100							s
March 1965 1975	1452	1455	TR	100						SANDSTONE: as above. ARENACEOU	\$
1965 1976	1455	1458	TR	100						SANDSTONE: as above. ARENACEOU	\$
	1458	1461	TR	100						SANDSTONE: as above. ARENACEOU	s
				+		+	+			SANDSTONE: translucent, loose, fine sand cuttings slightly firm, brittle, platy, very fine to medium, rare low	Adori Formation picked from ROP at 1460 m.
BANCOTTON Part 100 Part	1461	1464	TR	100						weak silicious cement, common K-feldspar grains, poor to fair inferred porosity, very rare mineral	
1466 147				-	H	+	+	-	-	SANDSTONE: translucent, loose, fine sand cuttings slightly firm, brittle, platy, very fine, rare lower coarse	
1-90	1464	1467	TR	100						grains, sub-rounbded, sub-spherical, well sorted, weak silicious cement, common K-feldspar grains, poor to	
1.55	1467	1470				\perp				SANDSTONE: as above	
April										cut, thin pale blue/white residue ring	
Application					H	+	+			SANDSTONE: as above	
1.5 1.5		-		-		\dashv	+	_	_	ARENACEOUS SILTSTONE: as above.	WS
				_		_	\perp			SILTSTONE: as above.	-
1855 1868 1870	1482	1485	TR	100			\perp			ARENACEOUS SILTSTONE: as above.	
Section 100	1485	1488		100						well sorted, angular, sub-elongate, white kaolinite infill in places, variable weak to strong siliceous cement,	
1988 1991 1992 1992 1993 1994 1995	1400	1400		100	L	_	1	l		abundant black carbonaceous grains decreasing quickly with depth, common lithic fragments, rare K-feldsp poor to fair porosity, common mineral fluorescenci	ar,
SAMESTONE 190										SANDSTONE: as above without the black carbonaceous grains	1402.9 mMDRT formation becomes your bard
SAMSTONE residuous significant on the best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to best carefully to be stated and past and best carefully and best carefully to best carefully to be stated and past and best carefully and best carefully to be stated and past and best carefully and best carefully to be stated and past and best carefully and best carefully to be stated and past a						-					1493.6 HIWDR From all of Decomes very flaru
1500 1500	1497	1500		100						SANDSTONE: as above (no shattered quartz)	SANDSTONE becoming slightly coarser with depth
1955 1956 190	1500	1503		100						places, variable weak to strong siliceous cement, rare K-feldspar, poor to fair porosity, rare mineral	
1502 1512 1512 1515 1516 100 1	1503	1506		100		_				SANDSTONE: as above	
\$355 \$155											
1518 1521											
1921 1924											
1527 1520 30 70						+					
1527 1530 30 70	1524	1527	30	70							Birkhead Formation picked from lihto/ROP at 1526 m
1530 1533 20 80	4527									fine black carbonaceous grains and flakes, no fluorenscence	
Upper medium to lower fine, turce very fine, moderately well content, obsorbed to commonly angular, electromagnic fine, stress with substitute fine incline, visible time fine places, visible with a fine place, visible time and the places and th	1527	4530	20							ARENACEOUS SILTSTONE: as above.	
1530 1533 20 80 80 80 80 80 80 80		1530	30							SANDSTONE: predominantly as loose, common firm to friable aggreagates, translucent to very light grey,	
1333 1336 13 13 13 13 13		1530	30							upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular,	
Carbonaceous gains and fiskes, moderately calcareous with occasional white calcide lamination/weins, micromisconous in part in Characterisconic, micromisconous in part in part grained gainst part in part grained gainst part in finishe very fire grained gainst particle.				70						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous cement, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light	
SANDSTONE: as above. ARENACEOUS	1530			70						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous cement, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sticky clay washing out during sample preparation, poor to fair inferred porosity, no MERNACEOUS SULTSTONE: oilve bla	nt
1546 1539 20 80	1530			70						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolitie infill in places, variably weak to strong siliceous cement, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant lightownish grey sticky clay washing out during sample preparation, poor to trait inferred porosity, no McDirorescence. ARENACEOUS SILTSTONE: oilve bla brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/wins,	
1536	1530			70						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey stoky clay washing out during sample preparation, poor to fair inferred porcsity, no fluorescence. ARENACEOUS SILTSTONE: olive bla brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence.	
1542		1533	20	0 70						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sticky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: olive black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above.	
1542 1545 20 80 TR	1533	1533	20	95						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates.	
SANDSTONE: as above, aggregated, 90% lose, 10% aggregated.	1533 1536	1533 1536 1539	20 5 20	95						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie in fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: olive bla brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above.	S
1545 1548 10 85 5	1533 1536 1539	1533 1536 1539 1542	5 20 10	95 0 80 95 0 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie in fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: olive bla brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as documently appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. ARENACEOUS SILTSTONE: as Above. ARENACEOUS SILTSTONE: as Above. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: as Above. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ABOVE. ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENACEOUS SILTSTONE: ARENA	S S
In part grading to SILTY COAL Stack hard to looky, brittle, subtrierous ARENACEOUS	1533 1536 1539	1533 1536 1539 1542	5 20 10	95 0 80 95 0 80	TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish labet, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, as documently appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. COAL: brownish blachard, blocky, brittle, subvitreous	S S S
1548 1551 20 80	1533 1536 1539 1542	1533 1536 1539 1542 1545	5 20 10 20	95 80 95 80 95 80 90 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish labet, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	S S S
1551 1554 5 95	1533 1536 1539 1542	1533 1536 1539 1542 1545	5 20 10 20	95 80 95 80 95 80 90 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oil ve bla brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above, sabous commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. COAL: brownish blach and blocky, brittle, subtrieves.	S S S S,
ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS	1533 1536 1539 1542	1533 1536 1539 1542 1545	20 5 20 10 20	95 80 95 80 95 80 80 80 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant lightownish grey sickly clay washing out during sample preparation, poor to fair inferred prossity, no fluorescence. ARENACEOUS SILTSTONE: olive blab brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. COAL: brownish blachard, blocky, brittle, subdytreous SANDSTONE: as above. COAL: brownish blachard, blocky, britte, subdytreous SANDSTONE: as above, as over, aggregates very well cemented with siliceous cement in part (very hard), trace lo coarse grained clear quartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous in part grading to SILTY COAL.	S S S S,
grey, upper medium to lower fine, trace very fine, moderately well sorted, subrounded to commonly angular subebongate, trace white kaolinite infill in places, variably weak to strong silicose sement, trace quantz overgrowths, occasional calcite infill, minor fine grained black carbonaceous grains/specks in matrix, abundant light greyish brown sticky clay washing out during sample preparation, poor to fair inferred prorsely, no fluorescence. black - brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, occasionally very carbonaceous and grading to SILTY COAL, no fluorenscence. 1557 1560 30 70 SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. A	1533 1536 1539 1542 1545	1533 1536 1539 1542 1545 1548	20 5 20 10 20	95 95 90 90 80 95 80 80 80 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant lightownish grey sickly clay washing out during sample preparation, poor to fair infored porosity, no fluorescence. ARENACEOUS SILTSTONE: oil be blab brownish flave, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. COAL: brownish black. SANDSTONE: as above. COAL: brownish black. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above.	S S S S,
overgrowths, occasional calcite infill, minor fine grained black carbonaceous grains/specks in matrix, abundant light greysh brown sticky clay washing out during sample preparation, poor to fair inferred porcety, no fluorescence. black - brownish black, hard, brittle, subblocky to subfissile, abundantly areaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, occasionaly very carbonaceous and grading to SILTY COAL, no fluorenscence. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, trace more predominantly medium grained. ARENACEOUS SILTSTONE: as above. COAL: brownish black, hard, brittle, subvitreous, very silty grading to SILTY COAL in part. SANDSTONE: as above. COAL: brownish black, hard, hackly, commonly brittle, subvitreous, very silty grading to SILTY COAL in part. SANDSTONE: as above. SANDSTONE: as above common brownish grey. COAL: as above. SANDSTONE: as above but with more prevalent calcite infill in aggregates. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTON	1533 1536 1539 1542 1545	1533 1536 1539 1542 1545 1548	20 5 20 10 20	95 95 90 90 80 95 80 80 80 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant lightownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oil ve blab brownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no micromicaceous or grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. COAL: brownish blacks. SANDSTONE: as above. COAL: brownish blacks. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. COAL: brownish blacks. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. COAL: brownish blacks. Agent	S S S S, k, d
1554 1557 10 90	1533 1536 1539 1542 1545	1533 1536 1539 1542 1545 1548	20 5 20 10 20	95 95 90 90 80 95 80 80 80 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant lightownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oil ve bla brownish flave, subblocky to sudfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. COAL: brownish black. bland, black, bland, bland, bland, bland, bland, bland, blocky, brittle, subvitreous SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous (part graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: as above, subvitreous SANDSTONE: pas above dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining dolar graining d	S S S S S S S S S
black - brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, micromicaceous in part, occasionally very carbonaceous and grading to SILTY COAL, no fluorenscence. 1557 1560 30 70 SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, tace more predominantly medium grained. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, tace more predominantly medium grained. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. COAL: brownish black, hard, hackly, commonly brittle, subtriteous, very silty grading to SILTY COAL in part. SANDSTONE: as above common brownish grey. COAL: as above. SANDSTONE: as above but with more prevalent calcite infill in aggregates. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. COAL: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: 1533 1536 1539 1542 1545	1533 1536 1539 1542 1545 1548	20 5 20 10 20	95 95 90 90 80 95 80 80 80 80						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous comment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant lightownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oil ve bla brownish label, subblocky to sudfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. COAL: brownish black sultrations above. SANDSTONE: as above. COAL: brownish black blands,	S S S S A A S S S S S S S S S S S S S S	
micromicaceous in part, occasionally very carbonaceous and grading to SILTY COAL, no fluorenscence.	1533 1536 1539 1542 1545 1545	1536 1539 1542 1545 1548 1551	200 200 200 200 200 200 200 200 200 200	95 95 96 97 97 98 97 98 98 98 98 98 98						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinie infill in places, variably weak to storing siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve blab brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as of the substitute of the substitu	S S S S A A S S S S S S S S S S S S S S
ARENACEOUS SILTSTONE: as above.	1533 1536 1539 1542 1545 1545	1536 1539 1542 1545 1548 1551	200 200 200 200 200 200 200 200 200 200	95 95 96 97 97 98 97 98 98 98 98 98 98						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinie infill in places, variably weak to storing siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve blab brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as occurrently as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, and the substitute of	S S S S A A S S S S S S S S S S S S S S
ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE:	1533 1536 1539 1542 1545 1545	1536 1539 1542 1545 1548 1551	200 200 200 200 200 200 200 200 200 200	95 95 96 97 97 98 97 98 98 98 98 98 98						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oil ve bla brownish label, subblocky to sudfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above. SANDSTONE: as above, as above, substitution of the properties of the substitution of the sub	S S S S A A S S S S S S S S S S S S S S
ARENALEUS SILTSTONE: as above. ARENALEUS SILTSTONE: ARENAL	1533 1536 1539 1542 1545 1548 1551	1533 1536 1539 1542 1545 1545 1551 1554	20 20 20 20 20 20 20 20 20 20 20 20 20 2	95 980 980 990 900 800 900 85 95 95						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinie in fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish black, hard, brittle, subblocky to subfissile, abundantly arenaceous, common fine black carbonaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, as documently appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as occurrently appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as occurrently appearing as firm to friable very fine grained aggregates. SANDSTONE: as above, as above, as above, and a firm to friable very fine grained aggregates. SANDSTONE: as above, ARENACEOUS SILTSTONE: as above, SILTSTONE: as above, COAL: brownish blach and, blocky, brittle, subvitreous SANDSTONE: as above, aggregates very well cemented with siliceous cement in part (very hard), trace lo coarse grained clear quartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous in part grading to SILTY COAL: brownish blach and, blocky, brittle, subvitreous SANDSTONE: as above, sa above, sa apgregated, 90% loose, 10% aggregated. ARENACEOUS SILTSTONE: as above, appregated, 90% loose, 10% aggregated. ARENACEOUS SILTSTONE: as above, accommon fine prained plack carbonaceous grains'specks in matrix, aboundant light persymb brown sticky clay washing out during sample preparation, poor to fair inferred pore on fluorescence. ARENACEOUS SILTSTONE: oilve black hard, brittle, subvitreous a	S S S S A A S S S S S S S S S S S S S S
1566	1533 1536 1539 1542 1545 1548 1551	1533 1536 1539 1542 1545 1548 1551 1554	200 200 200 200 200 300 300 300 300 300	95 0 80 95 0 80 0 90 80 0 85 0 80 0 95 0 80 0 95 0 80 0 95 0 80 0 95 0 80 0 95 0 80 0 90 0 90 0 90 0 90 0 90 0 90 0 90						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinie in fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no micromicaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as of the substitution of th	S S S S A A S S S S S S S S S S S S S S
SANDSTONE: as above. ARENACEOUS SILTSTONE: as above common brownish grey COAL: as above. ARENACEOUS SILTSTONE: as above common brownish grey COAL: as above. ARENACEOUS SILTSTONE: as above but with more prevalent calcite infill in aggregates. ARENACEOUS SILTSTONE: as above. COAL: as above. ARENACEOUS SILTSTONE: as above. AREN	1533 1536 1539 1542 1545 1548 1551	1533 1536 1539 1542 1545 1548 1551 1554	200 200 200 200 200 300 300 300 300 300	95 0 80 95 0 80 0 90 80 0 85 0 80 0 95 0 80 0 95 0 80 0 95 0 80 0 95 0 80 0 95 0 80 0 90 0 90 0 90 0 90 0 90 0 90 0 90						upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie in fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no micromicaceous in part, no fluorescence. SANDSTONE: as above, and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above, as above, salo commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above, SANDSTONE: as above, salo some salo services and servic	S S S S A A S S S S S S S S S S S S S S
1566 1569 30 70 TR	1533 1536 1539 1542 1545 1548 1551 1554	1533 1536 1539 1542 1545 1548 1551 1554 1557	200 200 100 100 100 100 100 100 100 100	95 96 97 98 99 99 90 90 90 90 90 90 90 90 90 90 90	5					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light prownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oil be black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light promote promo	S S S S, k,
1569 1572 30 70 TR	1533 1536 1539 1542 1545 1548 1551 1554	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566	20 20 20 20 20 20 20 20 20 20 20 20 20 2	95 0 80 0 90 0 80 0 80 0 85 0 80 0 90 0 70 0 80	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to storing siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light brownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTOME: oilve bla brownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no micromicaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous in part grading to SILTY COAL. COAL: brownish black hard, blocky, brittle, subvitreous SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above	S S S S, k,
COAL as above	1533 1536 1539 1542 1545 1548 1551 1554	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566	20 20 20 20 20 20 20 20 20 20 20 20 20 2	95 0 80 0 90 0 80 0 80 0 85 0 80 0 90 0 70 0 80	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie findli places, variably weak to strong siliceous cement, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light promish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTOME: oilve blab promish grey since promish grey carbonaceous grained clear quartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous prained soll silt yellow. COAL: brownish black hard, blocky, brittle, subbritreous subtracts above promish grey carbonaceous grained soll silt yellow. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous prained soll silt yellow. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous prained soll silt yellow. ARENACEOUS SILTSTONE as above, minor fine grained quartz inclusions, becoming very carbonaceous grains and flakes, moderately calcareous with occasional subtract calcite infill, minor fine grained globels and promish grey carbonaceous grains and flakes, moderately calcareous with	S S S S, k,
SILTSTONE: as above.	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563	1533 1536 1539 1542 1548 1551 1554 1557 1560 1563 1566 1569	200 200 200 200 200 200 200 200 200 200	95 95 80 90 80 95 95 95 95 95 90 80 95 95 95 95 95 95 95 95 95 95 95 95 95	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to storing siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant light brownish grey sickly clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTOME: oilve bla brownish grey since propertion of the propertion of	S S S S, k,
ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above.	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572	200 200 200 200 200 200 200 200 200 200	95 80 90 80 95 80 95 90 90 90 90 80 80 95 80 90 80 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongale, truce white kaolinie fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTOME: oile blab brownish grey since propertion poor to fair inferred porosity, no micromicaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained local requartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained soller quartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained sollers above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained sollers above. ARENACEOUS SILTSTONE: as above, minor fine grained ducate durate grained provided to commonly angula durate inclusions in part (particular particular partic	S S S S, k, d d d in h S S
SILTSTONE: as above. SANDSTONE: as above.	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572	200 200 200 200 200 200 200 200 200 200	95 96 97 98 99 99 90 90 90 90 90 90 90 90 90 90 90	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTOME: oile blab brownish grey since and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. as above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained lear quartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous prained to SILTY COAL. COAL: brownib black hard, blocky, brittle, subvitreous SANDSTONE: as above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous prained to subtrace with scalarities in fill in places. variably weak to strong siliceous cernent; trace upartz overgrowths, occasional eaclete infill, minor fine grained black carbonaceous grains'specks in matrix, abundant light previous white scalarities infill in places variably weak to strong siliceous cernent; trace quartz overgrowths, occasional back, hard, brittle, subbicky to subfissile, abundantly preparation, poor to fair inferred poros A	S S S S, k, d d d in h S S
SANDSTONE: loose, translucent to very light grey, upper medium to lower fine, common very fine, moderately well sorted, subrounded update, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks, abundant light greyish brown sticky clay washing out during sample preparati poor inferred proreity, no fluoresceptis,	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572 1575	200 200 200 200 200 200 200 200 200 200	95 96 97 98 99 99 90 90 90 90 90 90 90 90 90 90 90	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie in fill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTOME: oilve bla brownish grey since in part, and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained locar quartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained to SILTY COAL. COAL: brownish black hard, blocky, brittle, subvitreous SANDSTONE: as above. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous grained special properties of the subvitreous sands of the subvitreous subvital subvitreous subvital subvital subvitreous sands or the subvital subvitreous overgrowths, occasional calcite infill, min	S S S S, k, d d d sight S S
1581 TR 100 carbonaceous grains/specks, abundant light greyish brown sticky clay washing out during sample preparati poor inferred proreity, no fluorescepts), no fluorescepts), no fluorescepts), no fluorescepts), no fluorescepts, nd no fluorescepts.	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572	1533 1536 1539 1542 1545 1548 1551 1554 1560 1563 1566 1569 1572 1578	200 200 200 200 200 200 200 200 200 200	95 980 990 800 900 800 900 900 900 900 900	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinite infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTOME: oile blab brownish places above. ARENACEOUS SILTSTOME: oile blab brownish grey and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as Above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, aggregates very well cemented with siliceous cement in part (very hard), trace lo coarse grained clear quantz. ARENACEOUS SILTSTONE: as above, minor fine grained quantz inclusions, becoming very carbonaceous grained to silt of the subvitreous sands of the subvitreous overgrowths, occasional calcite infill, minor fine grained black carbonaceous grains'specks in matrix, abundant light predominantly loss, minor fine grained black carbonaceous grain	S S S S, k, d d d sight S S
ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: as above. ARENACEOUS SILTSTONE: ARENACEOUS	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572	1533 1536 1539 1542 1545 1548 1551 1554 1560 1563 1566 1569 1572 1578	200 200 200 200 200 200 200 200 200 200	95 980 990 800 900 800 900 900 900 900 900	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinie infill in places, variably weak to strong siliceous coment, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no micromicaceous grains and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, also commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, and subject to the subject of the subjec	S S S S, k, d d d sight S S
1 1504 1507 TD 100	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572 1575	1533 1536 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572 1572 1578	200 200 200 200 200 200 200 200 200 200	95 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 70 90 80 90 70 90 70 90 70 90 90 90 90 90 90 br>90 9	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, trace white kaolinie infill in places, variably weak to strong siliceous cement, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no micromicaceous in part, no fluorescence. SANDSTONE: as above, and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above, as above, salos commonly appearing as firm to friable very fine grained aggregates. SANDSTONE: as above, as above, salos commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as above, salos commonly appearing as firm to friable very fine grained aggregates. SANDSTONE: as above, as above, salos commonly appearing as firm to friable very fine grained aggregates. SANDSTONE: as above, as above, salos commonly appearing as firm to friable very fine grained aggregates. SANDSTONE: as above, as above, salos commonly appearing as firm to friable very fine grained aggregates. SANDSTONE: as above, aggregates very well cemented with siliceous cement in part (very hard), trace lo coarse grained clear quartz. ARENACEOUS SILTSTONE: as above, minor fine grained quartz inclusions, becoming very carbonaceous in part grading to SILTY COAL. COAL: brownin part grading to SILTY COAL as above, salos salo	S S S S S, d, d d d d d d d d d d d d d d d d d d
1584 1587 TR 100 SARUSSIONE - 88 800/9. SILISTONE: 88 800/9. ARENALEGOS	1533 1536 1539 1542 1545 1548 1551 1554 1557 1560 1563 1566 1569 1572 1578 1578	1533 1536 1542 1545 1548 1551 1557 1560 1563 1566 1569 1572 1575 1578 1581	200 200 100 200 100 100 100 100 100 100	95 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90 90	5 TR					upper medium to lower fine, tarce very fine, moderately well sorted, subrounded to commonly angular, subelongate, truce white kaolinie infill in places, variably weak to strong siliceous cement, trace quartz overgrowths, minor fine grained black carbonaceous grains/specks in matrix, rare K-feldspar, abundant ligh brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: oilve bla brownish grey sicky clay washing out during sample preparation, poor to fair inferred porosity, no micromicaceous in part, no fluorescence. SANDSTONE: as above, and flakes, moderately calcareous with occasional white calcite lamination/veins, micromicaceous in part, no fluorenscence. SANDSTONE: as above, as above, salos commonly appearing as firm to friable very fine grained aggregates. ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, as occurrent and success and success as above, as above, salos success as above, as above, salos success as above, salos success as above,	S S S S S S S S S S S S S S S S S S S

1587										
	1590	10	90						SANDSTONE: as above, commonly as firm to friable aggregates with trace siliceous cement and minor calcareous cement. ARENACEOUS	
									SILTSTONE: as above. SANDSTONE: as above. ARENACEOU	
1590	1593	20	80	TR					SILTSTONE: as above. COAL: brownish blac very hard, blocky, subvitreous, lightly argillaceous in par	*,
									SANDSTONE: friable to commonly firm aggreagates, translucent to very light grey, lower medium to upper fine, occasional very fine, moderately well sorted, subrounded to subangular, subelongate, minor white	
									kaolinite infill in places, occasional weak siliceous cement, trace quartz overgrowths, minor calcareous cement, minor calcite infill, common fine grained black carbonaceous grains/specks in matrix, minor light	
1593	1596	40	60	TR					greyish brown sticky clay washing out during sample preparation, poor inferred porosity, no fluorescence. ARENACEOUS SILTSTONE: olive black - brownish black, brownisg grey to dark yellowish brown, firm to	
									moderately hard, bsubblocky to blocky, abundantly arenaceous, common fine black carbonaceous grains a	nd
									flakes, moderately calcareous with trace white calcite lamination/veins, micromicaceous in part, trace very carbonaceous and grading to SILTY COAL, no fluorenscence. COAL: as above.	
1596	1599	50	50	TR					SANDSTONE: as above. SILTSTONE: as above. COAL: as above.	s
									SANDSTONE: as above but with spotty dull yellowish white fluorescence, very dull yellowish white	
1599	1602	60	40	TR					crush cut, pale yellowish white thin residue ring. ARENACEOUS SILTSTONE: as above.	
							-		COAL: as above. SANDSTONE: as above, no fluorescence.	
1602	1605	20	80				-		ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, no fluorescence.	
1605	1608	90	10	TR					ARENACEOUS SILTSTONE: as above. COAL: as above.	
1608	1611	80	20						SANDSTONE: as above, no fluorescence .	
1611	1614	20	80						ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, no fluorescence.	
1614	1617	10	90						ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, no fluorescence.	
	1620	50	50				+	1	ARENACEOUS SILTSTONE: as above. SANDSTONE: as above, no fluorescence.	
-01/	1020	50	50				+		ARENACEOUS SILTSTONE: as above. SANDSTONE: loose, translucent to very light grey, lower coarse to very fine, predominantly medium graine	Hutton Formation picked from lihto/ROP at 1623 m.
1620	1623		100						subrounded to occasionally subrounded, good sphericity, poorly sorted, trace quartz overgrowths, grain supported, trace brownish black carbonaceous material, trace light brownish grey clay wasing out during	
1622	1626		100				-		sample preparation, no fluorescence, no show: SANDSTONE: as above.	
	1626 1629	5	95				+		SANDSTONE: as above.	
	1632	5	95				+		SILTSTONE: as above. SANDSTONE: as above.	
1632	1635		100						SILTSTONE: as above. SANDSTONE: as above.	
	1638		100						SANDSTONE: as above. SANDSTONE: as above.	
	1641 1644		100						SANDSTONE: as above.	
	1647		100						SANDSTONE: as above. SANDSTONE: as above, occasional friable aggregates with weak siliceous cement.	
1647	1650		100						SANDSTONE: as above, occasional mable aggregates with weak siliceous cement. SANDSTONE: loose, translucent to very light grey, lower coarse to very fine, predominantly medium graine	ed,
1650	1653		100						occasionally subrounded to angular, sub-spherical to elongate, poorly sorted, trace quartz overgrowths, gr supported, trace light brownish grey clay wasing out during sample preparation, no fluorescence, no shows	
1653	1656		100						SANDSTONE: as above	
1656	1659		100						SANDSTONE: as above	
1659	1662		100						SANDSTONE: loose, translucent to very light greyupper very coarse to lower very fine, common coarse re-worked shattered quartz, occasionally subrounded to angular, sub-spherical to elongate, poorl	SANDSTONE becoming coarser with depth to 1668
									sorted, trace quartz overgrowths, grain supported, trace light brownish grey clay wasing out during sample preparation, no fluorescence, no shows	
1662	1665		100				-		SANDSTONE: as above SANDSTONE: loose, translucent to very light grey, upper very coarse to lower very fine, common coarse re	-
1665	1668								worked shattered quartz, occasionally subrounded to angular, sub-spherical to elongate, poorly sorted, tra quartz overgrowths, grain supported, trace light brownish grey clay wasing out during sample preparation,	¢e
1668	1671		100						fluorescence, no shows SANDSTONE: as above	
	1674		100						SANDSTONE: as above	
4674	4677								SANDSTONE: loose, translucent to very light greymedium to lower very fine, occasionally subrounded to angular, sub-spherical to sub-elongate, moderately sorted, trace quartz overgrowths, grain supported,	
1674	1677								trace light brownish grey clay wasing out during sample preparation, no fluorescence, no shows.	
									SANDSTONE: as above. ARENACEOUS SILTSTONE: olive black - brownish black, firm to moderately hard, sub-blocky to blocky, abundantly arenaceous, common fine black carbonaceous grains and flakes,	
1677	1680	Tr	100						moderately calcareous, rarely micromicaceous in partrace dull yellow/green patchy fluorescence, very pale bluish white crush cut, thin pale blue/white residue ring.	
									SANDSTONE: loose, translucent to very light grey, medium to lower very fine, occasionally subrounded to	
1680	1683		100						angular, sub-spherical to sub-elongate, moderately sorted, trace quartz overgrowths, grain supported, trac light brownish grey clay wasing out during sample preparation, traces mineral fluorescence.	*
1683	1686		100						SANDSTONE: as above coarse to lower very fine, poorly sorted.	
									SANDSTONE: loose, translucent to very light grey, upper very coarse to lower very fine, common coarse re-worked shattered quartz, occasionally subrounded to angular, sub-spherical to elongate,	Suddenly coarse, becomes finer with depth
1686	1689	Tr	100						poorly sorted, trace quartz overgrowths, grain supported, trace light brownish grey clawsing out during sample preparation, trace dull yellow/green patchy fluorescence, very pale bluish white	
4600	4000		400						crush cut, thin pale blue/white residue ring	
1689	1692		100				+	1	SANDSTONE: as above SANDSTONE: loose, translucent to very light greymedium to lower very fine, occasionally subrounded to	
1692	1695								angular, sub-spherical to sub-elongate moderately sorted, trace quartz overgrowths, grain supported, trace light brownish grey clay wasing out during sample preparation, traces mineral fluorescence.	1
\rightarrow			\dashv				+	1	SANDSTONE: loose, translucent to very light grey, upper very coarse to lower very fine, common	Suddenly coarse, becomes finer with depth
1695	1698		100						coarse re-worked shattered quartz, occasionally subrounded to angular, sub-spherical to elongate, poorly sorted, trace quartz overgrowths, grain supported, trace light brownish grey clay wasing	
									out during sample preparation, traces mineral fluorescence, no shows.	
	1701		100						SANDSTONE: as above, occasionally upper very coarse to lower very fine SANDSTONE: as above, occasionally upper very coarse to lower very fine	
	1704 1707		100 100				+	1	SANDSTONE: as above, occasionally upper very coarse to lower very fine	
1707	1710		100				1		SANDSTONE: as above, occasionally upper very coarse to lower very fine SANDSTONE: loose, translucent to very light grey, upper very coarse to lower very fine, common	Suddenly coarse, becomes finer with depth
1710	1713		100						coarse re-worked shattered quartz, occasionally subrounded to angular, sub-spherical to elongate,	
17.10	1/13		100						poorly sorted, trace quartz overgrowths, grain supported, trace light brownish grey clay wasing out during sample preparation, traces mineral fluorescence, no shows.	
10						\vdash	_		SANDSTONE: as above, occasionally upper very coarse to lower very fine	
	1716		100		_	L l		Щ		
1713	1716 1719		100						SANDSTONE: as above, occasionally upper very coarse to lower very fine	
1713 1716										

Appendix 10 – Wireline Report and Log Data

Log Data provided electronically on CD

Electric Wireline Operations End of Well Report

Tibor - 1 SW Queensland/Australia

Prepared by:

Mohd Rothi Hamzah afriQA Ltd 22 February 2013

Table of Contents

1. Introduction	3
2. Critical Formation Evaluation Objectives	4
3. Safety	6
4. General Well Information	6
5. Schlumberger Mnemonics	8
6. Tibor-1 Run 1, 2 & 3 Activity summary and Operating Efficiency	9
6.1 Summary Run-1: EDTC/PPC/HGNS/TLD/HRLA/ADT/SP	10
6.2 Summary Run-2: EDTC/PPC/MAST(Sonic Scanner)/PPC/GPIT	11
6.3 Summary Run-3: EDTC/VSI	12
7. Summary and Recommendations for continuous improvement	16
7.1 Highlights	17
7.2 Lowlights	17
7.3 Best practises	18

1. Introduction

This EOW report intended to serve as a permanent and accurate record of the Wireline Formation Evaluation program performed on exploration well Tibor-1. Tibor - 1 located in SW Queensland Block- ATP 539 and operated by Drillsearch Energy Limited.

An operational audit performed by afriQA Ltd, a specialist Wireline Operations Quality Assurance consultancy group. An audit performed for logging operations over the whole 8.5" hole section.

The main purpose of the audit was to ensure:

- The safety culture espoused by the Contractor was consistent with industry norms and compliant with both the Contractor's and the Clients own policies
- That the Formation Evaluation objectives met.
- The Formation Evaluation program completed in an efficient manner possible
- To assist with continuous improvement

In addition to the EOW report, a technical report for each logging operation performed on Tibor-1 completed and delivered by afriQA Ltd.

The Formation Evaluation program performed by Schlumberger. The afriQA audit performed by Mohd Rothi Hamzah.

2. Critical Formation Evaluation Objectives

The wireline logging programme was a fundamental part of the data acquisition required to achieve the FE objectives, namely the acquisition of appropriate wireline logs will fully evaluate the drilled section as per the detailed logging program.

The proposed Tibor-1 conventional oil & gas exploration well located in ATP-539P, in the Cooper/Eromanga Basin, SW Queensland. Tibor-1 is a commitment well for permit ATP 539P. It is located approximately 250km NE of Moomba (Figure 1).

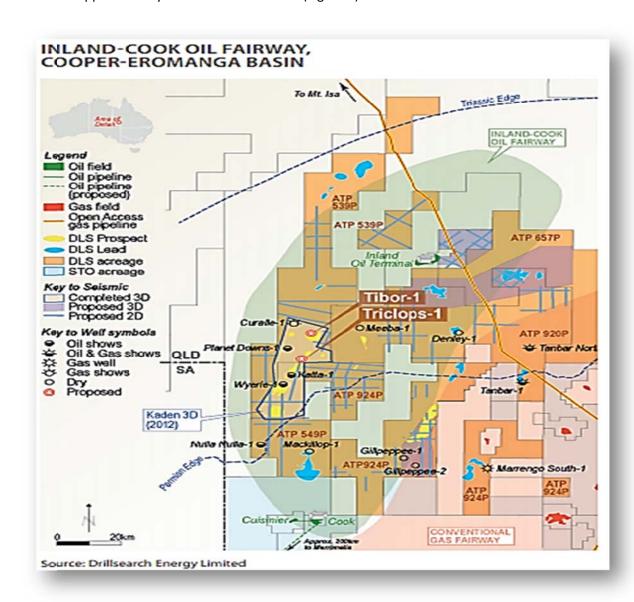


Figure 1.0 Tibor-1 Location Map

The closest offset wells that can be used to correlate Tibor-1 are Planet Downs -1, Katta-1 well, Meeba-1 and Curalle-1.

The well will test a fault related anticline with approximately 14m of independent closure. The location is approximately 52km SW of Inland Oil Field and 92km NE of Cook Oil Field.

The primary targets are the Middle Jurassic Hutton Sandstone and sands of the Late Jurassic Birkhead Formation. Secondary targets are sands of the Late Jurassic Namur Sandstone. There is potential for stacked pay as the closure extends from the Top of the Early Cretaceous Murta Formation to within the Middle Jurassic Hutton Sandstone.

The Hutton and Birkhead sands have expected average porosities of approximately 11%, and 10% respectively. Offset data indicates that the net to gross of the Hutton Sandstone ranges from 15 to 85%. The Birkhead Formation has variable net to gross, with sands typically <5m thick. The Birkhead sand exists within a shaley silty interval.

The aims of the Tibor-1 Oil Exploration well are to:

- 1. Drill a vertical well over the entire Cretaceous and most of the Jurassic section of the Eromanga Basin. The well will reach total depth (TD) within the Middle Jurassic Hutton Sandstone at 1738 m MDRT.
- 2. All sands from the Top Namur Sandstone to TD are potential targets.
- 3. Test the hydrocarbon prospectivity of a new play fairway within the "Inland Cook" region by demonstrating oil migration from the Yamma Yamma Depression into the western flank of the SWQ Eromanga Basin.
- 4. Evaluate the potential for economic oil in place (OIP) within Tibor-1.
- 5. Contribute to the current commitment of 2 wells within ATP 539P block
- 6. Run wireline logs including a minimum of Gamma Ray, Spectra Gamma Ray, Density, Neutron, Sonic, Resistivity, Dielectric and Seismic checkshot.

Having identified the presence of oil and/or associated liquids through mud logs and wireline logging in any one of the 2 primary targets, the next step is to establish the following key reservoir parameters to characterise the reservoir and enable reservoir development planning including estimates of the following for each oil bearing zone. This information is likely to be determined through a combination of wireline results and drill stem test (DST):

- o Reservoir Fluid properties including gas composition and condensate yield for PVT modelling.
- o Zone pressure and temperature
- o Reservoir kh
- o Skin and non-darcy skin parameters
- o AOF and inflow potential of each zone

3. Safety

There were no **LTI's** during Schlumberger operations on Tibor -1.

The planning and execution of the well objectives in a safe and environmentally sound manner was a fundamental requirement of all aspects of the drilling programme. All operations were executed in accordance with the HSE management systems and the Schlumberger SOP.

In accordance with these overall objectives, specifically to the wireline logging activities, prior to individual operations, a toolbox talk was held at the worksite where the immediate operation was outlined, and any safety issues were discussed between the crews. The Wireline QA Supervisor was present at every Toolbox talk, and reviewed and approved the JSA in agreement with the worksite supervisors.

	PRE-JOB SAFETY MEETING HELD ADEQUATE FOR THE OPERATION	\checkmark
	CORRECT PPE WORN AT ALL TIMES	✓
	RA SOURCE HANDLING PROCEDURES CORRECTLY EXECUTED	\checkmark
	BEFORE AND AFTER LOG SURVEYS COMPLETED	\checkmark
SAFETY	RA STORED IN A SAFE AREA CORRECTLY BARRIERE OFF	\checkmark
SAILII	LIFTING PLAN IN PLACE FOR EQUIPMENT TRANSFER TO AND FROM THE CATWALK	\checkmark
	SP GROUND CABLES FOR LOGGING IN GOOD CONDITION	\checkmark
	SAFETY SWITCH OPERATIONAL	\checkmark
	GENERAL SAFETY PROCEDURES ARE FOLLOWED AT ALL TIMES	\checkmark

4. General Well Information

Background

The 12.25" open hole section on Tibor-1 was drilled from 10.6 m MDRT to 754.0 mMDRT. No basic formation evaluation wireline log was performed for this section. The hole was cased with 9 5/8" casing before commencing to drill the Tibor-1, 8.5" hole section. The 8.5" section was drilled from 754.0 mMDRT to a total depth (TD) of 1723.0 mMDRT at which point wireline log Run 1, 2 and 3 were completed.

The well was planned to be a vertical well. The well angle started to build up to 1.75 degrees when reaching 900 m. The decision to drill ahead with less weight on the bit and this did help to maintain

the well deviation around 2 degrees. At around 1500 m, the rig experienced high torque during drilling and decision taken to pull out of the hole. The rig crew suspected the bit has gone under gauge and gave problems to stabilizer to pass. On the surface, the bit and stabilizer diameter were OK, but the decision was made to run with a new $8\,\%$ " PDC bit. The new bit drill to TD without any more problems.

The Hutton formation tops were found at 1623 m, and TD was then set at 1723m (-/+100m into Hutton)

General

Well	Tibor-1
Block	ATP 539P
Туре	Exploration
Operator	Drillsearch Energy Limited
EWL Contractor	Schlumberger
Area	Roma
Latitude	25° 52' 17.796" S
Longitude	141° 16' 19.413" E
Drilling Supervisor	Ray C.Wills
Logging Engineer	Mary Kate Henrikson/Tamara Svetlichnaya
Logging Witness	Mohd Rothi Hamzah/ Ian Wrightstone

Rig data

Rig	ENSIGN 92	18
KB-RT	NA	m
RT-GL	5.15	m
GL-MSL	135.00	m

Sub-surface well information

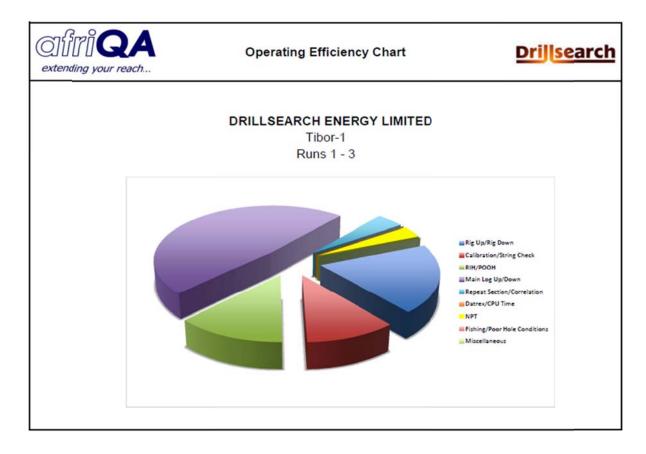
	Run 1: Tibor - 1
Bit Size	8.5 in
TD Driller	1723.0 mMDRT
TD Logger	1723.5 mMDRT
Casing Shoe Driller	751.0 mMDRT
Casing Shoe Logger	750.0 mMDRT
Circulation Stopped at TD	19- Feb-2013 04:20
Circulation Time	60 min
Max Well Deviation	2.0 deg @ 932.0 mMDRT
Casing size	9 5/8 in

Mud system

	Run 1:
Mud Type	3KCL-PHB-Polymer
Mud Weight	9.3 ppg
Mud Viscosity	46.0 sec
HPHT Fluid Loss	4.0 cc
PH	9.5
Corr Solids	4.0 %vol
Oil/Water Ratio	NA
CL (whole mud)	24,400 mg/l
Rmf @Temp	0.1300 @ 33.4°C
Rm @ Temp	0.1300 @ 33.4°C
Rmc @ Temp	0.5100 @ 33.4°C

5. Schlumberger tool mnemonics

EDTC	Gamma Telemetry tool
HNGS	Natural Gamma Ray Spectrometry tool
HGNS	Highly Integrated Gamma Ray Neutron Sonde
PEX(TLD)	Platform Express (Three-Detector Lithology Density)
HRLA	High-Resolution Laterolog Array
MAST	Sonic Scanner (MISP)
ADT	Array Dielectric Tool
SP	Spontaneous Potential
PPC	Powered Caliper
GPIT	General Purpose Inclinometry Tool
VSI	Versatile Sonic Imager



6. Tibor -1 Run 1 Activity summary and Operating Efficiency

For a detailed account of the Activity Summary, please refer to the afriQA Operational Reports for each logging suite.

RUN	SERVICES	RIG UP	RIG DOWN	TOTAL	LOST TIME	BHT
	1	dd/mm hh:mm	dd/mm hh:mm	TIME	(Contractor)	°C
1	EDTC/PPC/HGNS/PEX/HRLA/ADT/ SP	19/02 10:40	19/02 20:20	09:40	00:00	108. 9
2	EDTC/PPC/MAST/PPC/GPIT	19/02 20:20	20/02 05:40	09:20	00:55	114. 4
3	VSI-CHECKSHOT	20/02 05:40	20/02 13:40	08:00	00:00	118. 9
	TOTAL TIME FOR WIRELINE		27:00	00:55		
	OPERATING EFFICIENCY (1-		96.6	(%)		

Tibor-1 Operating Efficiency Run 1, 2 and 3

6.1 Summary Run-1: EDTC/HGNS/HGNS/TLD/HRLA/ADT/SP

Run 1 completed in 9 hours and 40 min without NPT recorded.

Narrative

Job Hazard Analysis was done between the logging and drill crew prior to rigging up the sheave wheels. Discussion covered all aspects of logging operations and handling of radioactive sources. The logging crew consisted of an engineer and two operators. The rig crew were very helpful to organise the proper position of the lower sheave chain. The sheaves rig-up was done safely without any problems.

First run consisting of EDTC/PPC/HNGS/PEX/HRLA/ADT/SP was rig-up and made up vertically without any problem. After installing the thermometers and setting tool depth, the crew begin to install the radioactive sources. The tool string was then run in the hole to casing shoe.

The Schlumberger primary depth control procedures were followed closely. The first point of reference was taken around 100m. Running in hole speed was set to around 3600 ft/hr to avoid undesired depth slippage for the first run. HRLA and MCFL calibration performed below the casing shoe. The Density and Dielectric caliper were also verified inside casing prior to logging down.

Down log was logged from casing shoe to 17100 m to avoid areas around TD. Only HRLA, GR, Spectra GR, SP and TNPH data were valid as all calipers were closed. Another depth control observation was done during down log. The measurements indicated that the downlog depth could be used as depth references. Tools were pulled back to log repeat pass from 1670 to 1570 m for all sensors. This specific interval would cover top of Hutton sandstone and Birkhead sandstone. Upon completion of repeat pass, the tool was run in the hole to TD.

The main pass recorded in high resolution from total depth to 20m above casing shoe depth (750.0 m) at 1800 ft/hr. On the completion of the main pass, the tool string was pulled to surface. Logging crew removed the radioactive sources and engineer begin to perform the after log verifications. The crew started to rig down the tool string completely.

Summary

- 1. Run 1 was the 1st run in the hole and the down log would serve as the main depth reference log as per Schlumberger procedures.
- 2. Downlog logged from casing shoe to TD. The data were not presented
- 3. PPC was run below the cablehead as a short axis kit.
- 4. RXO data being a pad device was affected by washed out borehole.
- 5. Neutron was run in decentralized position. Neutron porosity was corrected for whole mud salinity of 41,277 (ppm) and logged in Limestone matrix.

- 6. RHOZ Density was corrected for borehole and mud density, and presented in Limestone Compatible scale.
- 7. The borehole volume and cement volume was computed from the CAL1 calliper (density tool). The density caliper has been reset to casing ID of 8.914".
- 8. Maximum reading BHT from thermometer was 108.9 deg C at 1691.0 mMDRT 11hrs 20 min after final TD circulation.
- 9. Bulk Density (RHOZ) and ADT data were affected badly by washed out and borehole rugosity.

	OBSERVATIONS AND LOG QUALITY CONTROL				
1. DEPTH CONTROL	Run 1 down log was the main depth reference log				
2. RHOZ	Good repeatable data recorded. Density corrections (HDRA) within expected range over gauge hole. Borehole rugosity (washout) affected density data badly.				
3. GR	Good data recorded.				
4. TPHI	Good repeatable data recorded. Corrected for whole mud salinity of 41,277 ppm. Borehole rugosity (washout) affected porosity data badly.				
5. HNGS	Good data recorded.				
6. ADT	Good data recorded. Proper QC cannot be done because of processing requirement. All the QC flags were OK.				
7. HRLA	Good repeatable data recorded. Different invasion profile observed across the washout zones.				

6.2 Summary Run-2: EDTC/PPC/MAST(Sonic Scanner)/PPC/GPIT

Run 2 completed in 9 hours 20 Minutes with 55 minutes NPT recorded.

Narrative

On completion of Run 1, the crew prepared the PPC tool on the catwalk prior to rigging up. The crew had to set the top PPC arms to fully operational and performed caliper calibration. The crew spent a considerable amount of operating time (55 minutes) to do this. Once completed, the crew rig up all the tool string without at problems. The engineer set the tool zero and decided to run in the hole without function check the tools first. At 50m, the engineer failed to initialize the sonic scanner (MAST). This was the same problem seen during surface checkout and the engineer should have learnt from it. The engineer decided to pull back to surface to troubleshoot the problem. The sonic scanner started to work again after a while and proceed to run in hole.

Engineer stopped at casing shoe, to check the caliper reading and reset it to 9 5/8" casing ID. The sonic scanner was set to BHC mode and downlog logged from casing shoe to TD at 6000 ft/hr. No problem seen, and the formation compressional slowness was almost similar to the offset well (Planets Down-1). The repeat pass was done first, with sonic scanner set to standard mode. In standard mode, the sonic scanner will provide fullwave monopole and fullwave cross dipole. The GPIT tool was run to provide directional data for anisotropy processing. The main pass logged from TD to surface. No problem seen on the main pass and all formation slowness were good.

The sonic scanner data required more processing at Schlumberger data centre to produce more correct slowness.

<u>Summary</u>

- 1. Run 2 correlated to Run 1
- 2. Sonic scanner was logged in BHC mode for down log in order to log using faster logging speed at 6000 ft/hr.
- 3. Sonic scanner log in the standard sonic mode for repeat pass and main pass. Fullwave monopole, inline dipole and cross dipole recorded in this mode.
- 4. GPIT data and QC flags were all showing good inclinometry data: which were also recorded. GPIT also read good field intensity and field magnetometer for the well.
- 5. PPC caliper showing same borehole washout seen by the density tool. PPC is a 2-axis caliper.

	OBSERVATIONS AND LOG QUALITY CONTROL					
1.	Depth Control	Run 2 down log tied into run 1				
2.	GR	Good repeatable data recorded				
3.	MAST(Sonic Scanner)	Reasonable data recorded. Sonic fullwave				
		and cross dipole need further processing in				
		Schlumberger data centre.				
4.	GPIT	Good data recorded				
5.	PPC	Good data recorded				

6.3 Summary Run-3: EDTC/VSI

Run 3 completed in 8 hours with no NPT recorded.

<u>Narrative</u>

On completion of Run 2, the seismic single level checkshot survey using VSI tool was rigged up. The VSI tool still uses the EDTC as its telemetry and gamma ray data. Schlumberger own vibrator used for the seismic source energy. The seismic engineer selected the best position for the vibrator in order to reduce the sonic energy travel through the surface casing. The maximum distance, the vibrator

from the rig floor are a 50 m radius. Once the tool and the vibrator were verified to be functioning, engineer started to run in hole. The zero depth of the tool string was 1.09 m above the geophone.

As per the SOP, several checkshot surveys were done as calibration points while running in hole. The same levels will be shot on the way up to reconfirm the tool functionality.

The requested checkshot levels were all the formation tops. This formation top depths were selected by the client, based on the first run and mud log. The first level was at total depth and the engineer positioned the tool at 1721.5 m. This depth was found not good, and the bad geophone coupling could be due to washed out. The engineer tried to slack the cable from the surface but not able to improve the signal received. The tool was then moving to 1721.0 m, and reasonably good data were obtained. The tool was then pulled up to the next level requested. All together 11 formation tops have been requested. In addition, the engineer also surveys the MSL depth (141.15m) and near to ground level (10.6 m). On each survey depth, at least 3 shots fired for data stacking to improve the signal to noise ratio.

The tool reach surface safely and rig down.

Summary

- 1. Run: 3 correlated to Run: 1 using gamma ray from the EDTC tool.
- 2. Checkshot level at MSL and GL were done as per standard operation requirement.
- 3. All formation top depths were given by the client before starting the operation.
- 4. Checkshots were done from the deepest shot depth to the shallowest depth.
- 5. The anchor was kept open from first shot depth to the last shot depth.
- 6. Stacking technique was used to increase the signal to noise ratio. At least 3 shots were fired to do this at each depth.

OBSERVATIONS AND LOG QUALITY CONTROL					
1. Depth Control	Run 3 log tied into run 1				
2. GR	Good repeatable data recorded				
3. VSI(Seismic Imager)	Reasonable good data recorded. Checkshot data need further processing in Schlumberger data centre.				

Figure-1 Schlumberger Logging truck and satellite disk setup.

Figure-2 PPC-Powered Caliper used for short-axis kit.

Figure 3- MAST- Sonic Scanner receiver for monopole and dipole

Figure 4- VSI-Single level

Figure 5- CO2 Liquefied Gas use by HNGS detector.

7. Summary and Recommendations for continuous improvement

During the Tibor-1 wireline logging operations, there were NPT of 55 minutes recorded. The lost time happened on run2. The sonic scanner (MAST) failed to initialize properly upon powering up the tool. The same problem happened during surface checkout. The only way to solve this problem is by running cartridge internal diagnostic, which is not normal.

The short axis kit ran in run 1 was not working well. The density and ADT calipers still read bigger than PPC across washout zone.

Run 1 finished successfully and without any problems. The pad device and neutron tool was affected by the borehole rugosity and washout. The log can be monitored in town via the Interact, transmitted over the satellite system.

The Sonic scanner for run 2 was run in standard mode. In standard mode fullwave monopole and fullwave cross-dipole were recorded. GPIT was run in combination to provide directional data for

anisotropy processing. No shear from monopole in Wallumbilla formation due to soft formation. The shear slowness can be obtained using the inline dipole data. The last run, seismic checkshot completed without any problems at all.

The assigned engineers for this job were very knowledgeable in operating the logging system and logging tools. However they still need to read log real time.

Nevertheless, the advantages of Schlumberger system and logging tools are its reliability and easiness for engineers to operate.

7.1 Highlights:

- 1. No accidents recorded during the logging operation.
- 2. No environmental incidents recorded.
- 3. Good commitment shown by the wireline crew to perform the operation in a safe and efficient manner.
- 4. All formation evaluation objectives were met.
- 5. Satellite communication system work and log data successfully transferred via INTERACT after the run completed.
- 6. Witness can follow the log via the second screen.

7.2 Lowlights:

- 1. Full back up strings were not loaded out for the job. Only PEX(TLD) and VSI mobilized with full backup.
- 2. In real time, only log plot (PDs) can be transmitted via interact to base.
- 3. Fishing kit missing 3 5/8" spiral grapple. Only the 3 3/8" spiral grapple inside the kit.
- 4. Poor real time logging data QC.

7.3 Best practices and Continuous improvement:

- 1. Inspect all rig-up equipment before every load out or at the wellsite to ensure operational status
- 2. Mobilise QA/QC supervisor to assist with tool checks in SLB base. This will reduce the time required on site for an audit and in so, significantly reducing the direct cost due to equipment standby rates on site.
- 3. Perform pre-job logging plan review with SLB in ROMA or MOOMBA to ensure correct equipment is mobilised to the site for upcoming operations.
- 4. Initiate a customer rig book in aiding efficient hand-over between engineers in charge and being consistent to client requirements.
- 5. Request RITE maintenance history for the specific Schlumberger equipment being mobilised to site.

HEADING INFORMATION & RUN SUMMARY

Well	Tibor-1	Rig	Ensign 918		Mud Type	3KCL-PHB-Polymer	
Block	ATP 539	RKB	NA	m	Mud Weight	9.30	ppg
Туре	Exploration	RT Elevation	5.15	m above GL	Mud Viscosity	46	S
Operator	Drillsearch Energy Limited	Ground Level	350.00	m above MSL	Fluid Loss	4	СС
EWL Contractor	Schlumberger	Bit Size	8.50	in	PH	9.5	
Area	SW Queensland	TD Driller	1723.00	m MDRT	Corr Solids	4.0	%vol
Latitude	25deg 52' 17.796" S	TD Logger	1723.50	m MDRT	Oil/Water Ratio	NA	
Longitude	141deg 16' 19.413" E	CSG Shoe Driller	751.00	m	Cl ⁻ (whole mud)	25400	mg/L
Drilling Supervisor	Ray C. Miller	CSG Shoe Logger	750.00	m	Rmf @ temp	0.130	33.4 °C
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Circ Stopped at TD	19-Feb-13 04:20	dd/mm/yy hh:mm	Rm @ temp	0.130	33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Circulation time	60	min	Rmc @ temp	0.510	33.4 °C
Job start date	19-Feb-13	Max Dev @ depth	2.00	deg @ 932 m MDRT			

SERVICES	RIG UP dd/mm hh:mm	RIG DOWN dd/mm hh:mm	TOTAL TIME	LOST TIME (due to Contractor)	LOST TIME (3rd party NPT)	TOP LOGGED INTERVAL (m)	BOTTOM LOGGED INTERVAL (m)
Run 1: ERCD/EDTC/SP/PPC/HNGS/PEX(TLD)/HRL A/ADT	19/02 10:40	19/02 20:20	9:40	00:00	00:00	750.0	1723.5
Run 2 - ERCD/EDTC/PPC/MAST/PPC/GPIT	19/02 20:20	20/02 05:40	9:20	00:55	00:00	10.0	1723.5
Run 3 Checkshot - 1 X VSI with Vibrosis	20/02 05:40	20/02 13:40	8:00	00:00	00:00	10.0	1721.5
TOTAL TIME FOR THE LOGGING JOB			27:00	0:55	0:00		•
OPERATING EFFICIENCY (1-LT/OT)x 100				96.60%			

SCHLUMBERGER SERVICE QUALITY

The Schlumberger logging crew on the Ensign-918 for Tibor-1 performed well during the logging operation and showed good commitment. Unfortunately, due to intermittent tool initialization failure, the total operating efficiency was lower than expected 100%. The Schlumberger DCS support during the operation was of a high standard with good communication between the processing centre, the COMPANY office based personnel and the field. Good quality geological and Petro-physical data was recorded. The equipment failures need to be investigated, and error cause removal reports submitted. Refer to the summary sheet for a detailed breakdown of highlights and lowlights during the operations.

EQUIPMENT QA/QC

TD Drille CSG Shoe Drille Well Tibor-1 1723.00 n 751.00 CSG Shoe Logger Block TD Logge 1723.50 750.00 ATP 539 EWL Contractor Schlumberger Bit Size Circ Stopped at TD 19-Feb-13 04:20 dd/mm/yy hh:mm 8.50 deg @ 932 m MDRT Job date 19-Feb-13 Max Dev @ depth Circulation time 60 min 2.00 0.130 33.4 °C 0.130 33.4 °C Logging Engineer MaryKate Henrikson/Tamara Svetlichnaya Mud Type 3KCL-PHB-Polyme Rmf @ temp Logging Witness Rothi Hamzah/Alan Wrightstone/B.Craig Mud Weigh 9.30 Rm @ temp Rmc @ temp 0.510 33.4 °C Report Date 20-Feb-13 Suite

			Equipment QC				
Logging Run	Tool Type	Description	Primary Equipment Asset Number	CALIBRATED	Backup Equipment Asset Number	CALIBRATED	COMMENTS
	LEH-QT	Cable head	1183	NA			8k weak point
<u> </u>	ECRD	Electrical release cable head	1183	NA			
<u> </u>	SPA-A	Spontaneous Potential	9999	NA			
<u> </u>	AH-369	Mass Isolation sub	1890	NA			
	EDTC-BB	Down hole telemetry	8225	18 February 2013	8536	NA	Back-up: MDT
	EDTH-B	Down hole telemetry	8217		8537	NA	Back-up: MDT
-	PPC-B	Powered Caliper	8075	19 February, 2013			
	AH-120	Knuckle Joint	838	NA			
	Adapter-Head	Spacer		NA			
	AH-184	Knuckle Joint	5998	NA			
	HEH-K	Spectral GR HNGS housing	19	NA			
	HNGS-BA	Spectral GR Sonde	19	11 January, 2013			
	HNGH-AA	Spectral GR housing	47				
Run 1:	HNGC-BA	Spectral GR cartridge	221				
ECRD/EDTC/SP/PPC/	HGNH-B	Neutron Gamma Ray	2954	14 February 2013			
HNGS/PEX(TLD)/HRL	HGNS-H	Neutron Gamma Ray	3892				
A/ADT	HRCC-H	Density Housing	4854				
	HRDD-BS	Density Back Scatter	41224	14 February, 2013			
	HRMS-H	Density Sonde	3931	14 February, 2013			
	HRGD-H	Density Pad	4967	14 February, 2013			
	AH-184	Mass Isolation sub	5954	NA			
	HRUC-B	Laterolog Upper cartridge	939				
	HRUH-B	Laterolog Upper housing	933				
	HRLS-B	Laterolog Sonde	928	19 February, 2013			
	HRLC-B	Laterolog Lower cartridge	920				
	HRLH-B	Laterolog Lower housing	915				
	AH-270	Mass Isolation sub	759	NA			
	HECH-KDB	ADT	772	NA			
	ADC-C	ADT	789				
	ADS-C	ADT	761				
	ADP-C	ADT	761	18 February, 2013			
	LEH-QT	Cable head	1183	NA			8k weak point
	ECRD	Electrical release cable head	1183	NA			
	SAH-F	Swivel	1890	NA			
	EDTC-BB	Down hole telemetry	8225	19 February 2013			
	EDTH-B	Down hole telemetry	8217	19 February, 2013			
	PPC	Positioning Powered Caliper	8075	19 February, 2013			
Run 2:	ECH-SF	Sonic Scanner	8257	NA			
ECRD/EDTC/PPC/MA	MAPC-BA	Sonic Scanner	8265	NA			
ST/PPC/GPIT/SPACE	MAMS-BA	Sonic Scanner	8262	NA			
<u>R</u>	MASS-BA	Sonic Scanner	8218	NA			
	MAXS-BA	Sonic Scanner	8221	NA			
L	PPC-B	Postioning Powered Caliper	8291	19 February 2013			
	GPIH-B	GPIT	2816	18 February 2013			
	DHRU-F	GPIT	1823	NA			
	GPIC-H	GPIT	1823	NA			
	OSLCG	Wireline logging truck	3144	NA	NA	NA	SMALL TYPE
	OSAO	Mobile Lab - MDT capable	NA	NA			SUPPLY BOX
<u>Surface</u>	IDW	Depth measuring device	978	26-Oct-12	NA		
	7-46ZVXS	Wireline (LENGTH: 2945m)	75134	NA	NA	NA	ROPE SC: 10/2/13
	QBX	Vibro Truck	WZG 406	NA			1

EQUIPMENT PREPARATION REMARKS

- 1. Only one (1) set of a complete string mobilized to the wellsite except extra TLD and VSI (Checkshot)
- 2. Standalone system was inside the logging truck. No backup system available or mobilized for this job. Second screen available for the client to use. The plotter machine installed inside the system was working.
- 3. The logging operations were based on DRY CASE programme inclusive of seismic checkshot run.
- 4. All pre-log verifications performed during pre-job check on the surface and before rig-up. Resistivity tools were checked without test harness. Only HRLA harness mobilized but not use during tool checkout.
- 5. MAST tool failed to initialize upon power up during checkout. The engineer has to do internal cartridge diagnostic test first and then the tool start to work properly. This is the same tool used on the last well, when the same problem seen. Several fast power up sequences managed to solve the problem.
- 6. All stand-offs diameter measured manually, and the tool diagram handed to the company representative before rig-up. Final OD for a tool with standoff was 8".
- 7. The HNGS (Spectra Gamma Ray) detector was cooled with liquified gas-CO2 before rig-up to 2 degC as per Schlumberger SOP.
- 8. MAST cross dipole operation was tested on the surface, but dipole waveforms and monopole waveforms were not tested because special shuck or half-trough was not mobilized.
- 9. All PPC setting levels were checked during surface test. Level 2 will be used for logging with MAST (Sonic Scanner)
- 10. Short axis mode will be utilised on the first run. Short axis modification consisting of PPC/Knuckle/Spacer/Knuckle connected between EDTC and HNGS.

EQUIPMENT QA/QC

Well	Tibor-1	TD Driller	1723.00	m	CSG Shoe Driller	751.00	m
Block	ATP 539	TD Logger	1723.50	m	CSG Shoe Logger	750.00	m
EWL Contractor	Schlumberger	Bit Size	8.50	in	Circ Stopped at TD	19-Feb-13 04:20	dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00	deg @ 932 m MDRT	Circulation time	60	min
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Mud Type	3KCL-PHB-Polymer		Rmf @ temp	0.13	33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.30	ppg	Rm @ temp	0.130	33.4 °C
Report Date	20-Feb-13	Suite	1		Rmc @ temp	0.510	33.4 °C

			Equipment QC				
Logging Run	Tool Type	Description	Primary Equipment Asset Number	CALIBRATED	Backup Equipment Asset Number	CALIBRATED	COMMENTS
	LEH-QT	Cable head	1876				
	ECRD	Electrical release cable head	1876				
	EDTC-BB	Down hole telemetry	8536				
	EDTH-B	Down hole telemetry	8537				
	MRPC	MDT power cartridge	871				
	MRCH	MDT power cartridge housing	1083				
	MRMS	6 Tank sample carrier	75				
	MPSR	450cc Sample chamber	-				
	MPSR	450cc Sample chamber	-				
Dum 2: MDT	MPSR	450cc Sample chamber	-				
Run 3: MDT	MPSR	450cc Sample chamber	-				
	MPSR	450cc Sample chamber	-				
	MPSR	450cc Sample chamber	-				
	MRPO	MDT Pump	541				
	MRSC	Sample chamber - large volume	612				Exit port
	MRFA	MDT Fluid analyser	8263				
	MRHY	MDT hydraulics	751				
	MRPQ	MDT probe section	541	8 February, 2012			CQG 3290
	MRPP	MDT Power panel		•			
	MRTM	MDT communications panel					
	LEH-QT	Cable head	1183				
	ECRD	Electrical release cable head	1183				
	EDTC-BB	Down hole telemetry	8225		8536		
	EDTH-B	Down hole telemetry	8217	20 February 2013	8537		
Run 4: ZO-VSI-	AH-199	Cross over	5035	-			
CHECKSHOT	VSPC-BA	VSP Power cartridge	8070		8073		
<u> </u>	VSCC-BB	VSP communication cartridge	8070		8073		
	VSIS-CA	VSI geophone	8313		8311		
	AH-244	Cross over	8071				
	VPO	Vib Pro vib control panel	1526				
	WSAM	Seismic acquisition panel	1747				
	LEH-QT	Cable head					
	SGH-K	Gamma Ray	3322				
	MCCM	Rotary coring tool	239				
Run 5: MSCT	MCEC-AA	Rotary coring tool	240				
	MDMU-AA	Rotary coring tool	8090				
	MCRCM	Rotary coring tool	691				
	MCPP	Power panel	239				

EQUIPMENT PREPARATION REMARKS

- 1. VSI was not checked during surface checkout. The crew still waiting for the vibrator to be at the rig site.
- 2. The checkshot will run as a single level tool.
- 3. MDT and MSCT were not operational check on surface.

PRE-JOB QA/QC CHECKS

Well	Tibor-1	TD Driller	1723.00 m	CSG Shoe Driller	751.00 m
Block	ATP 539	TD Logger	1723.50 m	CSG Shoe Logger	750.00 m
EWL Contractor	Schlumberger	Bit Size	8.50 in	Circ Stopped at TD	19-Feb-13 04:20 dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00 deg @ 932 m MDRT	Circulation time	60 min
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Mud Type	3KCL-PHB-Polymer	Rmf @ temp	0.13 33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.30 ppg	Rm @ temp	0.130 33.4 °C
Report Date	20-Feb-13	Suite	1	Rmc @ temp	0.510 33.4 °C

	Pre-Job QA/QC Checks WIRELINE CONTINUITY AND INSULATION	STATUS	COMMENTS
		Good NA	Checked at the base and was recorded on the cable sheet inside the truck
	CABLEHEAD CONTINUITY AND INSULATION	NA NA	
	WIRELINE LENGTH SUFFICIENT FOR LOGGING JOB	IVA	Primary 75134 = 2945m;
	WIRELINE TORTURE TEST	NA	Not checked, readily installed with ERCD and ready to go. Build new rope socket in Roma-10th Feb 2013
	DEPTH ENCODER SURFACE CHECK	Good	IDW # 1933 Calibration date 26-Oct-2012.
	MULTI METER AND MEGGER IN GOOD WORKING ORDER	28/1/2013	
SURFACE	GEIGER COUNTER IN GOOD WORKING ORDER	28 January, 2013	Calibration due date July 2013.
EQUIPMENT	RA SOURCE INSTALLATION TOOL IN GOOD WORKING ORDER	Good	Heira malaura alata Dual aurana
	SOURCE CATCHER IN GOOD WORKING ORDER LIFTING CAPS IN GOOD CONDITION AND CERTIFIED	11/1/2013 Good	Using makeup plate - Dual purposes Certified in date
	TOOL STAND-OFFS CALIPERED FOR ACCURATE OD AND DIAGRAMS WITH CO-MAN	Good	Physically measured OK
			CompleteBACK up tool supplied.
	EQUIPMENT FUNCTIONALLITY CHECK ON PRIMARY AND BACK-UP SYSTEM	27/11/2012	BACKUP only- 1xvsi / 1x TLD
	COPY OF MASTER CALIBRATION ON PRIMARY AND BACK-UP SYSTEM	28 January, 2013	Verified during logging
	RIG-UP EQUIPMENT CERTIFICATION CABLE CUTTER AVAILABILITY	Good NA	Not checked
	WEAK POINT SELECTION	10/2/2013	8k weak point in ECRD.
	SHOP CALIBRATION	Good	ok weak point in Eore.
CALIBRATIONS	BEFORE LOG SURVEY	Good	
CALIBRATIONS	AFTER LOG SURVEY	Good	
	CALIBRATION EQUIPMENT CONDITION	Good	
	PRE-JOB SAFETY MEETING HELD ADEQUATE FOR THE OPERATION	Good	
	CORRECT PPE WORN AT ALL TIMES	Good	
	RA SOURCE HANDLING PROCEDURES CORRECTLY EXECUTED	Good	
	BEFORE AND AFTER LOG SURVEYS COMPLETED	Good	
SAFETY	RA AND EXPLOSIVE BUNKERS STORED IN A SAFE AREA CORRECTLY BARRIERED OFF	Satisfactory	Under pipe rack-posted sign board only-not barriered off
	LIFTING PLAN IN PLACE FOR EQUIPMENT TRANSFER TO AND FROM CATWALK GROUND CABLES FOR EXPLOSIVE OPERATIONS IN GOOD CONDITION	Good NA	Picked up sources using rig tugger line.
	SAFETY SWITCH OPERATIONAL	NA NA	
	GENERAL SAFETY PROCEDURES FOLLOWED AT ALL TIMES	Yes	
	FISHING BOX INVENTORY UPDATED AND COMPLETE	29 January, 2013	Not checked-Short on time-Crew arrived late
	FISHING EQUIPMENT CERTIFIED AND IN GOOD CONDITION	29 January, 2013	Engineers confirmation only
FISHING	COPY OF FISHING OPERATING PROCEDURES IN THE FISHING BOX	NA	Engineers confirmation only
	FISHING HAND TOOLS IN GOOD OPERATING CONDITION	NA Ol	Engineers confirmation only
	TWO UNUSED CABLE HEAD GRAPPLES AVAILABLE CABLE CLAMP IN GOOD CONDITION	Good Good	
	MALE WET CONNECT CHECKED FOR CONTINUITY AND INSOLATION	NA NA	
	FEMALE WET CONNECT CHECKED FOR CONTINUITY AND INSOLATION	NA	
	SIDE ENTRY SUB AVAILABLE AND CERTIFIED	NA	
TLC KIT	ALL RELEVANT CROSS-OVERS AVAILABLE AND CERTIFIED	NA	
TEO KII	WET CONNECTS FUNCTION TESTED FOR LATCHING AND SYSTEM COMMUNICATION	NA	
	CABLE GUARD AVAILABLE	NA	
	TLC HAND TOOL IN GOOD CONDITION	NA	
	COPY OF TLC PROCEDURES AVAILABLE IN UNIT	NA NA	
	SYSTEM AND BACK-UP OPERATING CORRECTLY	NA	No back-up. Stand alone system
	WINCH IN OPERATIONAL CONDITION	Cood	Need to remedy- brake catching the drum flange when drum moving
	BACK-UP WIRELINE AVAILABLE ON LOCATION AND IN GOOD CONDITION	Good NA	downward.
UNIT	ALL FLUID LEVELS CHECKED AND SATISFACTORY	Good	
	AC'S OPERATIONAL	Fair	Not enough and hot. only one unit available
	LIGHTS ADQUATE	Good	,
	POWER PACK AND GENERATOR OPERATIONAL	Good	Not check-available for MSCT also
	UNIT CHECK SHEET COMPLETED BEFORE EVERY JOB	Not Done	Should be initiated by Engineer
	RE-HEAD SPARE PARTS AVAILABLE	Good	
	BACK-OFF EQUIPMENT CHECKED, LABLED AND STORED READY STATE	NA NA	
	MECHANICAL SETTING TOOL OPERATIONAL, REDRESS KITS AVAILABLE BOP AVAILABLE, SERVICED AND IN READY STATE	NA NA	
	SQUEEZE GUNS AVAILABLE	NA NA	
WORKSHOP	SPARE CABLE HEAD BUILD, CHECKED AND READY	NA NA	
	AC'S OPERATIONAL	NA NA	
	LIGHTS ADEQUATE	NA	
	GR/CCL TOOLS AVAILABLE FOR VARIOUS OPERTIONS AND HOLE ID'S	NA	
	HAND TOOLS ADEQUATE	NA	

PRE-JOB QA/QC REMARKS

- 1. The Schlumberger crew arrived on site about 20hrs from rig up time. Only the first two (2) confirmed runs were surface check. VSI-Checkshot was not checked because vibrator still on the way
- 2. All down-hole equipment was checked on site as per the Equipment QC sheet
- 3. All rig-up equipment was checked on the site and all with certificates.
- 4. Successfully setup satellite communication at the wellsite. The crew does experienced a problem the first few hours.
- 5. RA survey was done prior to moving the sources to assigned secured location.
- 6. Cablehead was already made up, hence cable test only limited to insulation and continuity test.

SEQUENCE OF EVENTS RUN 1

Well	Tibor-1	TD Driller	1723.00	m	CSG Shoe Driller	751.00 m
Block	ATP 539	TD Logger	1723.50	m	CSG Shoe Logger	750.00 m
EWL Contractor	Schlumberger	Bit Size	8.50	in	Circ Stopped at TD	19-Feb-13 04:20 dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00	deg @ 932 m MDRT	Circulation time	60 min
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Mud Type	3KCL-PHB-Polymer		Rmf @ temp	0.130 33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.3	ppg	Rm @ temp	0.130 33.4 °C
Report Date	22-Feb-13	Logging Suite	1		Rmc @ temp	0.510 33.4 °C

Start	End	Hrs	Code	Operation and Comments
dd/mm hh:mm	dd/mm hh:mm	(hh:mm)		Run 1: ECRD/EDTC/SP/PPC/HNGS/PEX(TLD)/HRLA/ADT
19/02 10:40	19/02 11:00	0:20	1	Conduct pre-job safety meeting on the drill floor with Schlumberger and rig crew. Work permit was issued, and general rig-up and rig-down were discussed. The discussion topic also includes radiation safety.
19/02 11:00	19/02 12:30	1:30	1	Rig up wireline equipment and make up Run 1 tool string-EDTC/SP/PPC/HNGS/HGNS/PEX/HRLA/ADT
19/02 12:30	19/02 12:45	0:15	2	Completed tool rig up and perform surface Tool check. Installed thermometers into the housing of cablehead prior to setting tool "zero depth". Zero tool string at 31.95 m (bottom cablehead) and getting ready to install radioactive sources.
19/02 12:45	19/02 13:00	0:15	2	Installed density and neutron sources. Rih slowly at 1000 ft/hr passing through BOP and to 100m depth for depth control test.
19/02 13:00	19/02 13:20	0:20	3	Stop at 100m and perform depth control I.e marking the cable in front of the IDW. The mark was then moved this mark to the rotary table depth. The depth mark at rotary table was 170.91m. Therefore, the cable distance between the IDW and the rotary table is 70.91 m. The next checkout will be closed to TD.
19/02 13:20	19/02 13:40	0:20	3	Continue running in the hole to 50 m below casing shoe for downhole tool check.
19/02 13:40	19/02 13:55	0:15	4	Opened and log up with caliper into casing shoe and inside casing. ADT caliper read 8.892" and density caliper read 8.594" before resetting to casing ID of 8.9". Reset calipers to nominal casing ID.
19/02 13:55	19/02 15:00	1:05	4	Record down log at 3600ft/hr from 750m to 1721m with SP/GR/SGR/CN/HRLA. All pad devices data were recorded but not usable because of closed calipers. Logging system cannot switch off data from tools if not required. Another depth control performed at 1650.0 m and the depth difference of 0.3m from surface reading.
19/02 15:00	19/02 15:05	0:05	3	Moved up to repeat pass interval. Opening calipers on the way up.
19/02 15:05	19/02 15:25	0:20	5	Record repeat pass at 1800 ft/hr. The PEX (Density, Neutron and Gamma Ray) was logged in Hi res mode (6 spf). No tension over pull experienced on this pass. The logging cable tension was reading 3800lbs, and the head tension was reading 2050lbs.
19/02 15:25	19/02 15:37	0:12	3	Stopped repeat pass and closed calipers. Then run back in the hole to TD for main pass.
19/02 15:37	19/02 17:35	1:58	4	Reached TD and slacked around 2 meters of cable. Opened caliper and start recording main pass with PEX in High Resolution mode. No over pull experienced during logging. The cable speed was maintained between 1400 to 1600 ft/hr. Total depth logger is at 1723.5 m.
19/02 17:35	19/02 18:20	0:45	3	Stopped main pass logging 20m above the 9 5/8" casing shoe. Closed calipers and pull out of the hole to the surface. Casing logger is at 750.0 m.
19/02 18:20	19/02 18:50	0:30	2	Reached surface removed thermometers and radioactive sources. The thermometers read 228, 228 and 226 degf.
19/02 18:50	19/02 19:10	0:20	2	Perform after log verifications and started rig down tool
19/02 19:10	19/02 20:20	1:10	1	Completed rig down run 1.
Total hours:		9.67	(decimal)	

REMARKS

7. NPT due to wireline contractor

8. Drilling / wellbore conditions related NPT

- 1. Run 1 was the first run in the hole and will serve as the primary depth reference. First run depth control was done as per Schlumberger SOP.
- 2. All wireline depth was measured from RT 5.15 m above GL. The GL was 135.0 m above MSL.
- 3. Well is almost vertical and run 1 was deployed on wireline. The maximum deviation recorded was 2.0 degrees at 932m.

4. Logging up, logging down

5. Repeat Section, depth correlation

6. Data transmission, CPU time.

- 4. Down log was performed and not presented. No downlog data were not used to splice to repeat and main pass for final data delivery.
- 5. The SP data was recorded for all logging passes. SP tool was the most bottom tool in the toolstring.
- 6. The HRLA was run stood off and logged at high resolution. Two sets of rubber fin standoffs were positioned below and above the sonde. The average fin width was about 1.5 inches. 4 fins were required to makeup one rubber fin stand-off.
- 7. Only internal check was done for HRLA. The sonde electrodes were not checked using the special test harness.
- 8. The density caliper (PEX) and ADT caliper read 8.594" and 8.892" inside casing during before log check. True casing ID = 8.914". Caliper data was corrected to true casing ID before BHV and CV calculations were completed. The density and ADT caliper calibrations were done on the surface during surface checkout. 8" and 12" caliper rings were used for calibrations.
- 9. Total hole volume = 39.55 m^3 computed from 1723.5m 750 m using data from Density-arm calliper.
- 10. Total cement volume = 24.77 m^3 computed from 1723.5 m 750 m using data from Density-arm calliper for 5 1/2" casing to set.
- 11. The borehole temperature from the maximum reading thermometers were 108.9 deg C, 108.9 deg C and 107.8 deg C at 1691.0 m after 11 hours 20 min final TD circulation stop.
- 12. ADTdata were not observed and QC properly during logging. All ADT data require further process in town to get the final ouput data. While logging only the diagnostic data flags were used, to ensure ADT working properly.
- 13. No tension overpull experienced while logging.

1. Rigging up, rigging down

Calibrations, tool checks

3. Running in, pulling out of hole

14. Radioactive installation and retrievable were done safely. Tugger line was used to bring the RA sources from catwalk to the rig floor.

	OBSERVATIONS AND LOG QUALITY CONTROL
* DEPTH CONTROL:	Run1 will serve as the main depth reference file. Depth control SOP was done properly by the logging crew.
* EDTC:	Good repeatable data recorded. EDTC also give out additional GR data. This the shallowest GR data from the log
	Data from Uranium(URAN), Potassium(POTA) and Thorium(THOR) responding normally over all the formations logged. Only at the interval between 975 m to 978 m, Uranium curve read higher than normal but the K, and TH showed no increment at all. Good repeaatble data recorded.
*HGNS	Good repeatble data recorded. All the parameters used for loggings were correct. Neutron porosity data were badly affected by the borehole rugosity and washout. Neutron was recorded in Limsetone Matrix. Borehole correction and mud salinity correction applied. Mud salinity used 41,277 ppm from the whole mud.
*TLD	Good repeatable data recorded. All the parameters used for loggings were correct. Density data were badly affected by the borehole rugosity and washout. The tool string was setup with short-axis mode. Mud weight and borehole correction applied to the density data. PEF value over the sandstone was around 2.0 (slightly on the high side). Limestone compatible scale used for presentation.
	Good repeatable data recorded. RXO data read lower than HRLA due to borehole enlargement. RXO data were badly affected by the borehole rugosity and washout.
* HRLA:	Good repeatable data recorded. The shallowest HRLA resistivity (RLA1) read higher than the deepest resistivity (RLA5) due to borehole enlargement.
	ADT output data was not QC during logging. Data need further processing. All QC flags were good. Good data recorded.

SEQUENCE OF EVENTS RUN 2

Well	Tibor-1	TD Driller	1723.00	m	CSG Shoe Driller	751.00 m
Block	ATP 539	TD Logger	1723.50	m	CSG Shoe Logger	750.00 m
EWL Contractor	Schlumberger	Bit Size	8.50	in	Circ Stopped at TD	19-Feb-13 04:20 dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00	deg @ 932 m MDRT	Circulation time	60 min
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Mud Type	3KCL-PHB-Polymer		Rmf @ temp	0.130 33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.3	ppg	Rm @ temp	0.130 33.4 °C
Report Date	22-Feb-13	Logging Suite	1		Rmc @ temp	0.510 33.4 °C

Start	End	Hrs	Code	Operation and Comments
dd/mm hh:mm	dd/mm hh:mm	(hh:mm)		Run 2 - ECRD/EDTC/PPC/MAST/PPC/GPIT
19/02 20:20	19/02 21:15	0:55	2	Crew work on one of the PPC tool arms back to normal standard operation. Function test 2 PPC calipers together and calibrate caliper.
19/02 21:15	19/02 22:00	0:45	1	Rig up run 2 -EDTC/PPC/MAST/PPC/GPIT and installed thermometers in cablehead.
19/02 22:00	19/02 22:10	0:10	3	Set zero @25.46 m and rih. No functional check on Sonic Scanner prior running in hole. Requested to check tool and experienced same tool initialization failure as seen on job preparation at the wellsite.
19/02 22:10	19/02 23:05	0:55	7	Engineer decided to move back to surface for troubleshoot the Sonic Scanner tool. Same initialization problem experienced during job preparation on surface. Tool initialization process solved and reset tool ZERO and continue running in the hole to casing shoe.
19/02 23:05	19/02 23:40	0:35	3	Running in the hole to casing shoe for PPC caliper check. Casing arrival while running in hole read 55us/ft
19/02 23:40	19/02 23:50	0:10	2	Reached the casing shoe and verify PPC calipers.
19/02 23:50	20/02 00:35	0:45	4	Log down sonic scanner in BHC mode at 6,000ft/hr from casing shoe to 1710.0 m
20/02 00:35	20/02 00:55	0:20	5	Moved up to repeat interval. Set the sonic scanner in standard full wave mode and logged repeat pass from 1670.0 m to 1570.0 m.
20/02 00:55	20/02 01:00	0:05	3	Stopped repeat pass and close PPC calipers. Run in the hole to TD for main pass.
20/02 01:00	20/02 04:55	3:55	4	Log main pass from TD to surface. Logging speed set in between 1400 to 1600 ft/hr. Sonic scanner set to standard fullwave mode.
20/02 04:55	20/02 05:00	0:05	2	On the surface and read thermometers. Thermometers read 238, 238 and 236 degF.
20/02 05:00	20/02 05:40	0:40	1	Rig down run 2.
Total hours:	L	9.33	(decimal)	

Logging Codes:

Rigging up, rigging down

Running in, pulling out of hole

- 4. Logging up, logging down
- 5. Repeat Section, depth correlation
- 6. Data transmission, CPU time.
- 7. NPT due to wireline contractor
- 8. Drilling / wellbore conditions related NPT

REMARKS

- 1. Run 2 was tied into main pass of Run 1: SP/HNGS/PEX/HRLA/ADT.
- 2. Sonic scanner (MAST) and GPIT were run centralised using slipover centralizers and Powered Calipers(PPC)
- 3. Sonic scanner log in standard fullwave mode from TD to surface. Fullwave mode logging consisting of fullwave monopole, inline dipole and cross dipole.
- 4. Sonic scanner casing log can be used to evaluate the cement bond qualitatively behind the 9 5/8" casing.
- 5. General Positioning Inclinometry Tool is required to provide directional data for sonic cross dipole anisotropy processing
- 6. GPIT will not give valid data inside casing, hence not processing can be done for anisotropy determination.
- 7. PPC calipers were closed when logging inside casing.
- 8. Logging down from casing shoe to 1710m at 6,000 ft/hr. BHC mode was used for sonic scanner logging, whilst calipers were in a closed position.
- 9. The borehole temperature from the maximum reading thermometers were 114.4 deg C, 114.4 deg C and 113.3 deg C at 1697m after 22 hours 40 min final TD circulation

OBSERVATIONS AND LOG QUALITY CONTROL

DEPTH CONTROL: EDTC:

Log correlated to Run 1 - SP/HNGS/PEX/HRLA/ADT Good repeatable GR data recorded.

Both PPC calipers work and good repeatable data recorded. Formation anisotropy can be seen from the behaviour of the orthogonal calipers of the PPC.

MAST(Sonic Scanner):

Good repeatable data recorded. Shear arrival from monopole disappeared from about 1115m due to soft Wallumbilla Formation. The Shear arrival can be obtained from the dipole waveform arrival.

GPIT:

Good repeatable data recorded. All the output positioning data from the tool were good as per the well location.

SEQUENCE OF EVENTS RUN 3

Well	Tibor-1	TD Driller	1723.00	m	CSG Shoe Driller	751.00 m
Block	ATP 539	TD Logger	1723.50	m	CSG Shoe Logger	750.00 m
EWL Contractor	Schlumberger	Bit Size	8.50	in	Circ Stopped at TD	19-Feb-13 04:20 dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00	deg @ 932 m MDRT	Circulation time	60 min
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Mud Type	3KCL-PHB-Polymer		Rmf @ temp	0.130 33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.3	ppg	Rm @ temp	0.130 33.4 °C
Report Date	22-Feb-13	Logging Suite	1		Rmc @ temp	0.510 33.4 °C

Start	End	Hrs	Code	Operation and Comments
dd/mm hh:mm	dd/mm hh:mm	(hh:mm)		Run 3: 1x VSI (CHECKSHOT)
20/02 05:40	20/02 06:10	0:30	1	Rig-up Run 3 tool string
20/02 06:10	20/02 06:35	0:25	2	Function test vsi with the vibrator and Install thermometers in cable head.
20/02 06:35	20/02 06:55	0:20	4	Stop at 140.15m (MSL) to perform checkshot check point. Several shot were taken to improve signal to noise seen during data processing. Close anchor and move down to the next checkshot check point.
20/02 06:55	20/02 07:20	0:25	4	Stop at 633.0 m to perform the second checkshot check point. Several shots were taken to improve signal to noise during processing. Close anchor and run in the hole for GR correlation.
20/02 07:20	20/02 08:10	0:50	3	Stop at 1650m to start depth correlation with run:1
20/02 08:10	20/02 08:40	0:30	5	Perform depth correlation using GR (from EDTC). Depth shifted applied and moved to TD to do first checkshot level.
20/02 08:40	20/02 09:25	0:45	4	First checkshot level at 1721.5m. Geophone received data were noisy. Referencing to run:1, area around TD was full of washout zone. Several shots were made, but received data was still noisy. Moved tool up to 1721.0m to see if this depth can provide a better result. The data improved drastically, and several shots were attempted to improve signal to noise ratio.
20/02 09:25	20/02 11:35	2:10	4	Proceed shooting at the requested checkshot levels: 1622m, 1526m, 1456m, 1408m, 1315m, 1290.12m, 1210.6m, 978.19m, 940.47m and 750.0 m. Several shots were attempted every depth to improve signal to noise ratio when data are stack. When done moved up to 140.15 (MSL) for calibration checkshot.
20/02 11:35	20/02 12:35	1:00	4	Reached 140.15m to do this MSL checkshot.
20/02 12:35	20/02 12:55	0:20	4	Several shots attempted at 140.15m depth to improved data. When done moved to GL at 10.6m.
20/02 12:55	20/02 13:05	0:10	4	Performed the last checkshot level at 10.6m. Very noisy data observed and tried to remove the noise source. Several shots were attempted to improve signal to noise ration.
20/02 13:05	20/02 13:12	0:07	3	Out of the hole and removed thermometer for inspection. Thermometer read 246, 247 and 246 degF.
20/02 13:12	20/02 13:17	0:05	1	Start rigging down VSI tool and sheaves
20/02 13:17	20/02 13:40	0:23	1	Complete rig down and rign to Ensign.
Total hours:		8.00	(decimal)	

Logging Codes:

- 1. Rigging up, rigging down 4. Logging up, logging down
- 2. Calibrations, tool checks 5. Repeat Section, depth correlation
 - Data transmission, CPU time.
- 7. NPT due to wireline contractor
- 8. Drilling / wellbore conditions related NPT

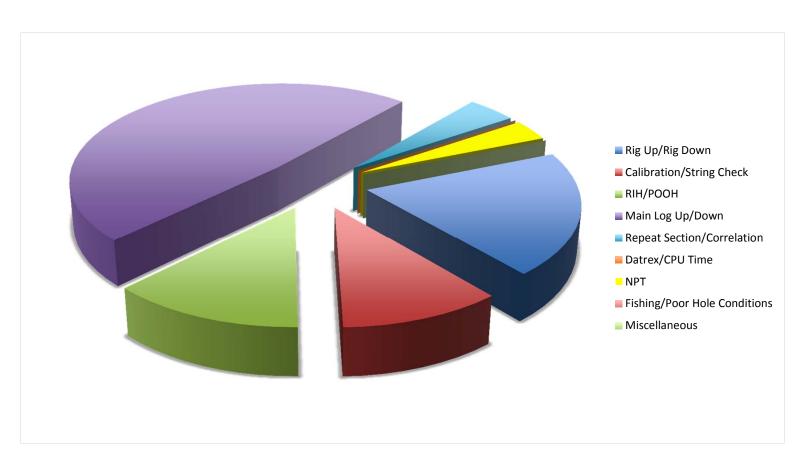
REMARKS

1. Run 3 was tied into Run 1 depth at 1670 m.

3. Running in, pulling out of hole

- 2. Checkshot survey performed from the deepest to the shallowest level. Checkshot depth were all from the formation tops seen on run:1 and mud logging.
- 3. Several checkshot calibrations points were taken on the way in the hole. It values repeating within tolerances on the way out.
- 4. Checkshot Survey was also done at GL and MSL. Background noise increase as the depth get closer to surface.
- 5. Reduction in signal gain was used in order to interpret signal better as the depth get closer to surface.
- 6. The borehole temperature from the maximum reading thermometers were 118.9 degC, 118.9 degC and 119.4 degC at 1711m after 28 hours 20 min final TD circulation

OBSERVATIONS AND LOG QUALITY CONTROL DEPTH CONTROL: Log correlated using GR curve to Run 1 - SP/HNGS/PEX/HRLA/ADT EDTC: Good repeatable GR data recorded. VSI Good checkshot survey data recorded. The velocity profile (Time vs TVD Depth plot) use to QC survey data real time.



Operating Efficiency Chart

DRILLSEARCH ENERGY LIMITED

Tibor-1 Runs 1 - 3

LQC LOG PRESENTATIONS

Well	Tibor-1	TD Driller	1723.00	m	CSG Shoe Driller	751.00 m
Block	ATP 539	TD Logger	1723.50	m	CSG Shoe Logger	750.00 m
EWL Contractor	Schlumberger	Bit Size	8.50	in	Circ Stopped at TD	19-Feb-13 04:20 dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00	deg @ 932 m MDRT	Circulation time	60 min
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Mud Type	3KCL-PHB-Polymer		Rmf @ temp	0.130 33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.3	ppg	Rm @ temp	0.130 33.4 °C
Report Date	20-Feb-13	Suite	1		Rmc @ temp	0.510 33.4 °C

	LOG DATA	Run 1 HRLA/MCFL	Run 1 TLD/HGNS	Run 1 HNGS	Run 2 MAST
	HEADING,INSERT,TAIL: Accuracy & completeness	OK	OK	OK	OK
	TD/FR/CSG - TOOL SKETCH (when applicable)	ок	ок	ок	ок
	MUD/RMF/TEMP:-WELL SKETCH (deviation) _TOOL/SOFTWARE TYPE/No.	OK	OK	OK	OK
PRESENTATION	CURVE ID/SCALES	ок	ок	ок	ок
PRESENTATION	PRINT QUALITY (digital copy)	ок	ОК	ОК	OK
	DATA FORMAT DELIVERY: LAS, ACROBAT PDF and PDS for LOGS and SEG-Y for VSP	ок	ок	ок	ок
	REMARKS	ок	ок	ОК	OK
	LOGGING INCIDENTS- Wiper trips- Special circumstances affecting log	Note 1	Note 1	ок	ок
	SHOP CALIBRATION - BEFORE SURVEY	ок	ок	ок	ок
041 IDD 4710110	AFTER SURVEY	ок	ок	ок	ок
CALIBRATIONS	TOP LOGGED INTERVAL	750.0 m	750 m	750 m	10 m
	BOTTOM LOGGED INTERVAL	1723.5 m	1723.5 m	1723.5 m	1723.5 m
	DEPTH MATCH/CONTROL: Overlap logs from separate runs	ОК	ок	ОК	Note 2
	LOGS ARE CORRECTED FOR BOREHOLE EFFECTS	ок	Note 6	Note 7	ок
	LOGGING SPEED	ок	ок	ок	ок
	LOGS ARE CORRECTED FOR ANY NOISE, SPIKES, etc	ок	ок	ок	ок
	CENTRALIZATION/STAND OFF	ок	ок	ок	ок
OPERATING	SOFTWARE TYPE/CONSTANTS, SAMPLING RATE	Note 3	Note 3	Note 3	Note 3
PROCEDURES	STANDARD SCALES	ок	ок	OK	ок
	REPEAT SECTION	ОК	ок	ОК	OK
	RESPONSE IN AGREEMENT WITH NEARBY WELLS	Note 4	ок	ок	ок
	LOG ANOMALIES/FAILURES	Note 4	ок	ОК	OK
	GENERAL DATA QUALITY	ок	ок	ок	ок
	PRINT QUALITY	ок	ок	ок	ок
	DOCUMENTS IN FINAL PACKAGE IN AGREEMENT WITH CLIENT LIST	ок	ок	ок	ок

	LOGGING ENVIRONMENT				
	IRREGULAR TOOL MOTION	ок	ок	ок	ок
	BOREHOLE/CASING GEOMETRY	Note 5	Note 5	Note 5	Note 5
	Casing/tubing not to spec, damaged - Poor cementation - Multi-string casing/tubing	ок	ок	ок	ок
NVIRONMENTAL EFFECTS	HOLE/CASING FLUID				
	INTERFERENCE: External noise - Nearby casing - Debris - Fish	OK	OK	ОК	ок
	Formation of unusual mineralogical composition or texture	ок	ок	ок	ок
	OUTSIDE TOOL SPECS: Temperature - Pressure - Hole size - Deviation	ок	ок	ок	ок

	REMARKS L Q C LOG PRESENTATIONS
	Please refer to SOE sheets for service specific LQC remarks
NOTE 1	Washed out areas advesrely affected the log data.
NOTE 2	Run 2 was depth matched to Run 1 between 1670 m and 1570 m.
NOTE 3	Run 1 and 2 were recorded in Maxwell.
NOTE 4	HRLA shallow resistivity measuring higher than the deep resistivity in washed out hole.
NOTE 5	There were sections of borehole break-out observed over the open hole interval.
NOTE 6	HGNS neutron corrected for hole size and borehole salinity only.
NOTE 7	Borehole k% applied to HNGS data.

LQC LOG PRESENTATIONS

Well	Tibor-1	TD Driller	1723.00	m	CSG Shoe Driller	751.00 m
Block	ATP 539	TD Logger	1723.50	m	CSG Shoe Logger	750.00 m
EWL Contractor	Schlumberger	Bit Size	8.50	in	Circ Stopped at TD	19-Feb-13 04:20 dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00	deg @ 932 m MDRT	Circulation time	60 min
Logging Engineer	MaryKate Henrikson/Tamara Svetlichnaya	Mud Type	3KCL-PHB-Polymer		Rmf @ temp	0.130 33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.3	ppg	Rm @ temp	0.130 33.4 °C
Report Date	20-Feb-13	Suite	1		Rmc @ temp	0.510 33.4 °C

	LOG DATA	Run 2 PPC	Run 2 GPIT	
	HEADING,INSERT,TAIL: Accuracy & completeness	OK	OK	
	TD/FR/CSG - TOOL SKETCH (when applicable)	ок	ок	
	MUD/RMF/TEMP:-WELL SKETCH (deviation) _TOOL/SOFTWARE TYPE/No.	OK	ОК	
PRESENTATION	CURVE ID/SCALES	ок	ок	
PRESENTATION	PRINT QUALITY	OK	ОК	
	DATA FORMAT DELIVERY: LAS, ACROBAT PDF and PDS for LOGS and SEG-Y for VSP	ок	ок	
	REMARKS	OK	ОК	
	LOGGING INCIDENTS- Wiper trips- Special circumstances affecting log	ок	Note 1	
	SHOP CALIBRATION - BEFORE SURVEY	OK	ОК	
CALIBRATIONS	AFTER SURVEY	ок	ок	
CALIBRATIONS	TOP LOGGED INTERVAL	750 m	750	
	BOTTOM LOGGED INTERVAL	1273.5 m	1273.5 m	
	DEPTH MATCH/CONTROL: Overlap logs from separate runs	OK	ОК	
	LOGS ARE CORRECTED FOR BOREHOLE EFFECTS	ок	ок	
	LOGGING SPEED	OK	ОК	
	LOGS ARE CORRECTED FOR ANY NOISE, SPIKES, etc	ок	ок	
	CENTRALIZATION/STAND OFF	ок	ок	
OPERATING	SOFTWARE TYPE/CONSTANTS, SAMPLING RATE	Note 2	Note 2	
PROCEDURES	STANDARD SCALES	ок	ок	
	REPEAT SECTION	OK	OK	
	RESPONSE IN AGREEMENT WITH NEARBY WELLS	OK	OK	
	LOG ANOMALIES/FAILURES	ок	ок	
	GENERAL DATA QUALITY	ок	ок	
	PRINT QUALITY	ОК	OK	
	DOCUMENTS IN FINAL PACKAGE IN AGREEMENT WITH CLIENT LIST	ок	ок	

	LOGGING ENVIRONMENT			
	IRREGULAR TOOL MOTION	ок	ОК	
	BOREHOLE/CASING GEOMETRY	Note 3	Note 3	
	Casing/tubing not to spec, damaged - Poor cementation - Multi-string casing/tubing	ОК	ок	
ENVIRONMENTAL EFFECTS	HOLE/CASING FLUID	ок	OK	
	INTERFERENCE: External noise - Nearby casing - Debris - Fish	ОК	ок	
	Formation of unusual mineralogical composition or texture	ок	ок	
	OUTSIDE TOOL SPECS: Temperature - Pressure - Hole size - Deviation	ок	OK	

	REMARKS LQC LOG PRESENTATIONS
	Please refer to SOE sheets for service specific LQC remarks
NOTE 1 NOTE 2 NOTE 3	Run 2 was depth matched to Run 1. Run 2 was recorded in Maxwell. There were sections of borehole break-out observed over the open hole interval.

SUMMARY AND RECOMMENDATIONS

Well	Tibor-1	TD Driller	1723.00 n	n	CSG Shoe Driller	751.00 m
Block	ATP 539	TD Logger	1723.50 n	n	CSG Shoe Logger	750.00 m
EWL Contractor	Schlumberger	Bit Size	8.50 ir	n	Circ Stopped at TD	19-Feb-13 04:20 dd/mm/yy hh:mm
Job date	19-Feb-13	Max Dev @ depth	2.00 d	deg @ 932 m MDRT	Circulation time	60 min
Logging Engineer	Mary Kate Henrickson/Tamara S.	Mud Type	3KCL-PHB-Polymer		Rmf @ temp	0.130 33.4 °C
Logging Witness	Rothi Hamzah/Alan Wrightstone/B.Craig	Mud Weight	9.3 p	ppg	Rm @ temp	0.130 33.4 °C
Report Date	20-Feb-13	Suite	1		Rmc @ temp	0.510 33.4 °C

BUN	050/4050	DIO LID	DIO DOMNI	TOTAL TIME	LOCT TIME	LOCK TIME	DUT	TEMP DEDTIL
RUN	SERVICES	RIG UP	RIG DOWN	TOTAL TIME	LOST TIME	LOST TIME	BHT	TEMP DEPTH
		dd/mm hh:mm	dd/mm hh:mm		(due to Contractor)	(3rd Party NPT)	°C	m TVDBRT
Run 1:								
ERCD/EDTC/SP/PPC/HNGS/PEX(TLD)/HRLA/A		19/02 10:40	19/02 20:20	09:40	00:00	00:00	108.9	1691.0
Run 2 - ERCD/EDT	C/PPC/MAST/PPC/GPIT	19/02 20:20	20/02 05:40	09:20	00:55	00:00	114.4	1697.0
Run 3 Checkshot -	1 X VSI with Vibrosis	20/02 05:40	20/02 13:40	08:00	00:00	00:00	118.9	1711.0
TOTAL TIME FOR WIRELINE OPERATIONS				27:00	0:55	00:00		
OPERATING EFFICIENCY (1-LT/OT)x 100		96.60%						

CHMMADV

Tibor-1: This is the second well for Drillsearch in this block ATP 539P. As usual being an exploration well, Tibor-1 is a vertical well. Based on the mud logging result, the total drill depth was shallower than planned when the Hutton Formation top came higher. Once again, based on the mud logging result, the Dry Case logging programme came to forced.. Only three (3) logging run attempted 1: Triple Combo/ADT 2: Sonic 3: Checkshot.

The crew of six (6) and all the logging equipment mobilized from Roma arrived to the wellsite on the 18th February24hrs before the rig up time. The only delay was on the seismic vibrator truck. The vibrator truck arrived at the wellsite the next day when the logging operation already started. The crew started checking the first two confirmed runs. The MDT and MSCT run were not check and kept inside the tool basket. The crew decided to check the VSI-Checkshot together with the vibrator and extremely confident that the tool will work. The surface checkout went well except the sonic scanner. The sonic scanner appeared not initializing properly. The only way to get it to work was by running diagnostic test to test the tool internal cartridge. The first run is setup differently, to position the TLD and ADT pads across the short axis (smaller ID).

On the job, no tool problem experienced for the first run – SP/HNGS/PEX/HRLA/ADT. Standard depth control process applied for the first run in hole. The technique was just comparing the difference in the distance from the IDW to the rotary table, near the surface and close to a total depth. Log down logged from casing shoe to 2710.0 m at 3600 ft/hr. The downlog data can be used to splice or merge with main pass log if required. Only pad device data were unusable because the callipers still remain in close position. Repeat log interval was logged from 1670 m to 1570 m. This selected interval will comprise of top Hutton sandstone and Birkhead sandstone. Main pass logged from the total depth to 9 5/8" casing shoe. Density, Gamma Ray Neutron and Laterolog logged in high resolution mode. Density, neutron and MCFL data quality were affected by borehole rugosity and washout. The short axis mode was not working for Hutton and Birkhead sandstone. All tool calibrations and verifications were all within tolerances.

The second run Sonic Scanner (MAST) failed again on tool initialization on surface. NPT recorded for this problem is 55 minutes. Two sets of PPC and slip-over centralizers utilised to keep the sonic scanner centralized in the borehole. Repeat pass logged over the same interval as the first run. Main pass logged, from TD to surface at 1800 ft/hr. The sonic scanner logged in standard mode for both passes. GPIT ran in combination with sonic scanner for anisotropy processing.

VSI-Checkshot was the third run. The vibrator used as the sonic energy source and positioned within 50m from the rig. A single level VSI tool used gamma ray for depth correlation from EDTC section. Several calibration shots attempted at different depth while running in hole to TD. All requested formation tops completed without serious problems. Several planned shot depths need to be revised due to poor signal close to washout zone. The MSL and GL checkshot performed as planned.

Total operating time (OT) of the whole operations is 27 hrs with NPT of 55 minutes.

HIGHLIGHTS INCLUDED

- 1. Successful setting up stattelite communication with schlumberger base.
- 2. Introduction of short-axis modification on first run to improve PEX and ADT across washout zone.
- Good commitment shown by the logging crew during the entire operation.
- 4. Good quality geological and petrophysical data recorded. Most of the data read closely to the offset well.
- 5. Good collaboration between Schlumberger office based personnel and the field to process the ADT and Sonic scanner log.
- 6. Engineer making sure main pass was on depth to avoid delay in processing later. Engineer experience in data formating and deliverable process.
- 7. Engineer provide maintenance history for tools mobilized.
- 3. No HS&E issues during the entire operation.

LOWLIGHTS INCLUDED

- 1. Sonic scanner had same initialization problem and more serious this time. On Triclops-1 tool required several quick power up to get it to work. Same tool used for both wells.
- Fishing kit only has one size spiral grapple, 3 3/8". The kit should be completed with 3 5/8" spiral grapple in it.
- 3. Interact communication only streaming logging PDs and not the actual logging data for the first two (2) runs.
- 4. All log data QCed base on the data flags. Green is good, and Red is bad. This stop the engineer from reading the displayed curves and take necessary actions required.
- 5. Engineer still struggles to understand the sonic scanner presentation and sonic show windows on the screen.
- 7. Standalone system with no backup wasn't desirable for a job that is far away from any wireline base. At the very least, the main CPU where the system program reside should have a backup.
- 8. Only one (1) set of tools was mobilized to location except another PEX(TLD) and VSI. Backup PEX(TLD) if run need new calibration in town. This tool still has old calibration saved inside it.
- 8. MCFL and HRLA checked without test box. Only HRLA test box available but not used during surface checkout
- 9. PPC adjustment (previously used for short axis) and calibration tool long time to do (55 minutes), prior rigging up run 2.
- 10. The Radioactive storage area at the well site need better security. The shields need another long chain and safe-lock to secure to any structure at the well site. A copy of all radioactive materials should be given to rig superitendent.

RECOMMENDATIONS

- 1. Interact data streaming should be able to streaming the log data real time. Schlumberger base system should have the capability to manipulate log data. In this case, it will help the crew at the wellsite to concentrate on the logging operations better.
- 2. Cable head maintenance records and cable book need to be kept inside the logging truck at all times.
- 3. Tools mobilized to wellsite should have most up to-date calibration.
- 4. Fishing kit mobilized to wellsite should come with the inventory list.
- 5. ALARA should be followed closely during any type of radioactive usages at the wellsite. Ensure new operators trained to handle radioactive.

BEST PRACTICES

Ensure all runs are checked on primary and back-up surface system and that all calibrations are available on both systems.

Initiate a customer rig book in aiding efficient hand-over between engineer in charge and assisting the problem tracking process.

Assign dedicated crew chiefs to assist engineers during rig-up and rig-down operations, thus eliminating extended working hours.

All field logs to be QC'ed by afriQA witness before final field copies are distributed.

Unspliced and marked wirelines need to be assigned for all exploration projects.

Make use of dedicated field crews as far as practically possible to drive continuous improvement.

Schlumberger EIC/FSM must officially update the client once per week on all outstanding and close out action items assigned.

Appendix 11 – Petrophysical Report

Log provided electronically on CD

Tibor-1 – Formation Evaluation

The Tibor-1 exploration well was a vertical drilled to a total depth (TD) of 1723.5 mMDRT targeting the Hutton Sandstone as the primary objective and the Namur and Adori formations as secondary objectives.

A 9- $^{5}/_{8}$ " casing string was set at 750.9 mMDRT and the prospective sequences were drilled in 8- $^{1}/_{2}$ " hole to TD where wireline logging was carried out as described below. LWD logs were not acquired in the Tibor-1 well.

Wireline logging was carried out using Schlumberger wireline services. Tibor-1 wireline logs were analysed over the 8-1/2" hole section.

The Tibor-1 well has been plugged and abandoned.

In addition to the available wireline log responses, data which may be available from gas chromatograph readings and cuttings descriptions have been integrated into the formation evaluation.

Unless otherwise specified all depths mentioned below are wireline depths referenced to the drill floor.

Discussion

Wireline log interpretation of Tibor-1 was carried out using a probabilistic interpretation (Minsolver module) within the Interactive Petrophysics (IP) software application. An explanation of the interpretive procedure has been included as **Appendix-2**. Petrophysical analysis was performed across the Toolebuc formation and from the Murta Member to TD (1290.0 – 1723.5 mMDRT).

The petrophysical model was constructed based on offset wells in the ATP 539 exploration block. Offset wells within the area include Triclops-1, Curalle-1, Planet Downs-1, Cook-1, Inland-1 and Inland-3 (core across the Hutton). Formation salinities were estimated using water analysis recovered from DST's and Pickett plots in offset wells. Water saturation parameters and coefficients were computed using Modified Simandoux. Saturation equations and parameters are detailed in the Interpretation Parameters section.

A separate petrophysical model was created for the Toolebuc Fm. Elevated gas was observed across the Toolebuc Fm. Cuttings descriptions indicate the Toolebuc is predominantly a calcareous siltstone. Spectral Gamma Ray across the Toolebuc indicate elevated Uranium content which is likely associated with elevated total organic carbon (TOC). TOC estimations were conducted using the deltalogR technique; however quantities cannot be calibrated because core data is not available.

The dielectric scanner (ADT) tool was deployed in the Tibor-1 well to reduce uncertainty in the water saturation calculation by measuring the total water volume in the flushed zone.

The porosities which have been interpreted across the Tibor-1 well are believed to be within the accuracy of measurement error inherent in the tools. The gas chromatograph readings taken from the drilling fluids do not display responses which would normally be associated with hydrocarbon accumulations. The Hutton, Namur and Adori Sandstones of the Tibor-1 well are interpreted as being wet.

Logs Acquired and Drilling Fluid Parameters

The following table itemises the logs acquired in the Tibor-1 well and the drilling fluid parameters at the time of the logging runs.

Table 1: Logging Acquisition Parameters

Well Name	Tibor-1	Tibor-1	Tibor-1
Logging Company	Schlumberger	Schlumberger	Schlumberger
Logging Date	19-Feb-2013	19-Feb-2013	20-Feb-2013
Suite No.	1	1	1
Run No.	1	2	3
	HRLA-PEX-HNGS-ADT	MSIP-GPIT-GR-PPC	VSP (Zero Offset)
Bottom Log Interval	1723.5	1723.5	1723.5
Top Log Interval	750.0	Surface	750.0
Casing Size @ Depth	750.9	750.9	750.9
Bit Size	8.5 inch	8.5 inch	8.5 inch
Drilling Fluid Type	KCL Polymer	KCL Polymer	KCL Polymer
Drilling Fluid Density	9.3 lb/gal	9.3 lb/gal	9.3 lb/gal
Drilling Fluid Viscosity	46 s	46 s	46 s
Drilling Fluid Loss	4.0 cm3	4.0 cm3	4.0 cm3
Drilling Fluid pH	9.5	9.5	9.5
R _M @ Temp degC	0.13 @ 33.4	0.13 @ 33.4	0.13 @ 33.4
R _{MF} @ Temp degC	0.13 @ 33.4	0.13 @ 33.4	0.13 @ 33.4
R _{MC} @ Temp degC	0.51 @ 33.4	0.51 @ 33.4	0.51 @ 33.4
Maximum Recorded Temp	108	113.8	Not recorded
Circulation Stopped	19-Feb-2013 @ 04:20	19-Feb-2013 @ 04:20	19-Feb-2013 @ 04:20
Logger on Bottom	19-Feb-2013 @ 15:34	20-Feb-2013 @ 00:54	Not recorded

Remarks

Caliper responses from the previous Triclops-1 well indicate preferential borehole breakout in the NNE-SSW plane. Based on the results from Triclops-1 well, a powered position caliper (PPC) and swivel head adapter was run in the Tibor-1 well in an attempt to align the density and ADT tool in the short axis of the wellbore by applying caliper pressure in the long axis (Calipers 2 & 4). Overall, breakout was not large enough to keep the tool in the short axis; however log quality was better than in Triclops-1. The density tool did a reasonable job of correcting for poor hole condition; however log responses indicate porosity readings are still higher than expected.

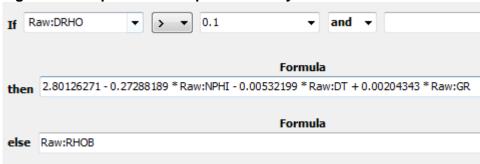
The X-Y caliper (PPC) in Run 1 indicates that the orientation of breakout occurs predominantly in the NNE-SSW plane. **Figure 1** below displays an azimuthal frequency plot of the X-Y caliper from the PPC log in Run 1.

Figure 1: Caliper Orientation and Breakout of X-Caliper

0 10 20 30 40 50 60 70 80 90 10011012013014015016017018019020021022023024025026027028029030031032033034035560

Azim uth of Enlarged Diameter (deg)

		# Points Total:	18777
Start Depth:	1703.82 m	# Points Plotted:	4315
Stop Depth:	749.999 m	# Points Absent:	0
Sampling Rate:	0.0508 m	# Points Cut:	1 4461
X Max Value:	359.998 deg	# > X Scale Max:	1
X Min Value:	0.0205994 deg	# < X Scale Min:	0


All tool responses indicate that the tools are within the calibration limits.

Log Processing

All recorded wireline log responses were corrected for borehole and environment effects utilising algorithms which emulate the published corrections charts for each of the individual tools.

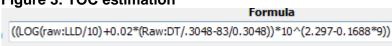

Density data affected by poor hole condition was corrected utilising GR, Neutron and Sonic logs in a multi-linear regression based on offset wells. The regression was then applied to zones where density data was of poor quality where DRHO > 0.10 g/cc. Figure 2 below displays the multi-linear regression used to apply the 'best' density across the well:

Figure 2: Computation for optimal density

Across the Toolebuc Fm total organic carbon (TOC) was estimated using the deltalogR technique. Core data is not available to calibrate TOC quantities within the Toolebuc; therefore elevated uncertainty exists within the petrophysical model. Estimated TOC across the Toolebuc Fm is displayed in **Figure 3** below:

Figure 3: TOC estimation

ADT data was processed by Schlumberger Data Consulting Services (DCS) team.

Sonic compressional and shear data were acquired from TD to surface. DLIS files were sent to Schlumberger DCS for processing and relabelling. Full waveforms were obtained in the event future processing is required.

A bottom hole reservoir temperature of 124.4°C at 1723.5 mMDRT was extrapolated using a Horner plot. Temperatures were taken from logging runs 1 and 2 for the extrapolation resulting in a geothermal gradient of 5.77 degC/100m (3.17 degF/100ft). **Figure 4** below displays the resultant temperatures on a Horner plot.

Figure 4: Horner Plot Tibor-1 **Extrapolation to Determine Static BHT** 140.00 130.00 120.00 PEX-HRLA-HNGS-ADT 110.00 100.00 GR - MSIP 90.00 Estimated Static BHT 124.4 DEGC @ 35 hrs, at TD of 00.08 1723.5, giving a geothermal gradient of 5.8 degC/100m 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 100.00 10.00 1.00

Interpretation Parameters

The following are tabulations of the analysis parameters utilised in each of the interpreted intervals in the Tibor-1 well.

Hrs After Circulation Stopped

y = 15.906ln(x) + 67.826

Table 2: Formational Interpretation Parameters

Formation Name	Toolebuc	Murta	Namur	Adori	Birkhead	Hutton
Top (m)	950	1290	1315.8	1456.0	1526.0	1622.0
Base (m)	978	1315.8	1408.0	1526.0	1622.0	1725.0
GR-Clean (GAPI)	10	15	15	15	15	12
GR-Clay (GAPI)	125	150	150 150		125	205
RHO-Matrix (g/cc)	2.79	2.60	2.60	2.59	2.59	2.58
RHOB-Clay (g/cc)	2.70	2.65	2.65	2.65	2.65	2.65
NPHI-Matrix (v/v)	0.000	-0.030	-0.030	-0.030	-0.030	-0.030
NPHI-Clay (v/v)	0.470	0.430	0.430	0.350	0.340	0.350
dT-Matrix (us/ft)	47	52	52	52	52	52
dT-Clay (us/ft)	120	100	100	96	100	100
Resistivity Clay (ohmm)	1.41	3.4	4.3	6.1	3.3	3.3
Rxo Clay (ohmm)	2.8	6.6	8.1	8.7	4.1	4.1
а	1.0	1.0	1.0	1.0	1.0	1.0
m	2.1	2.2	2.0	2.2	2.0	2.2
n	2.1	2.2	2.0	2.2	2.0	2.2
R _w -Salinity (ppm NaCl eq)	18135	8730	8730	10360	14025	11240
R _w (ohm) @ 25°F (23.9°C)	0.325	0.641	0.641	0.546	0.412	0.506
Saturation Eqn	Mod Sim	Mod Sim	Mod Sim	Mod Sim	Mod Sim	Mod Sim

Interpretation Parameters – Plots

As an interpretive quality control, the software back calculates pseudo logs for each of the inputs. By comparing the pseudo log with the actual this quantifies the error and uncertainty within the model. **Figure 5** below displays the uncertainty of each of the predicted inputs along with the overall error of the probabilistic model.

Density Linear Linear Raw:U_best ____ 20. Msol:Ro r -- 200. Msol:Ro r -- 200. Raw:TNPH 0.45 — -0. Tops DEPTH Msol:VIlite RHOB_Best 1.95 —— 2.95 Clay:VCL (Dec) Clay:VCLAV Tot -0.15 (M) Raw:RT _____ 200. Msol:Vclay RHOB_Be me 1.95 —— 2.95 Msol:TNPH me 0.45 ----- -0.15 Raw:RXO 0.2 —— 200. 10. 0.45 — Msol:TNPH pe 2 — Msol:RT r 200. U_best_pe ---- 20. RHOB_Be De 1 95 —— 2.95 Msol:VSand Msol:VCL pe Msol:VCLAV_p Msol:RXO r Msol:VCL_r Msol:U_best r VOOTCARB RHOB_Bes r 1.95 —— 2.95 Msol:TNPH r 0.45 — -0.15 Msol:VCLAV r Recon. Error Recon. Error Msol:VTOC Input Confiden Recon. Error Recon. Error Input Confider Input Confiden Input Confiden Input Confiden 0. Msol:VQuartz 0. ——— 1. Input Confider Input Confider Input Confider Input Confiden Input Confiden ин ери 1300 Namur Sst 1400 Westbourne Fm Adori Sst 1500 Birkhead Fm 1600 Hutton Sst 1700

Figure 5: Probabilistic Error and Uncertainty

Pressure Data, Testing, Sampling and Analysis

Formation pressure data was not acquired in the Tibor-1 well.

Image Log Data and Analysis

Image data was not acquired in the Tibor-1 well.

Petrophysical Summary

The definitions of 'Reservoir' and 'Pay' as utilised in this interpretation are as follows;

- Net reservoir is defined as any interval where PHI_E > 8% and V_{CL} < 35%, and, Pay is defined as any interval where PHI_E > 8%, V_{CL} < 35% and S_W < 60%.

Further work is required to define net reservoir and net pay.

The following are petrophysical parameter tabulations of intervals interpreted in the Tibor-1 well.

Table 3: Net Reservoir Petrophysical Summary by Formation

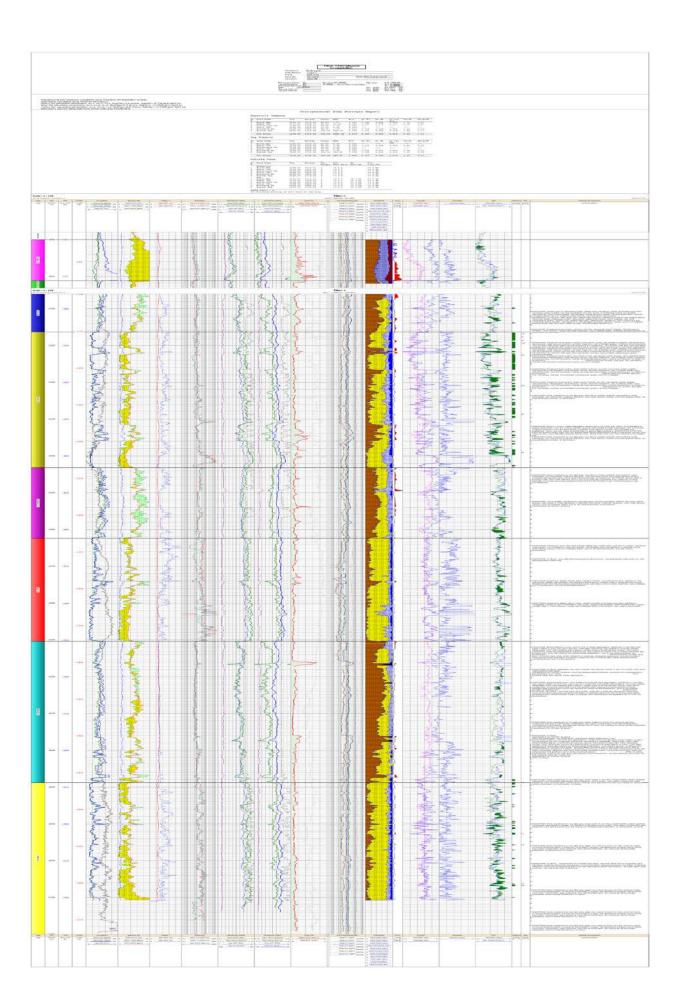

Zone Name	Тор	Bottom	Gross	Net	N/G	Av Phi	Av Sw	Av Vcl	Phi*H	PhiSo*H
Murta Mbr	1290	1315.8	25.8	1.07	0.041	0.122	0.961	0.266	0.13	0.01
Namur Sst	1315.8	1408	92.2	40.39	0.438	0.126	0.823	0.127	5.08	0.9
Westbourne Fm	1408	1456	48	0	0					
Adori Sst	1456	1526	70	0	0					
Birkhead Fm	1526	1622	96	1.15	0.012	0.116	0.723	0.162	0.13	0.04
Hutton Sst	1622	1725.02	103.02	8.76	0.085	0.113	0.825	0.114	0.99	0.17

Table 4: Net Pay Petrophysical Summary by Formation

Zone Name	Тор	Bottom	Gross	Net	N/G	Av Phi	Av Sw	Av Vcl	Phi*H	PhiSo*H
Murta Mbr	1290	1315.8	25.8	0	0			-		
Namur Sst *	1315.8	1408	92.2	2.44	0.026	0.116	0.579	0.142	0.28	0.12
Westbourne Fm	1408	1456	48	0	0					
Adori Sst	1456	1526	70	0	0					
Birkhead Fm *	1526	1622	96	0.15	0.002	0.102	0.607	0.23	0.02	0.01
Hutton Sst *	1622	1725.02	103.02	0.91	0.009	0.115	0.601	0.103	0.11	0.04

^{*} Artificial Net pay interpreted due to borehole breakout and rugosity issues.

Appendix 1 Petrophysical Interpretation

Appendix 2

Interpretation Procedures

Data received from the logging contractor is loaded into the IP software application and the relevant log header information is entered in the appropriate fields. In cases where there has been more than one logging run in any programmed logging suite the response curves are added to the file and depth matched to ensure that the acquired log responses from each of the individual runs are on depth. In cases where there have been multiple logging suites run in the borehole the acquired responses are edited to remove both the initial tool pick-up and the final casing responses from the data before the curves are merged to allow display of a complete data-set.

Borehole and environment corrections are applied to all recorded tool responses using algorithms which emulate the correction charts published by the appropriate logging contractor company and using the parameters which have been supplied from the wellsite, or entered upon the contractors well log headers.

A BADHOLE flag is created, using standard cross-plotting techniques, to disallow certain input logs so as to avoid computing erroneous results. When the BADHOLE conditions are met neither the Density nor the Neutron log responses are used in the computations for the affected depth interval.

Calculation of R_T (true formational resistivity), R_{XO} (flushed zone resistivity and DI (the diameter of invasion) is calculated using the appropriate butterfly charts as supplied by the various logging companies.

Where R_{XO} is unable to be calculated due to borehole quality, or acquisition problems, then R_{XO} is deemed to be equal to R_{T} . In this case it is not possible to calculate the flushed zone water saturation (S_{XO}) which is usually presented as the movable hydrocarbon on the final presentation plots.

In situations where appropriate butterfly charts are not available to assist in the calculation of R_T the invasion corrected R_T is calculated using the following relationship;

```
R_T = 1.7 * R_D - 0.7 * R_S
Where:
```

 R_T = true formational resistivity,

 R_D = corrected deep resistivity log, and,

 R_S = shallow resistivity log.

The volume of clay (V_{CL}) is able to be computed using any of the following indicators;

- Gamma Ray (GR),
- Spontaneous Potential (SP),
- Sonic (DT),
- Neutron (NPHI),
- True formational resistivity (R_T),
- Density and Neutron (RHOB & NPHI),
- Sonic and Density (DT & RHOB),
- Neutron & Sonic (NPHI & DT), and,
- M / N (log derived M factor & N factor).

Not all indicators are always used. If a resultant V_{CL} curve is not deemed to be reasonable, or if a particular indicator has insufficient resolution to be meaningful, that indicator is not used in the final calculation of V_{CL} .

As individual clay indicators tend to be pessimistic the final V_{CL} is deemed to be the minimum of the values calculated using the utilised clay indicators.

Deterministic Interpretation Procedures

Total porosity (PHI_T) is calculated utilising standard cross plotting techniques and using the corrected log response curves. The log response curves which are used in the calculation of total porosity are dependent upon the quality of the individual response curves and the borehole conditions over the zone which is being interpreted.

The hierarchal use of log response curves for the calculation of the total porosity is as follows;

- RHOB & NPHI if good hole conditions are met,
- RHOB if good hole conditions are met and NPHI is unavailable, and,
- DT if good hole conditions are not met.

Effective porosity is computed as follows;

```
PHI_E = PHI_T * (1 - V_{CL})
```

Within this petrophysical interpretation water saturation has been determined by utilisation of the Modified Simandoux equation.

The Modified Simandoux equation can be written as follows;

```
S_{W} = ((\ (V_{CL}/ResClay)^{2} + 4*\ PHI_{E}\ ^{m}/(a*\ R_{W}\ ^{*}(1-\ V_{CL})^{*}\ R_{T})\ )^{(1/n)} - VcL/ResClay)/(2*\ PHI_{E}\ ^{m}/(a*\ R_{W}\ ^{*}(1-\ V_{CL}))\ )
```

Where:

 S_W = calculated water saturation (fraction),

 R_T = true formational resistivity (ohmm),

 V_{CL} = calculated volume of clay (fraction),

R_{CL} = resistivity of the clay (ohmm),

PHI_E = calculated effective porosity (fraction),

R_W = formation water resistivity,

ResClay = Resistivity of Clay

a = empirical factor (tortuosity factor),

m = cementation exponent, and,

n = saturation exponent.

When hydrocarbons are computed as being present in the interpreted section hydrocarbon corrections are applied immediately after computing the water saturations. This is an iterative process which corrects the density and neutron log responses due to the presence of hydrocarbons. The hydrocarbon corrected density and neutron logs are then used to recompute PHI_T , PHI_E and thus S_W once again. Since the iteration process is a converging process, where changes to the calculated log values become smaller and smaller, there is no point continuing past a certain point. For this reason the iterative process is terminated once certain conditions are met. For the process utilised in this interpretive procedure the iterative loop continues for as long as the difference in value between of two successive calculations of PHI_E is greater than 0.001 (0.1%). Once the difference in two successive calculations of PHI_E is less than 0.001 (0.1%) the iterative loop is terminated.

Lithology is computed using standard cross plotting techniques. Where all of the required log responses curves (RHOB, NPHI and PE) are available a RHOMAA (apparent matrix density from the Density/Neutron cross-plot) vs. UMATA (apparent photo electric matrix cross section) plot is constructed with a ternary diagram based upon the pure mineral endpoints for quartz, calcite and dolomite overlain on the cross plot. The position of any given point within the ternary diagram defines the volumes of individual minerals which will comprise the lithology for the given depth interval. Where the requisite curves which make up the RHOMAA vs UMATA cross plot are either missing, or have been disallowed due to BADHOLE conditions, the matrix is deemed to be constituted of the mineral corresponding to the value entered for either the RHO_{MA} (matrix density) or DT_{MA} (sonic matrix).

Probabilistic Interpretation Procedure

In this method the user defines the mineral inputs and fluid phases present in each zone. The user also defines which logs will be used that is most representative to define the zone of interest. According to these inputs (minerals and logs) the software calculates the most probable distribution of minerals and fluids. As a quality control, the software back calculates pseudo logs of each of the inputs. By doing so it quantifies the error within the model.

The resultant petrophysical interpretation can be adjusted by changing the input logs or minerals (usually clay). Inputs can also be given different weighting factors (trust) to rely more heavily on certain logs. In order for the probabilistic model to compute a unique solution the model must satisfy the following requirement:

(# of minerals) + (# of fluid phases) <= (# of input curves) + 1

This method of interpretation can provide excellent results provided the minerals and log inputs are representative of the downhole lithology.

Appendix 12 – MudLogging Data (Geoservices)

Provided electronically on CD

DATA PROCESSING REPORT

Tibor 1 Well Completion Report:

Appendix 8 – Composite Log

Appendix 10 – Wireline Report and Log Data

Appendix 11 - Petrophysical Report Appendix 12 - Mudlogging Data

DUE TO ITS LARGE FILE SIZE

DATA CAN BE OBTAINED FROM

QDEX Scanning Manager
Department of Natural Resources and Mines (DNRM)

Geological Survey of Queensland
Exploration Data Centre
68 Pineapple St.
Zillmere
Queensland Australia
4034

Phone 07 3863 8715 Fax 07 3263 7019