Deposit Model Vs Host Rock Structural unit and Deposit Size For Queensland's Major Mineral Deposits (Note: if a deposit has more than one deposit model it will be counted against each model) | | 1 | GIANT | LARGE | MEDIUM | SMALL | | |---|---|-------|-------|--------|-------|--| | ALLUVIAL CINNABAR (HG) | | | | 1 | | | | ALLUVIAL PLACER GOLD | | | | | 3 | | | ALLUVIAL PLACER TIN | | | | 11 | 18 | | | ALLUVIAL/ELUVIAL GEMSTONES | | | 1 | 1 | | | | ALLUVIAL/ELUVIAL HEAVY MINERAL ACCUMULATION | | | 1 | 2 | | | | BASE METAL SKARN | | | 1 | 1 | 5 | | | BRECCIATED SEDIMENT-HOSTED AG-PB-ZN | | | | | 1 | | | BRECCIATED SEDIMENT-HOSTED COPPER | | 1 | 2 | 4 | 10 | | | COPPER SKARN | | | | 3 | 9 | | | CU +/- AG QUARTZ VEINS | | | | | 3 | | | DEEP LEAD PLACER AU | | | | 1 | 1 | | | DEEP LEAD PLACER SN | | | | 3 | 2 | | | DIATOMITE DEPOSIT | | | 2 | 1 | 1 | | | | | | | | | | | | GIANT | LARGE | MEDIUM | SMALL | | |--|-------|-------|--------|-------|--| | DOLOMITE DEPOSIT | | 1 | 2 | 1 | | | DUNE DEPOSIT HEAVY
MINERALS | | 5 | 1 | 5 | | | DUNE DEPOSIT SILICA
SAND | | 12 | 3 | 2 | | | ENRICHED IRON
FORMATION | | | | 1 | | | ENRICHED LIME
DEPOSIT | | 2 | 3 | 2 | | | EPITHERMAL PRECIOUS
METAL | | | 12 | 20 | | | EVAPORITE DEPOSIT | | 1 | | 3 | | | FLUORITE-QUARTZ
VEINS | | | | 3 | | | GOLD SKARN | | | 1 | 1 | | | GREISEN | | | 6 | 1 | | | HOT SPRING HG
(SULPHUR BANK TYPE,
SULPHUROUS TYPE) | | | | 1 | | | INTRUSIVE-RELATED
URANIUM | | | | 3 | | | IRON SKARN | | | 4 | 6 | | | IRON-OXIDE CU-AU
(-U-REE) | 1 | 6 | 8 | 20 | | | | GIANT | LARGE | MEDIUM | SMALL | | |---|-------|-------|--------|-------|--| | LATERITIC BAUXITE | | 4 | 4 | 18 | | | LATERITIC KAOLIN | | 3 | 4 | | | | LATERITIC NICKEL | | 4 | 7 | 4 | | | LEAD-ZINC SKARN | | | 1 | 2 | | | LIMESTONE DEPOSIT | | 14 | 8 | 10 | | | LOW SULPHIDE
AU-QUARTZ VEINS
(MOTHER LODE VEINS) | | | 1 | | | | MARBLE DEPOSIT | | 1 | | 6 | | | MESOTHERMAL VEINS,
MAGMATIC-RELATED | | 2 | 19 | 14 | | | MESOTHERMAL VEINS,
METAMORPHIC-RELATED
(SLATE BELT VEINS) | | | | 11 | | | MOLYBDENITE-QUARTZ
PIPES AND VEINS | | | | 1 | | | NODULAR MAGNESITE | | 4 | 1 | | | | OIL SHALE | | 12 | 8 | | | | PEGMATITE | | | 1 | | | | PODIFORM CHROMITE
(ALPINE TYPE) | | | 1 | 4 | | | | GIANT | LARGE | MEDIUM | SMALL | | |--|-------|-------|--------|-------|--| | POLYMETALLIC
AG-PB-ZN VEINS (FELSIC
INTRUSION RELATED) | | | | 5 | | | PORPHYRY CU-MO-AU | | 2 | 6 | 8 | | | PORPHYRY INTRUSION-RELATED QUARTZ VEINS & STOCKWORKS | | | 3 | 5 | | | PORPHYRY
MOLYBDENUM | | | 1 | 1 | | | PORPHYRY TIN | | | | 1 | | | PORPHYRY-RELATED AURIFEROUS SUBVOLCANIC BRECCIAS AND VEINS | | 1 | 1 | 5 | | | PROTEROZOIC
STRUCTURALLY-CONTR
OLLED COPPER-GOLD | | 1 | 5 | 23 | | | QUARTZ PEBBLE
CONGLOMERATE AU-U | | | 1 | | | | ROCK SILICA | | | | 1 | | | RUTILE-QUARTZ VEINS | | 1 | | 1 | | | SEDIMENTARY CLAY
DEPOSITS | | 1 | 8 | 2 | | | SEDIMENTARY IRON FORMATION (SUPERIOR TYPE FE) | | 1 | 3 | 2 | | | SEDIMENT-HOSTED CU
(INCLUDES CU-SHALE) | | 1 | 1 | 4 | | | SEDIMENT-HOSTED PB-ZN (BROKEN HILL TYPE) | 1 | | 5 | 5 | | | | GIANT | LARGE | MEDIUM | SMALL | | |---|-------|-------|--------|-------|--| | SEDIMENT-HOSTED
PB-ZN (SEDEX ZN-PB,
SHALE-HOSTED ZN-PB) | 4 | 3 | | 1 | | | SHEAR ZONE-HOSTED
HYDROTHERMAL | | | 4 | 17 | | | SHORELINE
(STRANDLINE) PLACER
HEAVY MINERALS | | 2 | | 3 | | | SIMPLE SB
(QUARTZ-STIBNITE
TYPE) | | | 1 | 9 | | | STRATABOUND
URANIUM-COPPER | | | 1 | 10 | | | STRATIFORM
MAFIC-ULTRAMAFIC
FE-TI-V (BUSHVELD
FE-TI-V) | | 3 | 1 | | | | SUPERGENE-ENRICHED
MANGANESE OXIDE
DEPOSITS | | | | 2 | | | TIN SKARN | | | 6 | 1 | | | TIN VEINS
(CORNISH-TYPE) | | | 12 | 12 | | | ULTRAMAFIC-HOSTED
MAGNESITE VEINS
(CRYPTOCRYSTALLINE) | | | | 1 | | | UNCONFORMITY U-AU
(VEIN-TYPE U) | | | 2 | 10 | | | UPWELLING TYPE
PHOSPHATE | | 3 | 15 | | | | URANIUM VEINS | | | | 1 | | | VEIN BARITE | | | | 2 | | | | | | | | | | | GIANT | LARGE | MEDIUM | SMALL | | |---|-------|-------|--------|-------|--| | VEIN CALCITE +/- CU | | | | 2 | | | VMS - BESSHI/KIESLAGER STYLE CU-ZN | | | | 2 | | | VMS - CYPRUS STYLE
CU-ZN | | | | 5 | | | VMS - KUROKO STYLE (NORANDA, FELSIC TO INTERMED VMS TYPE) | 1 | | 2 | 6 | | | VOLCANIC GLASS | | 1 | 1 | | | | WOLFRAM SKARN | | 1 | | | | | WOLFRAM VEINS | | 2 | 2 | 1 | | | Total | 8 | 101 | 204 | 340 | | 3/June/2016