Appendix 7

Deposit model and host geological province

This tabulation categorises the significant mineral deposits in Queensland by size for the different deposit models and the geological province in which they occur. It is an overview of the mineralisation styles covered by each tectonostratigraphic element.

Deposit Model Vs Host Rock Structural unit and Deposit Size For Queensland's Major Mineral Deposits

(Note: if a deposit has more than one deposit model it will be counted against each model)

	GIANT	LARGE	MEDIUM	SMALL	
ALLUVIAL CINNABAR (HG)			1		
ALLUVIAL PLACER GOLD				3	
ALLUVIAL PLACER TIN			11	18	
ALLUVIAL/ELUVIAL GEMSTONES		1	1		
ALLUVIAL/ELUVIAL HEAVY MINERAL ACCUMULATION		1	2		
BASE METAL SKARN		1	1	5	
BRECCIATED SEDIMENT-HOSTED AG-PB-ZN				1	
BRECCIATED SEDIMENT-HOSTED COPPER	1	2	4	10	
COPPER SKARN			3	9	
CU +/- AG QUARTZ VEINS				3	
DEEP LEAD PLACER AU			1	1	
DEEP LEAD PLACER SN			3	2	
DIATOMITE DEPOSIT		2	1	1	

	GIANT	LARGE	MEDIUM	SMALL	
DOLOMITE DEPOSIT		1	2	1	
DUNE DEPOSIT HEAVY MINERALS		5	1	5	
DUNE DEPOSIT SILICA SAND		12	3	2	
ENRICHED IRON FORMATION				1	
ENRICHED LIME DEPOSIT		2	3	3	
EPITHERMAL PRECIOUS METAL			12	20	
EVAPORITE DEPOSIT		1		3	
FLUORITE-QUARTZ VEINS				3	
GEMSTONES IN DECOMPOSED/WEATHER ED ROCK			1		
GOLD SKARN			1	1	
GREISEN			6	1	
HOT SPRING HG (SULPHUR BANK TYPE, SULPHUROUS TYPE)				1	
INTRUSIVE-RELATED URANIUM				3	

	GIANT	LARGE	MEDIUM	SMALL	
IRON-OXIDE CU-AU (-U-REE)	1	6	8	20	
LATERITIC BAUXITE		4	4	18	
LATERITIC KAOLIN		3	4		
LATERITIC NICKEL		4	7	4	
LEAD-ZINC SKARN			1	2	
LIMESTONE DEPOSIT		14	9	11	
LOW SULPHIDE AU-QUARTZ VEINS (MOTHER LODE VEINS)			1		
MARBLE DEPOSIT		1		6	
MESOTHERMAL VEINS, MAGMATIC-RELATED		2	21	14	
MESOTHERMAL VEINS, METAMORPHIC-RELATED				11	
(SLATE BELT VEINS) MOLYBDENITE-QUARTZ PIPES AND VEINS				1	
NODULAR MAGNESITE		4	1		
OIL SHALE		12	8		
PEGMATITE			1		

	GIANT	LARGE	MEDIUM	SMALL	
PODIFORM CHROMITE (ALPINE TYPE)			1	4	
POLYMETALLIC AG-PB-ZN VEINS (FELSIC INTRUSION RELATED)				5	
PORPHYRY CU-MO-AU		2	6	8	
PORPHYRY INTRUSION-RELATED QUARTZ VEINS & STOCKWORKS			3	5	
PORPHYRY MOLYBDENUM			1	1	
PORPHYRY TIN				1	
PORPHYRY-RELATED AURIFEROUS SUBVOLCANIC BRECCIAS AND VEINS		1	2	5	
PROTEROZOIC STRUCTURALLY-CONTR OLLED COPPER-GOLD		1	5	24	
QUARTZ PEBBLE CONGLOMERATE AU-U			1		
ROCK SILICA				1	
RUTILE-QUARTZ VEINS		1		1	
SEDIMENTARY CLAY DEPOSITS		1	8	2	
SEDIMENTARY IRON FORMATION (SUPERIOR TYPE FE)		1	3	2	
SEDIMENT-HOSTED CU (INCLUDES CU-SHALE)		1	1	4	

	GIANT	LARGE	MEDIUM	SMALL	
SEDIMENT-HOSTED PB-ZN (BROKEN HILL TYPE)	1		5	5	
SEDIMENT-HOSTED PB-ZN (SEDEX ZN-PB, SHALE-HOSTED ZN-PB)	4	3		1	
SHEAR ZONE-HOSTED HYDROTHERMAL			4	17	
SHORELINE (STRANDLINE) PLACER HEAVY MINERALS		2		3	
SIMPLE SB (QUARTZ-STIBNITE TYPE)			1	9	
STRATABOUND URANIUM-COPPER			1	10	
STRATIFORM MAFIC-ULTRAMAFIC FE-TI-V (BUSHVELD FE-TI-V)		3	1		
SUPERGENE-ENRICHED MANGANESE OXIDE DEPOSITS				2	
TIN SKARN			6	1	
TIN VEINS (CORNISH-TYPE)			12	12	
ULTRAMAFIC-HOSTED MAGNESITE VEINS (CRYPTOCRYSTALLINE)				1	
UNCONFORMITY U-AU (VEIN-TYPE U)			2	10	
UPWELLING TYPE PHOSPHATE		3	15		
URANIUM VEINS				1	

	GIANT	LARGE	MEDIUM	SMALL	
VEIN BARITE				2	
VEIN CALCITE +/- CU				2	
VMS - BESSHI/KIESLAGER STYLE CU-ZN				2	
VMS - CYPRUS STYLE CU-ZN				5	
VMS - KUROKO STYLE (NORANDA, FELSIC TO INTERMED VMS TYPE)	1		2	6	
VOLCANIC GLASS		1	1		
WOLFRAM SKARN		1			
WOLFRAM VEINS		2	2	1	
Total	8	101	209	343	

23/February/2017